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ABSTRACT 

In Genetic algorithms it is not easy to evaluate the confidence 
level in whether a GA run may have missed a complete area of 
good points, and whether the global optimum was found. We 
accept this but hope to add some degree of confidence in our 
results by showing that no large gaps were left unvisited in the 
search space. This can be achieved to some extent by inserting 
new individuals in big empty spaces. However it is not easy to 
find the biggest empty spaces, particularly in multi-dimensional 
problems.  For a GA problem, however, it is not necessary to find 
the exact biggest empty spaces; a sufficiently large empty space is 
good enough to insert new individuals. In this paper, we present a 
method to find a sufficiently large empty Hyper-Rectangle for 
new individual insertion in a GA while keeping the computational 
complexity as a polynomial function. Its merit is demonstrated in 
several domains. 

Categories and Subject Descriptors 

I.2.8 [Computing Methodologies]: Artificial Intelligence – 

problem solving, control method, and search. 

General Terms 

Algorithm, Performance. 

Keywords 

Genetic Algorithms, Optimization, Maximal Hyper-Rectangle. 

1. INTRODUCTION 
Genetic algorithm[9] search is a probabilistic search approach 
which is founded on the ideas of evolutionary processes. The GA 
procedure is based on the Darwinian principle of survival of the 
fittest. For the general GA, first an initial population is created 
containing a number of individuals. Each individual has an 
associated fitness measure, typically representing an objective 
value. Only individuals with relatively high fitness are selected to 
reproduce offspring by crossover and mutation, while those with 
lower fitness will get discarded from the population. The result is 

another set of individuals based on the previous population, 
leading to subsequent populations with better individual fitness in 
most cases. The GA approach has repeatedly proven to be a robust 
search and optimization method in numerous theoretical and 
practical domains. 

However there are potential problems. If we strictly adhere to the 
Darwinian evolution paradigm, the population in every generation 
only weakly depends on the initial population, because all 
offspring are created from their parents. However, only the first 
generation is created randomly. It is inevitable as the GA 
converges that exploitation will replace the initial exploration. 
Nevertheless, it is hard to guarantee that this will not happen too 
soon leading to premature convergence.  One way to reduce the 
risk is to ensure that some individuals are created randomly in 
every generation. It is usually observed that as the search 
progresses, the population gets gradually concentrated in one or a 
few regions which may or may not contain the global optimum. 
The capability of exploring new space will be weaker. Niching 
methods[8] attempt to reduce the risk using sharing, crowding or 
other diversity promotion techniques. The problem with these 
methods is that they are implicit rather than explicit in their 
attempt to cover the search space. Despite the use of Niching 
methods, there could be large regions of the search space that are 
never explored. To overcome these drawbacks, our idea is to 
create some individuals directly in each generation, placing them 
in big empty spaces to promote exploration. In doing this, the 
convergence may be slightly slower but the probability of 
premature convergence to local sub-optima is significantly 
reduced. By inserting some individuals in big empty spaces, our 
confidence in the results increases because no large gaps exist in 
the search space. 

However, finding the biggest empty space in a multi-dimension 
space is not easy. The first step is to define empty space. We can 
use empty hyper-sphere, empty hyper-rectangle or other shapes. 
For example, if we adopt empty hyper-rectangle, it is still an 
infinite set. Liang-ping Ku et al.[1] proposed using Maximal Hyper 
Rectangle (MHR) to measure the empty space and tried to find the 
biggest MHR. In this paper, we adopt the concept of MHR to 
describe the empty space (Figure 1), defined as follows: 

(1) All the sides of MHR are parallel to the respective axis, 
and orthogonal to the rest. 

(2) MHR does not contain any points in its interior. 
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(3) No other MHR exists which either contains or falls 
entirely within the interior of the MHR. In other words, 
on each surface of the MHR, there is at lease one point. 

We adopt the MHR concept because it is representative of all 
possible empty hyper-rectangles and the number of MHRs is 
finite. Secondly, it is easer to handle because the space and points 
are usually described in the Cartesian coordinate system. 

The problem of finding empty hyper-rectangles has been studied 
repeatedly in the literature. In [1], the computational complexity 
to find the biggest MHR is O(n2k-1k3(lgn)2), where n is the number 
of points and k is the number of dimensions in the dataset. Liu et 
al.[2] motivate the use of empty space knowledge for discovering 
constraints. Their proposed algorithm runs in O(n2(k-1)k3(lgn)2). 
Even in low dimensions this algorithm is impractical for large 
values of n. In an attempt to address both the time and space 
complexity, they proposed only maintaining maximal empty 
hyper-rectangles which are larger than some size. However the 
number of MHRs may still be very large because it is difficult to 
correctly set the size, a priori, in some problems. Furthermore, 
many MHRs are largely overlapping. Edmonds et al.[3] proposed 
finding all MHRs by considering each 0-entry<x, y> of M one at a 

time, row by row, where M is an |X|×|Y| matrix (for two 
dimensions), X and Y denote the set of distinct values in the data 
set in each of the dimensions. Their proposed algorithm runs in 
O(n2(k-1)k). However, it is not applicable for continuous spaces. 
Other approaches have been proposed that use decision tree 
classifiers to approximately separate occupied space from 
unoccupied space, then post-process the discovered regions to 
determine MHRs[4]. These methods do not guarantee that all 
maximal empty rectangles are found. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Two examples of MHRs in a 2-D space 

Despite the extensive literature on this problem, none of the 
known algorithms are effective for large data sets. Fortunately, for 
the purpose of improving the GA reliability, we do not have to 
find the exact biggest MHR, a sufficiently big MHR is good 
enough. 

Now the problem we will consider is as follows: Given a k-
dimensional space S, where each dimension r is bounded by a 
minimum (Sminr) and a maximum (Smaxr) value. S contains n points 
(individuals). The problem is to find a sufficiently large MHR in 
which to insert a new individual.  

The rest of the paper is organized as follows: In Section 2, we 
describe the proposed algorithm, and check the time complexity 
of the algorithm by setting points in S randomly and finding the 
calculation time for different numbers of points and dimensions. 
In Section 3, we apply this algorithm to some real GA problems. 
Section 4 presents the conclusion and future work. 

2. THE PROPOSED APPROACH 
The main idea of the algorithm is as follows: There are n points in 
a k-dimensional space S (then S has 2k surfaces), the middle point 
of  two points Pi and Pj is Mij. Near each Mij, there is always a 
small empty hype-rectangle the center of which is Mij and its 
volume is ≥ 0. We expand the empty rectangle with the same 
speed along all directions until some surface, for example, surface 
k+, meets a point. Then along direction k+, the expanding will 
stop, while along direction k-, which is the opposite of k+, the 
speed of expansion is doubled. The speed of expansion along 
other directions remains the same. The expansion continues until 
some surface meets a point. The expansion will stop when all 
surface meet point (Figure 2).  
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                   (c)                                                       (d) 

Figure2. Example to illustrate the expansion process 

of a MHR in a 2-D space 

(a) an empty rectangle expands starting from a middle point; 

(b) one surface meets a point; (c) the other two surfaces meet 

two other points; (d) all surfaces meet points. 

We use a variable “time t” to measure the expansion of the empty 
hype-rectangle. When t=0, the volume of the empty rectangle =0, 

Mij Mij 

Mij Mij 
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i.e. the distance between each surface and Mij, dr is 0. At the 
beginning, the speed along all directions, v = 1. If surface r+ has 
met a point, we set vr+ = 0 and vr- = 2. Then the distance between 
each surface and Mij, dr =vr*t.  

When the empty rectangle expands, we can increase t by a small 

amount (∆t) each time, and then check whether some surface met 

some point. However, if ∆t is too small, we will have to check too 

many times. If ∆t is too big, the time that some surface meets 

some points may lie between t and t+∆t.  

To solve this problem, instead, we try to find which surface and 
point will meet first. With the current expansion speed, each point 
can be approached at some time ti. We take Pi as an example. For 
each direction, we can find tir according to the distance between 
the current position of surface r and Pi and the speed vir. Suppose 
the maximum among ti1, ti2, …ti2k is tir, then tir is the time (ti) that 
the surface s of the empty rectangle expanding with the current 
speed meets Pi. To deal with the boundary, we add two points 
Pn+1 and Pn+2 to represent the boundary when we do the 
expansion, one with coordinates that are the positions of all lower 
surfaces of S, the other with coordinates that are the positions of 
all upper surfaces of S. To find the time the empty rectangle meets 
a surface, we consider the minimum among tn+1,1, tn+1,2, …tn=1,k 
rather than maximum. Suppose the minimum among t1, t2, …tn, 
tn+1, tn+2 is tp, then point p is the point that the empty rectangle 
expanding with the current speed will first meet, and tp is the 
meeting time.  

After we find the point that the empty rectangle first meets, we 
update the position and expansion speed of all surfaces of the 
empty rectangle and continue the expansion process until all 
surfaces meet points. The expanded empty rectangle is a MHR, 
we call it Expanding MHR (EMHR).  The EMHRij is a big MHR 
expanding from Mij. The maximum among all EMHRij can be 
considered a sufficient MHR. 

Although we did not investigate all MHRs because the number of 
MHRs is O(n2k-2), we do expand in each MHR at least k(2k-1) 
times because there is at least one point on each surface of each 
MHR.  

In the course of a GA optimization, the number of points visited 
will increase gradually. If we run the above process every time a 
new point is created, the efficiency will be very low because some 
expansions may be repeated many times unnecessarily. In the real 
program, the algorithm is as follows. Given a k-dimensional 
space, we first start with no point in S. We consider all the 
vertices of S as initial points, so the only middle point is the 
center of S, and the EMHR is the whole S. We add the EMHR to 
the set of EMHRs. Then the n points are added to S, one point at a 
time. At each insertion, only the EMHRs which contain the newly 
added point will be updated by doing expansion from its relative 
middle point, because EMHRs which do not contain the newly 
added point will not change. We do new expansions from the 
middle points between the newly added point and other points, 
and add their EMHRs to the set of EMHRs. At each time, the 
above algorithm will have same results with expansions from all 
middle points between any two points. The MHR we require is 
the biggest among all EMHRs. 

We do not have to keep track of all EMHRs. First, if two middle 
points are very close, their EMHRs will strongly overlap; thus we 
can discard one of them. Second, if an EMHR is very small, we 

can discard it.  For example, if the volume of space S is V, the 
number of points so far is N, then if the volume of an EMHR is 
less than V/N, we can discard it, because it will never be the 
biggest EMHR.  

The detailed algorithm is also described using pseudo-code 
(Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The pseudo-code of the proposed algorithm 

 

We use the above algorithm to find a sufficiently large MHR to 
periodically add new points to a GA population. One reason is 
that the calculation to find the exact biggest MHR is too high, 
while for our purpose, a sufficiently large MHR is good enough. 
Another reason is that, when we try to find the big empty space in 
a GA trace, we may prefer more squared space rather than a 
narrow space (Figure 4). The above expanding algorithm tends to 
find more squared space, because the shorter side will be met in 
the expansion earlier.  

Algorithm FindBigEmptySpace 

Begin 

Set the corner vertices of space S as initial points. 

Set the Linked list of EMHRs (LE) = NULL. 

EMHR(M) = Expending(M) // Expansion starts from M. At 

this step, M is the center of S, and EMHR(M) is the whole S 

Insert(LE, EMHR(M)) // Add EMHR(M) to LE 

 

When a new point P is inserted into S, 

   Check LE 

        If (EMHRi contains P), update EMHRi 

    From the mid point Mi between P and every other point i,  

        EMHR(Mi) = Expending(Mi) 

        Insert(LE, EMHR(Mi)) 

   Check LE 

        If(Two EMHRs strongly overlap), delete one of them 

        If(EMHRi is not big enough) delete EMHRi from LE // 
The above two steps may be done once every several points. 

        Return biggest EMHR and its center. 

End 

Expending(M) 

Do (while not all dimensions of hyper-rectangle (HR) have 
met points) 

    For each point Pi, 

    Timei = getTime(Pi) // the time on which the expanding 

HR meets with Pi 

DimAndPj = minimun(Timei) // the point that the 

expanding HR will meet first ( along some dimension) 

Update the expansion speeds. 

EndDo 
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Figure 4. A more squared space is more interesting empty 

space 

Analysis of complexity: for expanding from one point, the 
calculation to find the next point the expanding empty rectangle 
will meet is done in O(nk) because in order to find the time for 
one point when the expanding empty rectangle meet it, we have to 
check all of its coordinates, i.e. O(k), and we have to find the time 
for all the points (n of them). The expanding will stop when all 
surfaces meet points, so the total calculation for expanding from 
one point is O(nk2). We do expansions from all middle points 
between any two points, so, the total calculation is O(n3k2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Running time for finding exact biggest MHR and 

sufficient big MHR (in logarithmic scale) 

As pointed out earlier, we do not have to keep track of all 
EMHRs. If two middle points are too close, we only keep one of 
them and if an EMHR is too small, we discard it. The exact 
number of EMHRs to be discarded depends on the definitions of 
“too close” and “too small” but the real complexity may be lower 
than O(n3k2). 

We compared the running time of the algorithm for finding the 
exact largest MHR and our proposed algorithm for finding a 
sufficiently large MHR with randomly generated data. For the 
sake of comparison, we find the biggest MHR by checking all 
MHRs, because we only try to show it is an exponential function. 
Figure 5 shows the results in terms of the actual CPU time. 

For finding the exact biggest MHR for k=4 and for only 30 points, 
the running time is several minutes! Furthermore, even for k=4, 
the running time increases at a very fast rate as n increases. When 
n increases, for example, from 16 to 32, the running time 
increases more than 700 times. From Figure 5, we can see that the 
slope of the curve increases when k increases. This means that the 
order is a function of k. On the other hand, the running time for 
finding a sufficiently large MHR using our algorithm, even for 
several hundred points, is a few seconds. When the number of 
points doubled, the running time is usually increased by 8 to 10 
times and does not heavily depend on k. From Figure 5, we can 
see that the slope of the curves is nearly the same for different 
values of k, showing that our algorithm runs in polynomial rather 
than exponential time. 

3. APPLICATION TO GA OPTIMIZATION 
In this section, we apply our algorithm, inserting new individuals 
at big empty spaces, to some GA problems, to examine its effect 
on performance. We consider seven examples of continuous-
parameter GA problems. Functions F1 and F2 are taken form 
previous studies[5, 6, 7]. F1 is symmetric while F2 is non-symmetric 
and both have many local optima. The functions are shown in 
Figures 6, 7. Note that we inverted the plots by adding a negative 
sign to the functions for the sake of clarity but all the functions 
used in this paper are minimized. The global optimum of F1 is at 
(0, 0) and the global optimum of F2 is at (0.375, 0.375). F3 is 
constructed based on F1 by copying a small range including the 
global optimum to another location, in order to see the effect of 
position of global minima. Similarly F4 is constructed based on 
F2. F5 is constructed using F1 and F2 with each function located 
at different ranges, so the whole function is not continuous. F6 is 
constructed based on F1, but expanding its dimensionality to four. 
F7 is constructed based on F6 in the same manner of constructing 
F3 from F1.  The ranges of all functions are set 
to 20,20 21 ≤≤− xx . In the range, each function has thousands of 

local optima in addition to the global optimum. 

The initial population is generated randomly. Rank based 
selection is used as it is more robust in general. Then the 
population enters the following loop with fixed population size N.  

  Selection: part of the population ( Nrs ⋅ , where rs<1, is the 

ratio of selection) are selected to propagate to the next generation 
and will also be allowed to produce offspring.  The selection 
probability of an individual  

is ∑
=

−−
=

N

i

c

i

c

ii rankrankp
1

)(/)( , where c is a constant. The 

individual with highest fitness is guaranteed to be selected. 
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Figure 6. F1 
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Figure 7. F2 With 01 =d  and 75.02 =d  

  Crossover: part of the population ( Nrc ⋅ , where rc<1, is the 

ratio of crossover) is created by crossover of two parents selected 
randomly from the above selected population. The crossover 

operator is 2,1  , if  ),(* 1,2,1,2,1, =>−+= ixxxxRxx iiiiii
, 

where R is a random number. 

  New individual insertions (by our method): the rest of the 

population ( Nrr cs )1( −− ) is created at big empty spaces, 

which are found according to our algorithm using all the points 
visited so far during the course of the optimization. The largest 
MHR is selected and a point is created at its center. This is 
repeated for the required number of individuals.   

  Mutation: each of the individuals in the selected population 
mutated with some probability Pm. This is done after the crossover 
step so if they took part in a crossover, it was with their original 

genes rather then their mutated forms. The mutation operator is 

non-uniform mutation [9] with b
TtRyyt )/1(),( −⋅⋅=∆ , where 

y is the distance between the individual and the boundary, R is 
random number, t is the generation number, T is the maximum 
generation number, b is a system parameter determining the 
degree of non-uniformity. 

In this paper, the parameters are set as rs =50%, rc=30% (in the 
comparisons when no insertions are done this becomes 50%), 
Pm=0.2, c=0.5, and b=2. We use a population size of 10 and 
terminate the process after 50 generations. 

With the insertion of new individuals at big empty spaces, we 
expected more space to be covered. In other words, at the end of 
the GA process, the empty spaces should be smaller than without 
insertion. Indeed the experiments supported this expectation. 
Figure 8 shows the total individual distribution for F1. F2 has 
similar behavior. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Population distribution for F1 

 

Figure 8 shows that with the insertion of new individuals, the 
distribution of total points visited throughout the optimization is 
more uniform than that without insertion. After 50 generations, 
without inserting individuals at big empty spaces, the biggest 

empty square is 7.4×7.4, while with individual insertion; the 
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biggest empty square is 3.0×3.0. Thus more space is searched by 
using our algorithm. 

One way to measure the success of a GA run is by checking if 

there are individuals within a tight ε-neighborhood of the 
optimum. In this paper, we consider the GA run to be successful if 
the individual with highest fitness is within the basin of attraction 
of the global optimum. The motivation behind this is to reduce the 
computation time. If the individual with highest fitness is close to 
the optimum and in its basin of attraction, usually it will go to the 
optimum gradually. The basin of attraction of F1 is 

0.13.0/35.0/ 2

2

2

1 <+ xx ,  and for F2, it is 

0.15.0/)(4.0/)75.0( 2

21

2

21 <−+−+ xxxx . 

We test the performance of our algorithm by checking how many 
runs are successful among 200 runs. The results are shown in 
Figures 9 and 10. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Performance of the algorithm for F1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 Performance of the algorithm for F2 

 

From figure 9 and figure 10, we see that our method actually 
degrades the performance for F1 and F2. Although this may seem 
surprising it is understandable. Although F1 and F2 have many 
local optima, their main shapes are simple. Take F1 for example, 
its main shape is determined by the first and second terms of F1, 

2

2

2

1 xx + , therefore, the values near the center (0,0) of the space 

is small while the values near the corner and the boundary of the 
space is big. The local change is caused by the third and fourth 
terms of F1, )4cos(4.0)3cos(3.0 21 xx ππ −− . With the 

regular process of evolution, the population will concentrate near 
the center gradually because of the effect of selection, crossover 
and mutation. The range near the boundary of the space may have 
big empty spaces. So if we insert some individuals in big empty 
spaces, with high probability they will be near the boundary rather 
than the center of the space. This will explore more space, 
however, for F1, the global optimum is at (0, 0), the insertion has 
no contribution to success and will degrade the performance.  

However, in practice, we do not know the location of the global 
optimum, and the function may have any shape. So it is necessary 
to explore more space in order to avoid missing some space where 
the global optimum lies. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Performance of the algorithm for F3 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Performance of the algorithm for F4 

 

To demonstrate this, we constructed F3 and F4 based on F1 and 
F2 respectively. To create F3, we copied a small range which 
contains the global optimum to another location, for example, (9-
11, 9-11), and added a small value to the original function to 
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make the original global minimum a local minimum. The 
expression of F3 is as follows: 

0.17.0)4cos(4.0)3cos(3.02

),(

21

2

2

2
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213

++−−+

=

xxxx

xxF

ππ

   

where 2,1,1|10| =≥− ixi
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where 2,1,1|10| =≤− ixi
 

F4 is constructed similarly. 

We then checked the performance of the algorithm for F3 and F4. 
The results for F3 and F4 are shown in Figures 11 and 12 
respectively. The figures show that for F3 and F4 the ratio of 
successful runs with individual insertions in big empty spaces is 
higher. If the global optimum is not in the range where most 
values are good, inserting new individuals will increase the 
probability of finding it.  

We next considered a discontinuous function. F5 is constructed 
by putting F1 at the range (7-13, 7-13) with its origin at (10, 10) 
and the range ((-7)-(-13), (-7)-(-13)) with its origin at (-10, -10), 
F2 at the range ((-7)-(-13), 7-13) with its origin at (-10, 10) and 
the range ((7-13, (-7)-(-13)) with its origin at (10, -10). The 
function surface is shown in Figure 13. In its full range, the 
function is discontinuous. We further added to each continuous 
region a different constant (0, 4, 6, 12 respectively) so that the 
whole function has only one global optimum.  

 

 

Figure 13. F5 

 

Figure 14 shows the performance of the algorithm for F5. The 
figure shows that for F5 the ratio of successful runs with and 
without insertion of new individuals in big empty space is nearly 
the same. It means the contribution of inserting new individual in 
empty space is nearly the same as the cost of inserting. 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Performance of the algorithm for F5 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Performance of the algorithm for F5 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Performance of the algorithm for F5 

We hypothesized that increasing the range of the peak containing 
the global optimum will degrade the contribution of individual 
insertions while decreasing that range will have the opposite 
effect. To test this we first increased the range with the global 

optimum from 6×6 to 18×18, and repeated the experiments.  
Figure 15 shows the results. We then decreased that range from 
6×6 to 2×2 and the results are shown in Figure 16. The results 
clearly support our hypothesis. (Figure 15, 16) 
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All of the functions discussed so far were two-dimentional. 
Although we expected that the performance of the algorithm 
should be the same, we considered functions with higher 
dimension. F6 is constructed from F1 by expanding its dimension 
to four as follows, 

4.1)5.1cos(4.0)cos(3.02                  

)5.1cos(4.0)cos(3.02),(
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1 <+++ xxxxx . F7 is 

constructed from F6 in the same manner we constructed F3 from 
F1, also for the same reason. We used a population size of 20 and 
terminated the process after 50 generations in this case. We tested 
the performance of our algorithm by checking how many runs are 
successful among 200 runs. The results for F6 and F7 are shown 
in Figures 17 and 18 respectively. 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Performance of the algorithm for F6 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Performance of the algorithm for F7 

 

From Figure 17 and 18, we can find that the performance for F6 
and F7 is similar to F1 and F3 respectively, showing that our 
algorithm has same behavior for functions with higher dimension. 

4. CONCLUSION 
In this paper, we propose a modification for the classical 
Darwinian evolution metaphor commonly used in evolutionary 
optimization by periodically inserting new individuals at big 
empty spaces. To efficiently do this we propose an algorithm to 
find sufficiently large empty hyper-rectangles with polynomial 
time complexity. We show that it is efficient and scalable. 

We conducted experiments to check its performance using several 
functions. The experimental results demonstrate that more space 
will indeed be searched by inserting new individuals in big empty 
spaces. Even when the global optimum is not located at the range 
where all or most points have good fitness, the GA with insertion 
of new individuals will have a higher probability of finding the 
global optimum. This is particularly useful in discontinuous and 
multi-modal optimization domains. The proposed method also 
provides a potential tool for measuring the reliability of a GA 
search (or any other search method for that matter) based on the 
size of the gaps in the search space. Further research is planned to 
identify such measures. 
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