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ABSTRACT

A key property for the effectiveness of stochastic search tech-
niques, including evolutionary algorithms, is the existence of
a positive correlation between the form and the quality of
candidate solutions. In this paper, we show that when the
ordering of genomic symbols in a genetic algorithm is com-
pletely independent of the fitness function and therefore free
to evolve along the candidate solutions it encodes, the re-
sulting genomes self-organize into self-similar structures that
favor this key stochastic search property.

Categories and Subject Descriptors
1.2 [Artificial Intelligence]: General

General Terms
Algorithms

Keywords

genetic algorithm, representation, proportional genetic algo-
rithm, self-organization, genomic self-similarity, emergence

1. INTRODUCTION

In this paper, we use a Proportional Genetic Algorithm
(PGA) [33], to study the emergent ordering of genomic sym-
bols in the complete absence of selective pressure for a par-
ticular order. We hypothesize that self-similarity emerges
because self-similar genomes are more robust with respect
to crossover and mutation and because it favors positive
correlations between the form and quality of candidate solu-
tions. The PGA is a Genetic Algorithm (GA) [17, 12] with a
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representation based on protein concentrations rather than
on the usual gene ordering. A PGA translates strings of
genes into multisets of proteins prior to fitness evaluation.
As a result, there is no fitness pressure for any particular
gene ordering and the order of the genes is free to evolve
along with the candidate solutions that they encode. Pre-
vious studies [33] have shown that genomic symbols under
these circumstances are evenly distributed throughout the
genome and that they appear to form building blocks of a
peculiar type: coarse grained versions of the entire genome.
In this paper, we ask the fundamental question: what is the
emergent genomic ordering when there is no selective pres-
sure for any particular ordering?. We use two very different
methods to analyse the emergent genomic structure: equal-
symbol correlation analysis, originally proposed by Voss [32]
to analyse DNA structure, and an experimental method of
our own making to analyse the self-similarity of genomic seg-
ments with repect to fitness. Our results can be summarized
as follows:

1. The equal-symbol correlation on completely location
independent genomes, as implemented by the PGA,
resembles white noise behavior and the emergent ge-
nomic structure is self-similar with respect to fitness.

2. Emergent genomic self-similarity seems to produce the
following effect: it favors positive correlations between
form and quality of candidate solutions, a key property
needed for stochastic search algorithms such as evolu-
tionary algorithms; and it reduces schemata disruption
caused by crossover.

2. BACKGROUND

2.1 The Proteomic Approach to Evolutionary
Computation

Proteins are the basic building blocks of life. Evolution-
ary computation (EC) traditionally relies on gene analogous
structures to represent candidate solutions for a given prob-
lem. In [10] Garibay investigates whether self-organization
of protein analogous structures at the representation level
can increase the degree of complexity and “novelty” of so-
lutions obtainable using evolutionary search techniques. In



this proteome-based representational approach, functional
structures analogous to proteins act as complexity builders
for a genome. As in many representational approaches, the
proteome-based approach is motivated by the observation
that nature seems to compress or at least bias the infor-
mation encoded in a genome. The genome determines the
size of the search space and it is the target of evolution-
ary changes. It is, however, the uncompressed version of the
genes — the organism — that is tested for fitness in a given en-
vironment. Furthermore, recent biological evidence suggests
that the complexity of an organism is not necessarily cor-
related with the number of genes in their genome but more
with the process of gene expression. For instance, there are
more genes in the rice genome than in the human genome;
and differences in the brain composition among humans and
other primates are not so much due to differences in the ge-
netic make up but to differences in amounts of expressed
genes—proteins.

The biological processes motivating many representational
approaches such embryogenesis and development, are far
from understood, but there are some points that are widely
accepted. The “central dogma” of molecular biology is one
of them. The central dogma, in essence, says that DNA is
translated into proteins and that proteins, not genes, are
the basic building blocks of biological functionality. In the
proteomic approach, we use the central dogma as a guiding
principle. We represent solutions not using a genome, as
classic EC does, but base our problem representation on the
protein complement of the genome—the proteome.

There are two fundamental aspects introduced by a proteome-

based representation: (1) proteins interact in a three di-
mensional medium analogous to a soup or multiset; and (2)
proteins are functional structures. The first aspect is foun-
dational for the study of the second. The PGA focuses on
analyzing the effects on EC introduced by the first aspect:
using a “content” oriented structure such as a multiset of
proteins instead of a traditional “order” oriented structure
such as a string of genes as the basis for problem represen-
tation. In this representational approach, the genetic oper-
ators act upon traditional strings of genes associated with
the multisets of proteins. As a result, genetic operators are
unchanged from traditional GA operators. We call these
types of representations completely location independent or
proteome-based location independent representations. For a
complete description of this approach and completely loca-
tion independent representations, we refer the reader to [10].

2.2 Proportional Genetic Algorithm

The Proportional Genetic Algorithm is a GA with a rep-
resentation inspired by the genome to proteome mapping.
In a GA, an individual is typically represented as a binary
string. A population of these strings undergoes continuous
genetic variation and fitness-based selection to produce more
fit individuals. In the PGA, individuals are strings over a
multicharacter alphabet and they undergo the same genetic
variation. The difference is that fitness is not evaluated on
these strings but on their associated multisets. The multiset
associated with a string of symbols is simply the multiset
containing all and only the elements in the corresponding
string. For instance, the associated multiset of the string
“aab” is {]a, a, b|}. Note that the strings “aab”, “aba”, and
“baa” all have the same associated multiset and are thus in-
distinguishable with respect to fitness. Consequently, there
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is no pressure to select any particular ordering of two “a”s

and one “b” in a genome. For a full description of the PGA
and its applications, we refer the reader to [33, 34].

2.3 Redated Work

The importance of the arrangement of encoded informa-
tion has been recognized since the introduction of the GA.
Positional bias [7], which occurs in typical location depen-
dent representations, refers to the fact that encoded infor-
mation that are relatively far apart on an individual are
more likely to be disrupted by crossover than encoded infor-
mation that are close together. As a result, how information
is arranged in a problem representation can affect the evolv-
ability of a GA.

A number of approaches have been investigated to deal
with this problem, including operators such as inversion [17,
12] and uniform crossover [31] which have little or no posi-
tional bias. A significant amount of research has also been
devoted to examining ways in which problem representation
may be designed to improve the GA search process.

Numerous studies have focused on representations that
allow a GA to dynamically evolve the arrangement of infor-
mation on an individual including the arrangement of indi-
vidual characters [1, 9, 14, 13, 16, 21] and the arrangement of
groups of characters [5, 27, 30, 35]. While these approaches
allow for dynamic evolution of the organization of the en-
coded information, the mapping from a GA individual to a
problem solution still retains some aspects of order: (1) the
order in which characters appear in an individual may affect
their expression, and (2) some sort of reordering is typically
required to decode an individual into a solution. A side ef-
fect of the latter is that each character or group of characters
has a specific meaning or use, e.g. the 2nd binary digit or
the 4th parameter. As a result, all encoding characters or
groups must exist in order for a solution to be formed.

Purely content based problem representations have been
developed in the form of problem specific structures such as
condition/action rules [15, 36] and other problem specific el-
ements, for example, [8]. These representations do not have
a pre-defined set of required components. All encoded infor-
mation is used to form a solution; non-existing information
is not used.

There is recent interest in representational approaches
that increase the complexity of solutions without increasing
the complexity of genomes in order to better scale evolution-
ary search. These approaches share some degree of implicit
self-organization. For instance the concepts of developmen-
tal mappings [23, 24, 22|, implicit embryogenies [26, 3], de-
velopmental biology [4, 25],generative representations [19,
20], molecular computing [6], self-replicating sequences [11,
2], cellular automata variations [28, 29], and constrained
generating procedures [18] all share, to some degree, this
perspective in which some sort of self-organizing principle
drives the representation of the problems.

3. EMERGENT WHITE NOISE BEHAVIOR

It has been shown using standard spectral density mea-
surement techniques that individual base positions in DNA
sequences exhibit 1/f noise and long-range fractal correla-
tions [32]. From the evolutionary computation perspective,
we pose the following question: What kind of behavior do
genomic symbols exhibit in evolutionary computation indi-
viduals? After a brief analysis, it is easy to realize that for



most evolutionary computation representations, which rely
on an order-based encoding of information, this question
has a trivial answer: the behavior exhibited by the evolved
symbolic sequences is the one dictated by the chosen fitness
function. For proteome-based location independent repre-
sentations such as the PGA, this question becomes more
interesting and less obvious. In proteome-based location in-
dependent representations, the encoding is based on which
symbols are present on a genome and not on the order in
which they are present [33]. Therefore, the order of genomic
symbols is free to evolve along with the candidate solution
they encode. We use spectral density measurement tech-
niques to analyze the best individuals obtained by a PGA
when applied to three problem domains: number matching,
symbolic regression, and dynamical system control.

3.1 Symboalic Sequence Analysis

Autocorrelation and spectral density functions are widely
used to analyze how fluctuations of a quantity, X(t), are
correlated between times ¢ and ¢ 4+ 7. The autocorrelation
function, C'(7), is a quantitative measure of the correlations
in the fluctuations in X (¢):

Cx(1)=(X@#) x X(t+71))

where the brackets denote sample averages. The spectral
density function, Sx(f), provides additional correlation in-
formation using the Fourier coefficient of X (¢) at frequency

f:

X(f) x /X(t)ez"ftdt
then
sx() = XL

where the effective bandwidth of the Fourier integral is A f.
The autocorrelation and spectral density functions are re-
lated by the following equations:

Sx(f) /C’X(T) cos 277 dT

Cx (1) x /Sx(f) cos 2 f df.

Figure 1 shows examples of typical noises and their charac-
teristic spectral densities S(f).

Voss [32] has shown that this time correlation analysis can
be successfully adapted for analysis of symbolic sequences
such DNA. DNA consists of sequences of K = 4 bases or
symbols. Given a symbolic sequence of length N, X,,,n =
1,2,..., N, where each X, is one of the symbols k,k =
1,2, ..., K he first defines the following equal-symbol multi-
plication function,

1 oifx, = X
Xn X Xm = { 0 otherwise.
Voss then isolates a binary sequence for each symbol using
Ui [Xn] which identifies the occurrences of the symbol & in
a sequence X, .

1 ifX, =k
0 otherwise

Ur|Xn] = {
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Figure 1: White(A), Pink(B) and Brownian Mo-
tion(C) noises and their spectral densities, S(f).

He defines

K

> Uk[Xn]Uk[Xm]

Xn X Xm

which leads to the calculation of the equal-symbol autocor-
relation function for each symbol k
K

)=+ 33 UelXo U Xt

1 k=1

= Cr(7).

k=1

Given that X,, = k, C(7) gives the probability that X4, =
k is also true. The spectral density is calculated using the
following equation

5(f) Sk(f)

K
where Si(f) is the equal-symbol spectral density of symbol
k.

We use standard spectral density measurement techniques
as adapted by Voss to analyze GA genomes using propor-
tional representation. We analyze the best genomes from
the last generation of a PGA run. These individuals are
likely to be optimal or very close to optimal. Figure 2 shows
the spectral density of the first two symbols of the alphabet
(A and B) for three problems: number matching, symbolic
regression, and control of dynamical systems. In all cases,
we find that the emergent ordering of genomic symbols, ac-
cording to our symbolic sequence analysis, resembles white
noise. These results contrast with the original analysis of
DNA sequences from GenBank data bank. In that study,
1/f noise and long-range fractal correlations are found over
a broad range of DNA classifications such primate, inverte-
brate, plant, etc.

Regarding this contrast between the PGA and DNA spec-
tral analysis, evolutionary computation processes are in-
spired by nature but do not pretend to model the complex-
ities involved in biological evolution. Therefore, PGA is not
a model to study DNA. Having said so, we think that the
observed differences are due to the fact that DNA strings are
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Figure 2: Log-log spectral density plots of the best
of the last generation individuals. From the bottom
up, symbols A and B for PGA on number match-
ing, on symbolic regression and on dynamical system
control problems. The graphics have been offset for
clarity.

a mixture of location dependent and location independent
encodings, while the PGA is purely location independent.
Since the PGA is purely location independent, we expect
that the emerging order is purely due to the dynamics of
the algorithm, in our case white noise. In the DNA case, it
seems that the pink noise arises due to long range depen-
dencies in the encoded information.

4. GENOMIC SELF-SIMILARITY
ANALYSIS

The objective of this empirical study is to determine whether
or not genomic self-similarity with respect to fitness emerges
in the PGA proteome-based location independent represen-
tation. Based on previous PGA studies that suggest that
PGA genome segments are coarse grained versions of an en-
tire PGA genome, we expect the following behavior. Large
genome segments will approximate the fitness of the entire
genome very closely. The smaller the genome segments,
the less they will resemble the fitness of the entire genome.
There will be a cut-off point at which a segment is too small
to represent the required information and self-similarity is
lost. As a result, we expect a gradual decrease in fitness as
the segments get smaller until a cut-off point is reached at
which point fitness will show a significant drop, as shown in
Figure 3(C). As a baseline comparison, we use a regular GA
in which genomic order is dictated by selection pressure and
consequently not free evolve or self-organize. Exceeding our
expectations, and as we will see shortly, PGA genomes re-
semble ideal self-similarity until the cut-off point is reached.

The freedom of genomic elements to self-organize comes
from the choice of representation. In the PGA proteome-
based location independent representation, the order in which
the symbols are arranged on a genome, by definition, has
no effect on the fitness of the individual. As a result, the
genome is free to organize in response to other factors such
the dynamics of the algorithm, operators, and building block
processing. Because the PGA representation is based on a
multiset, we can guarantee that no fitness function defini-
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tion can distinguish between different orderings of the same
symbols.

On the other hand, in a traditional representation where
information is encoded in the order of the genomic symbols,
there is no such freedom for genomic self-organization. In
this case, different orderings of symbols typically represent
different solutions; consequently, the ordering of symbols is
subject to selection pressure. Unless a fitness function is
specifically handcrafted so that all possible orderings of the
same multiset of symbols have the same fitness value, a very
unlikely scenario, the ordering of symbols will be determined
solely by the fitness function. In our experiments, we do not
handcraft such fitness for the traditional GA binary repre-
sentation; hence, we do not expect self-similarity to emerge
on GA genomes.

4.1 Sef-Similarity Metric for Genomes

We use fitness as the metric for genomic self-similarity.
A genome is self-similar if its fitness is approximately equal
to the average fitness obtained by evaluating all of its ge-
nomic segments of a given segment length. Let us introduce
the following notation. A genome w = wiwows...wr, is
a string of length L over the genome alphabet X. A seg-
ment S;; = SiSi+1Si+2...5; of w is defined as the substring
Wi Wi41Wig2...wj, where 1 < ¢ < j < L. A fitness function
f(w) maps strings into real numbers and is defined for any
genome or segment. Using the notation above, we define
the average fitness of all segments of size r over genome w
as follows:

L—r+1
) Z f(sii4r—1)
fr(w) = W (1)

Note that for a segment equal to the entire genome (r = L),
the expression above reduces simply to a fitness evaluation:

fr(w) = f(s1,) = f(w)

Finally, we say that a genome is self-similar if the following
expression is true:

Y, [fr(w) r f(w)] (2)

where r is the size of the genome segments used to analyze
self-similarity.

The above equation implies the following. For an ideal
case of genomic self-similarity, Equation 2 will hold indefi-
nitely for any segment size r. In this case, genomic segments
of any size will have the same fitness as the entire genome,
as shown in Figure 3(A). This case is analogous to perfect
fractal behavior. On the other hand, if there is no self-
similarity, Equation 2 will not hold even for large segments.
In this case, the fitness of the segments will not resemble
the fitness of the entire genome. We thus expect random
segments with average fitness equal to the median fitness of
the problem as demonstrated in Figure 3(B).

4.2 Fitness Evaluation

For all experiments, we set the algorithms to solve a very
simple problem: number matching. Number matching is a
simple hamming distance type of problem for real numbers.
The goal is to match, as closely as possible, a vector of target
numbers. We use vectors of size two. For convenience of
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exposition, let us define the following function:

st.0) = {

Fitness is determined by the average difference, as measured
by 6, between the values encoded in the individual’s genome
(or segment) and the target values:

zfy fz<y

+
y/x otherwise Yoy € R

1 1 2 2
5(Uta'rget7 vencoded) + 5(Uta'rget7 vencoded)
2

Where, Vigrget = {vtlmget,vfmget} is the vector of target
Values, and ‘/encoded = {v;ncoded7v§ncoded} is the vector of
values encoded in w. For the PGA, the encoded values are
given by:

f(9<1,L>) =

|[wla

|wle
V =
eneoded(0) = | LT Tl + Tl

®3)

where the genomic alphabet is ¥pca = {a,b,¢,d}, and | X|,
returns the number of times a symbol y appears in the string
X. Note that this definition is also valid for genomic seg-
ments. Note also that only the number of occurrences of
symbols are used to calculate the values. As shown on Equa-
tion 3, the first value is encoded simply as a proportion
between symbols a and b, and the second value, between
symbols ¢ and d. The proportions are numbers between
zero and one, but they can be easily scaled to represent any
parameter range of values.

For the GA, the values encoded in the genome are inter-
preted in the usual way. The genomic alphabet is binary:
Yaa = {0,1}. The first half of the genome represents our
first encoded value and the second half, our second encoded
value. Note that this definition is also valid for genome seg-
ments.

4.3 Settings

For our experiments, we use a standard GA and a PGA.
The GA uses a binary alphabet; the PGA uses a multi-
character alphabet. Mutation, in the GA, is bit-flip muta-
tion. The PGA mutation, randomly changes one alphabet
symbol into another. The following parameter settings are
common for all experiments: the genome length is L=1000
and segment sizes are L/2, L/4, L/8, L/16, L/32, L/64,
L/128, L/256, and L/512, the crossover type is two-point,
the crossover rate is 0.8, the mutation rate is 0.005, the se-
lection method is tournament of size 4, the population size
is 250, and the number of generations is 500. We perform
100 trials for all experiments using new randomly generated
targets for each run, and report average values with their
95% confidence intervals.

4.4 Results

Figure 4 shows plots of the average measured fitness for
decreasing segment length. These results reveal genomic
self-similarity with respect to fitness for the PGA and no
self-similarity for the baseline case. The self-similarity is
almost ideal (see Figure 3 (A)) for segments as small as
L/128 = 1000/128 = 7.81 symbols. After this critical point,
self-similarity is lost and fitness of the segments decreases
significantly. Figure 5 shows the raw fitness of segments of
size L/2 for the two encoded values over the 500 generations.
In Figure 5 (A), the variance for the self-similar case is very
small. This result indicates that all segments, not just their
averages, must have fitness similar to the entire genome. In
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Figure 5 (B), the variance for the non-self-similar case is
very high, indicating that the segments have a wide range
of fitness values and are not similar to the entire genome.

5. DISCUSSION

Empirical observations from previous studies [33] and from
this paper indicate that, during the course of the evolu-
tionary process, PGA genomes tend to self-organize into a
self-similar state with respect to fitness. In this state, alpha-
bet symbols are evenly distributed throughout the genome.
The question, then, is: why does this particular organization
emerges when there is no fitness pressure for any particular
ordering?

Self-similarity with respect to fitness is possible because
PGA looks for proportions. If the desired proportion of
symbols « and [ is 2 : 1, and if the symbols are evenly dis-
tributed throughout the genome, the genomic segments will
have roughly the correct proportion. This self-similarity re-
duces building block disrruption. Building block disruption
occurs when a crossover operation destroys useful schemata.
In the PGA case, a genome self-organizes into self-similar
building blocks. These building blocks are not disrupted by
typical crossover operations because a sub-segment is itself
a representative of the entire building block or schema. As a
result, crossover disruption is minimized, if not eliminated,
on the PGA genomes once this self-similarity has emerged.

Self-similarity reinforce positive correlations between form
and quality of candidate solutions. Let us analyze the effects
of self-similar genomes on one-point crossover and single-
symbol mutation. Assume that P; and P are two individ-
uals with perfect, self-similar genomes of length L over the
alphabet A = {a,b}. P1 and P, undergo one-point crossover
at location [ and, as a result, the individuals P; and P, are
produced. The concentrations of symbols a and b on indi-
viduals P, and P are given by:

[P, | P21
ap =g b=

| P2, | P2
ap2 = —p b=

It is easy to see that after crossover, the concentrations of
the resulting offspring P; and P, are:

aps = e x L+ Bl < (L 1)
N L

N AU e o,

o L

pa = Lot R X (D

bMZ@X(sz)JF@XZ

L

Hence, the symbol concentration of the offspring produced
as a result of one-point crossover between parents with self-
similar genomes is the weighted average of the symbol con-
centration of the parents. In terms of mutation, let us as-
sume that P; undergoes single-symbol mutation in the fol-
lowing way: a single symbol is changed from a to b. Be-
fore mutation, the concentrations of symbols in P; are given
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Figure 5: Average encoded values 1 and 2 of genomic segments of size L /2 (half-genome) over 500 generations.
The plots show averages and standard deviations over 100 runs. (A) PGA encoded values 1 and 2 have tight
standard deviations that indicate that encoded values of PGA genomic segments of size L/2 converge. From
Figure 4 we observe that their fitness converges to a near optimal solution, similar to the fitness of the entire
genome L. (B) GA encoded values 1 and 2 have wide standard deviations that indicate that GA genomic

segments of size L/2 do not converge.

Furthermore, the encoded values of these segments appear to be

randomly distributed. ;From Figure 4 we observe that their average normalized fitness is not similar to the
entire genome, but near to the median 0.5 instead. We observe similar behavior for segments of size L/4 to

L/128.

above. After mutation, we have:

’ |P1| -1 ’ |P1| +1

Gp1 = z bp1 = Z

The change in concentrations is given by:

[P, [P, =1, 1
A —|2"le Z7la 7)_ —
map = |77 I =1
|P1|b |P1|b +1 1
Apbyy = |2 2t 72y 2
b =7 L 71

This concentration change equals the minimum possible change

allowed by the encoding: 1/L.

Clearly, the behavior of crossover and mutation applied
to self-similar genomes produces smooth moves in the rep-
resentation space. Crossover acts by averaging parent con-
centrations and mutation acts by changing an individual by
the minimal difference. This smoothness of the proteome-
based location independent representation will certainly not
hinder, and, according with the previous analysis, will ac-
centuate positive correlations between form and quality of
candidate solutions.

6. CONCLUSIONS

This paper studies the emergent organization of proteome-
based location independent genomes using two methods:
standard spectral density analysis of equal-symbol correla-
tions and an empirical fitness comparison of genomic seg-
ments to determine self-similarity with respect to fitness.
The equal-symbol correlation analysis shows that the or-
der of genomic symbols resembles white noise. These re-
sults confirm previous results [33] that show that in PGA
genomes, symbols are evenly distributed throughout the en-
tire genome. The empirical analysis offers evidence of the
emergence of genomic self-similarity with respect to fitness
in PGA genomes. When genomic order is free to evolve,
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the genome self-organizes in response to the dynamics of
the evolutionary system. In the PGA case, it self-organizes
into a fractal-like structure in which genomic segments have
approximately the same fitness as the entire genome. These
fractal-like genomic structures appear to favor a key prop-
erty for stochastic search: the positive correlation between
form and quality of candidate solutions.

7. ACKNOWLEDGEMENTS

We thank Ken De Jong for comments on an early version
of this paper and the members of the UCF Evolutionary
Computation Laboratory for useful discussions.

8. REFERENCES

[1] J. D. Bagley. The behavior of adaptive systems which
employ genetic and correlation algorithms. PhD thesis,
University of Michigan, 1967.

[2] W. Banzhaf, P. Dittrich, and B. Eller. Selforganization

in a system of binary strings with topological

interactions. Physica D, 125:85-104, 1999.

P. J. Bentley. Natural design by computer. In

Proceedings of the 2003 AAAI Spring Symposioum:

Computational Synthesis: From Basic Building Blocks

to High Level Functionality, pages 1-2. American

Association for Artificial Intelligence, AAAT Press,

2003. Technical Report SS-03-02.

P. J. Bentley. Fractal proteins. Genetic Programming

and FEvolvable Machines Journal, 5:71-101, 2004.

D. S. Burke, K. A. De Jong, J. J. Grefenstette, C. L.

Ramsey, and A. S. Wu. Putting more genetics into

genetic algorithms. Fvolutionary Computation,

6(4):387-410, 1998.

M. Conrad. Computation: Evolutionary, neural,

molecular. In 2000 IEEE Symposium on Combinations

3]



[7]

(14]

(15]

(17]

(18]

(19]

20]

(21]

22]

of Evolutionary Computation and Neural Networks,
pages 1-9, 2000.

L. J. Eshelman, R. A. Caruana, and J. D. Schaffer.
Biases in the crossover landscape. In J. D. Schaffer,
editor, Proc. 8rd Int’l Conference on Genetic
Algorithms, pages 10-19, 1989.

R. W. Franceschini, A. S. Wu, and A. Mukherjee.
Computational strategies for disaggregation. In Proc.
9th Conf. on Computer Generated Forces and
Behavioral Representation, 2000.

D. R. Frantz. Non-linearities in genetic adaptive
search. PhD thesis, University of Michigan, 1972.

I. Garibay. The Proteomics Approach to Evolutionary
Computation: An Analysis of Proteome-Based
Location Independent Representations based on the
Proportional Genetic Algorithm. PhD thesis,
University of Central Florida, 2004.

M. Garzon, D. Blain, K. Bobba, A. Neel, and

M. West. Self-assembly of DNA-like structures in
silico. Genetic Programming and FEvolvable Machines,
4(2):185-200, 2003.

D. E. Goldberg. Genetic algorithms in search,
optimization, and machine learning. Addison Wesley,
1989.

D. E. Goldberg, K. Deb, H. Kargupta, and G. Harik.
Rapid accurate optimization of difficult problems
using fast messy genetic algorithms. In S. Forrest,
editor, Proc. 5th Int’l Conference on Genetic
Algorithms, pages 56-64, 1993.

D. E. Goldberg, B. Korb, and K. Deb. Messy genetic
algorithms: Motivation, analysis, and first results.
Complex Systems, 3:493-530, 1989.

J. Grefenstette, C. L. Ramsey, and A. C. Schultz.
Learning sequential decision rules using simulation
models and competition. Machine Learning,
5(4):355-381, 1990.

G. R. Harik. Learning gene linkage to efficiently solve
problems of bounded difficulty using genetic
algorithms. PhD thesis, University of Michigan, 1997.
J. H. Holland. Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor,
MI, 1975.

J. H. Holland. Emergence: From Chaos to Order.
Addison-Wesley, 1998.

G. S. Hornby, H. Lipson, and J. B. Pollack.
Generative representations for the automated design
of modular physical robots. IEEE Transactions on
Robotics and Automation, 2003. In Press.

G. S. Hornby and J. B. Pollack. Creating high-level
components with a generative representation for
body-brain evolution. Artificial Life, 8(3):223-246,
2002.

H. Kargupta. The gene expression messy genetic
algorithm. In Proc. IEEE Int’l Conference on
Evolutionary Computation, pages 814-819. IEEE
Press, 1996.

J. R. Koza et al. Automated synthesis by means of
genetic programming of human-competitive designs
employing reuse, hierarchies, modularities,
development, and parameterized topologies. In
Proceedings of the 2008 AAAI Spring Symposioum:

1184

(23]

24]

Computational Synthesis, pages 138-145. AAAI Press,
2003.

J. R. Koza, F. H. B. III, D. Andre, and M. A. Keane.
Genetic Programming I1I. Morgan Kaufmann
Publishers, 1999.

J. R. Koza, M. A. Keane, M. J. Streeter,

W. Mydlowec, J. Yu, and G. Lanza. Genetic
Programming IV: Routine Human-Competitive
Machine Intelligence. Kluwer Academic Publishers,
2003. ISBN 1-4020-7446-8.

S. Kumar. Multicellular development,
self-organization, and differentiation. In Proc. GECCO
2004 Workshop on Self-organization in
Representations for FEvolutionary Algorithms: Building
complexity from simplicity, 2004.

S. Kumar and P. J. Bentley, editors. On Growth,
Form and Computers. Academic Press, 2003.

H. A. Mayer. ptGAs—genetic algorithms evolving
noncoding segments by means of promoter/terminator
sequences. Evolutionary Computation, 6(4):361-386,
1998.

J. Miller and P. Thomson. Beyond the complexity
ceiling: Evolution, emergence and regeneration. In
Proc. GECCO 2004 Workshop on Regeneration and
Learning in Developmental Systems, 2004.

L. M. Rocha. Evolving memory: Logical tasks for
cellular automata. In Proc. Ninth International
Conference on the Simulation and Synthesis of Living
Systems (ALIFE9). In Press, 2004.

T. Soule and A. E. Ball. A genetic algorithm with
multiple reading frames. In L. Spector, E. D.
Goodman, A. S. Wu, W. B. Langdon, H. M. Voigt,
M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon,
and E. Burke, editors, Proc. Genetic and Evolutionary
Computation Conference, 2001.

G. Syswerda. Uniform crossover in genetic algorithms.
In Proc. 8rd Int’l Conference on Genetic Algorithms,
1989.

R. F. Voss. 1/f noise and fractals in DNA-base
sequences. In Crilly, Earnshaw, and Jones, editors,
Applications of Fractals and Chaos, pages 7-20.
Springer-Verlag, 1993.

A. S. Wu and I. Garibay. The proportional genetic
algorithm: Gene expression in a genetic algorithm.
Genetic Programming and Evolvable Hardware,
3(2):157-192, June 2002.

A.S. Wu and I. Garibay. Intelligent automated
control of life support systems using proportional
representations. IEEE Transactions on Systems, Man,
and Cybernetics—Part B, 34(3):1423-1434, June 2004.
A. S. Wu and R. K. Lindsay. A comparison of the
fixed and floating building block representation in the
genetic algorithm. Fvolutionary Computation,
4(2):169-193, 1996.

A.S. Wu, A. C. Schultz, and A. Agah. Evolving
control for distributed micro air vehicles. In Proc.
IEEE Int’l Symp. Computational Intelligence in
Robotics and Automation, 1999.



