
Improving GA Search Reliability Using Maximal

Hyper-Rectangle Analysis

Chongshan Zhang
Computer Science Department

University of Georgia
Athens, GA 30602
01-706-534-2907

czhang@cs.uga.edu

Khaled Rasheed
Computer Science Department

University of Georgia
Athens, GA 30602
01-706-534-3444

khaled@cs.uga.edu

ABSTRACT

In Genetic algorithms it is not easy to evaluate the confidence
level in whether a GA run may have missed a complete area of
good points, and whether the global optimum was found. We
accept this but hope to add some degree of confidence in our
results by showing that no large gaps were left unvisited in the
search space. This can be achieved to some extent by inserting
new individuals in big empty spaces. However it is not easy to
find the biggest empty spaces, particularly in multi-dimensional
problems. For a GA problem, however, it is not necessary to find
the exact biggest empty spaces; a sufficiently large empty space is
good enough to insert new individuals. In this paper, we present a
method to find a sufficiently large empty Hyper-Rectangle for
new individual insertion in a GA while keeping the computational
complexity as a polynomial function. Its merit is demonstrated in
several domains.

Categories and Subject Descriptors

I.2.8 [Computing Methodologies]: Artificial Intelligence –

problem solving, control method, and search.

General Terms

Algorithm, Performance.

Keywords

Genetic Algorithms, Optimization, Maximal Hyper-Rectangle.

1. INTRODUCTION
Genetic algorithm[9] search is a probabilistic search approach
which is founded on the ideas of evolutionary processes. The GA
procedure is based on the Darwinian principle of survival of the
fittest. For the general GA, first an initial population is created
containing a number of individuals. Each individual has an
associated fitness measure, typically representing an objective
value. Only individuals with relatively high fitness are selected to
reproduce offspring by crossover and mutation, while those with
lower fitness will get discarded from the population. The result is

another set of individuals based on the previous population,
leading to subsequent populations with better individual fitness in
most cases. The GA approach has repeatedly proven to be a robust
search and optimization method in numerous theoretical and
practical domains.

However there are potential problems. If we strictly adhere to the
Darwinian evolution paradigm, the population in every generation
only weakly depends on the initial population, because all
offspring are created from their parents. However, only the first
generation is created randomly. It is inevitable as the GA
converges that exploitation will replace the initial exploration.
Nevertheless, it is hard to guarantee that this will not happen too
soon leading to premature convergence. One way to reduce the
risk is to ensure that some individuals are created randomly in
every generation. It is usually observed that as the search
progresses, the population gets gradually concentrated in one or a
few regions which may or may not contain the global optimum.
The capability of exploring new space will be weaker. Niching
methods[8] attempt to reduce the risk using sharing, crowding or
other diversity promotion techniques. The problem with these
methods is that they are implicit rather than explicit in their
attempt to cover the search space. Despite the use of Niching
methods, there could be large regions of the search space that are
never explored. To overcome these drawbacks, our idea is to
create some individuals directly in each generation, placing them
in big empty spaces to promote exploration. In doing this, the
convergence may be slightly slower but the probability of
premature convergence to local sub-optima is significantly
reduced. By inserting some individuals in big empty spaces, our
confidence in the results increases because no large gaps exist in
the search space.

However, finding the biggest empty space in a multi-dimension
space is not easy. The first step is to define empty space. We can
use empty hyper-sphere, empty hyper-rectangle or other shapes.
For example, if we adopt empty hyper-rectangle, it is still an
infinite set. Liang-ping Ku et al.[1] proposed using Maximal Hyper
Rectangle (MHR) to measure the empty space and tried to find the
biggest MHR. In this paper, we adopt the concept of MHR to
describe the empty space (Figure 1), defined as follows:

(1) All the sides of MHR are parallel to the respective axis,
and orthogonal to the rest.

(2) MHR does not contain any points in its interior.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’05, June 25-29, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006…$5.00.

1185

(3) No other MHR exists which either contains or falls
entirely within the interior of the MHR. In other words,
on each surface of the MHR, there is at lease one point.

We adopt the MHR concept because it is representative of all
possible empty hyper-rectangles and the number of MHRs is
finite. Secondly, it is easer to handle because the space and points
are usually described in the Cartesian coordinate system.

The problem of finding empty hyper-rectangles has been studied
repeatedly in the literature. In [1], the computational complexity
to find the biggest MHR is O(n2k-1k3(lgn)2), where n is the number
of points and k is the number of dimensions in the dataset. Liu et
al.[2] motivate the use of empty space knowledge for discovering
constraints. Their proposed algorithm runs in O(n2(k-1)k3(lgn)2).
Even in low dimensions this algorithm is impractical for large
values of n. In an attempt to address both the time and space
complexity, they proposed only maintaining maximal empty
hyper-rectangles which are larger than some size. However the
number of MHRs may still be very large because it is difficult to
correctly set the size, a priori, in some problems. Furthermore,
many MHRs are largely overlapping. Edmonds et al.[3] proposed
finding all MHRs by considering each 0-entry<x, y> of M one at a

time, row by row, where M is an |X|×|Y| matrix (for two
dimensions), X and Y denote the set of distinct values in the data
set in each of the dimensions. Their proposed algorithm runs in
O(n2(k-1)k). However, it is not applicable for continuous spaces.
Other approaches have been proposed that use decision tree
classifiers to approximately separate occupied space from
unoccupied space, then post-process the discovered regions to
determine MHRs[4]. These methods do not guarantee that all
maximal empty rectangles are found.

Figure 1. Two examples of MHRs in a 2-D space

Despite the extensive literature on this problem, none of the
known algorithms are effective for large data sets. Fortunately, for
the purpose of improving the GA reliability, we do not have to
find the exact biggest MHR, a sufficiently big MHR is good
enough.

Now the problem we will consider is as follows: Given a k-
dimensional space S, where each dimension r is bounded by a
minimum (Sminr) and a maximum (Smaxr) value. S contains n points
(individuals). The problem is to find a sufficiently large MHR in
which to insert a new individual.

The rest of the paper is organized as follows: In Section 2, we
describe the proposed algorithm, and check the time complexity
of the algorithm by setting points in S randomly and finding the
calculation time for different numbers of points and dimensions.
In Section 3, we apply this algorithm to some real GA problems.
Section 4 presents the conclusion and future work.

2. THE PROPOSED APPROACH
The main idea of the algorithm is as follows: There are n points in
a k-dimensional space S (then S has 2k surfaces), the middle point
of two points Pi and Pj is Mij. Near each Mij, there is always a
small empty hype-rectangle the center of which is Mij and its
volume is ≥ 0. We expand the empty rectangle with the same
speed along all directions until some surface, for example, surface
k+, meets a point. Then along direction k+, the expanding will
stop, while along direction k-, which is the opposite of k+, the
speed of expansion is doubled. The speed of expansion along
other directions remains the same. The expansion continues until
some surface meets a point. The expansion will stop when all
surface meet point (Figure 2).

 (a) (b)

 (c) (d)

Figure2. Example to illustrate the expansion process

of a MHR in a 2-D space

(a) an empty rectangle expands starting from a middle point;

(b) one surface meets a point; (c) the other two surfaces meet

two other points; (d) all surfaces meet points.

We use a variable “time t” to measure the expansion of the empty
hype-rectangle. When t=0, the volume of the empty rectangle =0,

Mij Mij

Mij Mij

1186

i.e. the distance between each surface and Mij, dr is 0. At the
beginning, the speed along all directions, v = 1. If surface r+ has
met a point, we set vr+ = 0 and vr- = 2. Then the distance between
each surface and Mij, dr =vr*t.

When the empty rectangle expands, we can increase t by a small

amount (∆t) each time, and then check whether some surface met

some point. However, if ∆t is too small, we will have to check too

many times. If ∆t is too big, the time that some surface meets

some points may lie between t and t+∆t.

To solve this problem, instead, we try to find which surface and
point will meet first. With the current expansion speed, each point
can be approached at some time ti. We take Pi as an example. For
each direction, we can find tir according to the distance between
the current position of surface r and Pi and the speed vir. Suppose
the maximum among ti1, ti2, …ti2k is tir, then tir is the time (ti) that
the surface s of the empty rectangle expanding with the current
speed meets Pi. To deal with the boundary, we add two points
Pn+1 and Pn+2 to represent the boundary when we do the
expansion, one with coordinates that are the positions of all lower
surfaces of S, the other with coordinates that are the positions of
all upper surfaces of S. To find the time the empty rectangle meets
a surface, we consider the minimum among tn+1,1, tn+1,2, …tn=1,k
rather than maximum. Suppose the minimum among t1, t2, …tn,
tn+1, tn+2 is tp, then point p is the point that the empty rectangle
expanding with the current speed will first meet, and tp is the
meeting time.

After we find the point that the empty rectangle first meets, we
update the position and expansion speed of all surfaces of the
empty rectangle and continue the expansion process until all
surfaces meet points. The expanded empty rectangle is a MHR,
we call it Expanding MHR (EMHR). The EMHRij is a big MHR
expanding from Mij. The maximum among all EMHRij can be
considered a sufficient MHR.

Although we did not investigate all MHRs because the number of
MHRs is O(n2k-2), we do expand in each MHR at least k(2k-1)
times because there is at least one point on each surface of each
MHR.

In the course of a GA optimization, the number of points visited
will increase gradually. If we run the above process every time a
new point is created, the efficiency will be very low because some
expansions may be repeated many times unnecessarily. In the real
program, the algorithm is as follows. Given a k-dimensional
space, we first start with no point in S. We consider all the
vertices of S as initial points, so the only middle point is the
center of S, and the EMHR is the whole S. We add the EMHR to
the set of EMHRs. Then the n points are added to S, one point at a
time. At each insertion, only the EMHRs which contain the newly
added point will be updated by doing expansion from its relative
middle point, because EMHRs which do not contain the newly
added point will not change. We do new expansions from the
middle points between the newly added point and other points,
and add their EMHRs to the set of EMHRs. At each time, the
above algorithm will have same results with expansions from all
middle points between any two points. The MHR we require is
the biggest among all EMHRs.

We do not have to keep track of all EMHRs. First, if two middle
points are very close, their EMHRs will strongly overlap; thus we
can discard one of them. Second, if an EMHR is very small, we

can discard it. For example, if the volume of space S is V, the
number of points so far is N, then if the volume of an EMHR is
less than V/N, we can discard it, because it will never be the
biggest EMHR.

The detailed algorithm is also described using pseudo-code
(Figure 3).

Figure 3. The pseudo-code of the proposed algorithm

We use the above algorithm to find a sufficiently large MHR to
periodically add new points to a GA population. One reason is
that the calculation to find the exact biggest MHR is too high,
while for our purpose, a sufficiently large MHR is good enough.
Another reason is that, when we try to find the big empty space in
a GA trace, we may prefer more squared space rather than a
narrow space (Figure 4). The above expanding algorithm tends to
find more squared space, because the shorter side will be met in
the expansion earlier.

Algorithm FindBigEmptySpace

Begin

Set the corner vertices of space S as initial points.

Set the Linked list of EMHRs (LE) = NULL.

EMHR(M) = Expending(M) // Expansion starts from M. At

this step, M is the center of S, and EMHR(M) is the whole S

Insert(LE, EMHR(M)) // Add EMHR(M) to LE

When a new point P is inserted into S,

 Check LE

 If (EMHRi contains P), update EMHRi

 From the mid point Mi between P and every other point i,

 EMHR(Mi) = Expending(Mi)

 Insert(LE, EMHR(Mi))

 Check LE

 If(Two EMHRs strongly overlap), delete one of them

 If(EMHRi is not big enough) delete EMHRi from LE //
The above two steps may be done once every several points.

 Return biggest EMHR and its center.

End

Expending(M)

Do (while not all dimensions of hyper-rectangle (HR) have
met points)

 For each point Pi,

 Timei = getTime(Pi) // the time on which the expanding

HR meets with Pi

DimAndPj = minimun(Timei) // the point that the

expanding HR will meet first (along some dimension)

Update the expansion speeds.

EndDo

1187

Figure 4. A more squared space is more interesting empty

space

Analysis of complexity: for expanding from one point, the
calculation to find the next point the expanding empty rectangle
will meet is done in O(nk) because in order to find the time for
one point when the expanding empty rectangle meet it, we have to
check all of its coordinates, i.e. O(k), and we have to find the time
for all the points (n of them). The expanding will stop when all
surfaces meet points, so the total calculation for expanding from
one point is O(nk2). We do expansions from all middle points
between any two points, so, the total calculation is O(n3k2).

Figure 5. Running time for finding exact biggest MHR and

sufficient big MHR (in logarithmic scale)

As pointed out earlier, we do not have to keep track of all
EMHRs. If two middle points are too close, we only keep one of
them and if an EMHR is too small, we discard it. The exact
number of EMHRs to be discarded depends on the definitions of
“too close” and “too small” but the real complexity may be lower
than O(n3k2).

We compared the running time of the algorithm for finding the
exact largest MHR and our proposed algorithm for finding a
sufficiently large MHR with randomly generated data. For the
sake of comparison, we find the biggest MHR by checking all
MHRs, because we only try to show it is an exponential function.
Figure 5 shows the results in terms of the actual CPU time.

For finding the exact biggest MHR for k=4 and for only 30 points,
the running time is several minutes! Furthermore, even for k=4,
the running time increases at a very fast rate as n increases. When
n increases, for example, from 16 to 32, the running time
increases more than 700 times. From Figure 5, we can see that the
slope of the curve increases when k increases. This means that the
order is a function of k. On the other hand, the running time for
finding a sufficiently large MHR using our algorithm, even for
several hundred points, is a few seconds. When the number of
points doubled, the running time is usually increased by 8 to 10
times and does not heavily depend on k. From Figure 5, we can
see that the slope of the curves is nearly the same for different
values of k, showing that our algorithm runs in polynomial rather
than exponential time.

3. APPLICATION TO GA OPTIMIZATION
In this section, we apply our algorithm, inserting new individuals
at big empty spaces, to some GA problems, to examine its effect
on performance. We consider seven examples of continuous-
parameter GA problems. Functions F1 and F2 are taken form
previous studies[5, 6, 7]. F1 is symmetric while F2 is non-symmetric
and both have many local optima. The functions are shown in
Figures 6, 7. Note that we inverted the plots by adding a negative
sign to the functions for the sake of clarity but all the functions
used in this paper are minimized. The global optimum of F1 is at
(0, 0) and the global optimum of F2 is at (0.375, 0.375). F3 is
constructed based on F1 by copying a small range including the
global optimum to another location, in order to see the effect of
position of global minima. Similarly F4 is constructed based on
F2. F5 is constructed using F1 and F2 with each function located
at different ranges, so the whole function is not continuous. F6 is
constructed based on F1, but expanding its dimensionality to four.
F7 is constructed based on F6 in the same manner of constructing
F3 from F1. The ranges of all functions are set
to 20,20 21 ≤≤− xx . In the range, each function has thousands of

local optima in addition to the global optimum.

The initial population is generated randomly. Rank based
selection is used as it is more robust in general. Then the
population enters the following loop with fixed population size N.

 Selection: part of the population (Nrs ⋅ , where rs<1, is the

ratio of selection) are selected to propagate to the next generation
and will also be allowed to produce offspring. The selection
probability of an individual

is ∑
=

−−
=

N

i

c

i

c

ii rankrankp
1

)(/)(, where c is a constant. The

individual with highest fitness is guaranteed to be selected.

runing time for finding sufficient MHR

0.1

1

10

100

1000

10000

10 100 1000

number of points

r
un

n
in

g
t
im

e

k=2

k=3

k=4

runing time for finding biggest MHR

0.01

0.1

1

10

100

1000

10000

1 10 100

number of points

ru
nn
i
ng

ti
me

k=2

k=3

k=4

1188

7.0)4cos(4.0)3cos(3.02),(21

2

2

2

1211 +−−+= xxxxxxF ππ

Figure 6. F1

∑
=

+−+−−−+−

=

2

1

2

1

2

1

2

1

2

1

212

1)))()((cos()()((

),(

j

jjjj dxdxdxdx

xxF

π

Figure 7. F2 With 01 =d and 75.02 =d

 Crossover: part of the population (Nrc ⋅ , where rc<1, is the

ratio of crossover) is created by crossover of two parents selected
randomly from the above selected population. The crossover

operator is 2,1 , if),(* 1,2,1,2,1, =>−+= ixxxxRxx iiiiii
,

where R is a random number.

 New individual insertions (by our method): the rest of the

population (Nrr cs)1(−−) is created at big empty spaces,

which are found according to our algorithm using all the points
visited so far during the course of the optimization. The largest
MHR is selected and a point is created at its center. This is
repeated for the required number of individuals.

 Mutation: each of the individuals in the selected population
mutated with some probability Pm. This is done after the crossover
step so if they took part in a crossover, it was with their original

genes rather then their mutated forms. The mutation operator is

non-uniform mutation [9] with b
TtRyyt)/1(),(−⋅⋅=∆ , where

y is the distance between the individual and the boundary, R is
random number, t is the generation number, T is the maximum
generation number, b is a system parameter determining the
degree of non-uniformity.

In this paper, the parameters are set as rs =50%, rc=30% (in the
comparisons when no insertions are done this becomes 50%),
Pm=0.2, c=0.5, and b=2. We use a population size of 10 and
terminate the process after 50 generations.

With the insertion of new individuals at big empty spaces, we
expected more space to be covered. In other words, at the end of
the GA process, the empty spaces should be smaller than without
insertion. Indeed the experiments supported this expectation.
Figure 8 shows the total individual distribution for F1. F2 has
similar behavior.

Figure 8. Population distribution for F1

Figure 8 shows that with the insertion of new individuals, the
distribution of total points visited throughout the optimization is
more uniform than that without insertion. After 50 generations,
without inserting individuals at big empty spaces, the biggest

empty square is 7.4×7.4, while with individual insertion; the

F1 population distribution with inserting

-20

-10

0

10

20

-20 -10 0 10 20

x1

x2

F1 population distribution without inseting

-20

-10

0

10

20

-20 -10 0 10 20

x1

x2

-1.5

-0.5

0.5
1.5

-1.5
-0.5

0.5
1.5

-16

-14

-12

-10

-8

-6

-4

-2

0

x

y

-1.5

-0.5

0.5
1.5

-1.5
-0.5

0.5
1.5
-8

-7

-6

-5

-4

-3

-2

-1

0

x

y

1189

biggest empty square is 3.0×3.0. Thus more space is searched by
using our algorithm.

One way to measure the success of a GA run is by checking if

there are individuals within a tight ε-neighborhood of the
optimum. In this paper, we consider the GA run to be successful if
the individual with highest fitness is within the basin of attraction
of the global optimum. The motivation behind this is to reduce the
computation time. If the individual with highest fitness is close to
the optimum and in its basin of attraction, usually it will go to the
optimum gradually. The basin of attraction of F1 is

0.13.0/35.0/ 2

2

2

1 <+ xx , and for F2, it is

0.15.0/)(4.0/)75.0(2

21

2

21 <−+−+ xxxx .

We test the performance of our algorithm by checking how many
runs are successful among 200 runs. The results are shown in
Figures 9 and 10.

Figure 9 Performance of the algorithm for F1

Figure 10 Performance of the algorithm for F2

From figure 9 and figure 10, we see that our method actually
degrades the performance for F1 and F2. Although this may seem
surprising it is understandable. Although F1 and F2 have many
local optima, their main shapes are simple. Take F1 for example,
its main shape is determined by the first and second terms of F1,

2

2

2

1 xx + , therefore, the values near the center (0,0) of the space

is small while the values near the corner and the boundary of the
space is big. The local change is caused by the third and fourth
terms of F1,)4cos(4.0)3cos(3.0 21 xx ππ −− . With the

regular process of evolution, the population will concentrate near
the center gradually because of the effect of selection, crossover
and mutation. The range near the boundary of the space may have
big empty spaces. So if we insert some individuals in big empty
spaces, with high probability they will be near the boundary rather
than the center of the space. This will explore more space,
however, for F1, the global optimum is at (0, 0), the insertion has
no contribution to success and will degrade the performance.

However, in practice, we do not know the location of the global
optimum, and the function may have any shape. So it is necessary
to explore more space in order to avoid missing some space where
the global optimum lies.

Figure 11. Performance of the algorithm for F3

Figure 12. Performance of the algorithm for F4

To demonstrate this, we constructed F3 and F4 based on F1 and
F2 respectively. To create F3, we copied a small range which
contains the global optimum to another location, for example, (9-
11, 9-11), and added a small value to the original function to

Performance of the GA for F1

0

20

40

60

80

100

120

0 10 20 30 40 50

Generation

n
o
.

o
f

s
u
c
c
e
s
s
f
u
l

r
u
n

with insertion

without insertion

Performance of the GA for F2

0

20

40

60

80

100

0 10 20 30 40 50

Generation

n
o
.

o
f

s
u
c
c
e
s
s
f
u
l

r
u
n

with insertion

without insertion

Performance of GA for F3

0

4

8

12

16

20

24

28

32

0 10 20 30 40 50

Generation

N
o
.
o
f

s
u
c
c
e
s
s
f
u
l

r
u
n
s

with insertion

without insertion

Performance of the GA for F4

0

5

10

15

20

25

30

0 10 20 30 40 50

Generation

n
o
.

o
f

s
u
c
c
e
s
s
f
u
l

r
u
n

with insertion

without insertion

1190

make the original global minimum a local minimum. The
expression of F3 is as follows:

0.17.0)4cos(4.0)3cos(3.02

),(

21

2

2

2

1

213

++−−+

=

xxxx

xxF

ππ

where 2,1,1|10| =≥− ixi

7.0))10(4cos(4.0))10(3cos(3.0

)10(2)10(),(

21

2

2

2

1213

+−−−−

−+−=

xx

xxxxF

ππ

where 2,1,1|10| =≤− ixi

F4 is constructed similarly.

We then checked the performance of the algorithm for F3 and F4.
The results for F3 and F4 are shown in Figures 11 and 12
respectively. The figures show that for F3 and F4 the ratio of
successful runs with individual insertions in big empty spaces is
higher. If the global optimum is not in the range where most
values are good, inserting new individuals will increase the
probability of finding it.

We next considered a discontinuous function. F5 is constructed
by putting F1 at the range (7-13, 7-13) with its origin at (10, 10)
and the range ((-7)-(-13), (-7)-(-13)) with its origin at (-10, -10),
F2 at the range ((-7)-(-13), 7-13) with its origin at (-10, 10) and
the range ((7-13, (-7)-(-13)) with its origin at (10, -10). The
function surface is shown in Figure 13. In its full range, the
function is discontinuous. We further added to each continuous
region a different constant (0, 4, 6, 12 respectively) so that the
whole function has only one global optimum.

Figure 13. F5

Figure 14 shows the performance of the algorithm for F5. The
figure shows that for F5 the ratio of successful runs with and
without insertion of new individuals in big empty space is nearly
the same. It means the contribution of inserting new individual in
empty space is nearly the same as the cost of inserting.

Figure 14. Performance of the algorithm for F5

Figure 15. Performance of the algorithm for F5

Figure 16. Performance of the algorithm for F5

We hypothesized that increasing the range of the peak containing
the global optimum will degrade the contribution of individual
insertions while decreasing that range will have the opposite
effect. To test this we first increased the range with the global

optimum from 6×6 to 18×18, and repeated the experiments.
Figure 15 shows the results. We then decreased that range from
6×6 to 2×2 and the results are shown in Figure 16. The results
clearly support our hypothesis. (Figure 15, 16)

Performance of the GA for F5

0

10

20

30

40

50

60

70

0 10 20 30 40 50

Generation

n
o
.

o
f

s
u
c
c
e
s
s
f
u
l

r
u
n with insertion

without insertion

Performance of the GA for F5
(range with global optimum is smaller)

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50

Generation

n
o
.
o
f

s
u
c
c
e
s
s
f
u
l

r
u
n with insertion

without insertion

Performance of the GA for F5
(range with global optimum is larger)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50

Generation

n
o
.

o
f

s
u
c
c
e
s
s
f
u
l

r
u
n with insertion

without insertion

1191

All of the functions discussed so far were two-dimentional.
Although we expected that the performance of the algorithm
should be the same, we considered functions with higher
dimension. F6 is constructed from F1 by expanding its dimension
to four as follows,

4.1)5.1cos(4.0)cos(3.02

)5.1cos(4.0)cos(3.02),(

43

2

4

2

3

21

2

2

2

1216

+−−+

+−−+=

xxxx

xxxxxxF

ππ

ππ

Its basin is 0.11.2/1.3/1.2/1.3/ 2

4

2

3

2

1

2

2

2

1 <+++ xxxxx . F7 is

constructed from F6 in the same manner we constructed F3 from
F1, also for the same reason. We used a population size of 20 and
terminated the process after 50 generations in this case. We tested
the performance of our algorithm by checking how many runs are
successful among 200 runs. The results for F6 and F7 are shown
in Figures 17 and 18 respectively.

Figure 17. Performance of the algorithm for F6

Figure 18. Performance of the algorithm for F7

From Figure 17 and 18, we can find that the performance for F6
and F7 is similar to F1 and F3 respectively, showing that our
algorithm has same behavior for functions with higher dimension.

4. CONCLUSION
In this paper, we propose a modification for the classical
Darwinian evolution metaphor commonly used in evolutionary
optimization by periodically inserting new individuals at big
empty spaces. To efficiently do this we propose an algorithm to
find sufficiently large empty hyper-rectangles with polynomial
time complexity. We show that it is efficient and scalable.

We conducted experiments to check its performance using several
functions. The experimental results demonstrate that more space
will indeed be searched by inserting new individuals in big empty
spaces. Even when the global optimum is not located at the range
where all or most points have good fitness, the GA with insertion
of new individuals will have a higher probability of finding the
global optimum. This is particularly useful in discontinuous and
multi-modal optimization domains. The proposed method also
provides a potential tool for measuring the reliability of a GA
search (or any other search method for that matter) based on the
size of the gaps in the search space. Further research is planned to
identify such measures.

REFERENCES
[1] Ku, L., Liu, B., and Hsu, W. Discovering Large Empty

Maximal Hyper-Rectangle in Multi-Dimensional Space.
Technical Report, Department of Information Systems and
Computer Science (DCOMP), National University of
Singapore, 1997.

[2] Liu, B., Ku, L., and Hsu, W. Discovering Interesting Holes

in Data. In Proceedings of IJCAI, pages930-935, Nagoya,
Japan, 1997.

[3] Edmonds, J., Cryz, J., Liang, D., and Miller, R. J. Mining for

Empty Rectangles in Large Data Sets. In Proceedings of Intl
Conf on Database Theory (ICDT), pages 174--188, 2001.

[4] Liu, B., Wang, K., Mun, L.F., and Qi, X.Z. Using Decision

Tree Induction for Discovering Holes in Data. In 5th pacific
Rim International Conference on artificial Intelligence,
Pages182-193, 1998.

[5] Bohchevshy, I.O., Johnson, M.E., and Stein, M.L.
Generalized Simulated Annealing for Function Optimization.

Technometrics 28(3), PP. 209-218, 1986.

[6] Fogel, D.B. Evolutionary computation: toward a new

philosophy of machine intelligence. (Institute of Electrical
and Electronics Engineers, Inc.).

[7] Ballester, P.J. and Carter J.N. Real-parameter Genetic

Algorithms for Finding Multiple optimal Solution in Multi-

modal Optimization. GECCO 2003, LNCS2723, PP. 706-
717, 2003.

[8] Mahfoud, S. A comparison of parallel and sequential

Niching methods. 6th Int. Conf. on Genetic Algorithms,
pages 136-143. Morgan--Kaufmann,1996.

[9] Michalewics, Z. Genetic Algorithms + Data Structures =

Evolution Programs. Third Edition, Springer, 1996.

Performance of the GA for F6

0

20

40

60

80

100

120

0 10 20 30 40 50

Generation

n
o
.

o
f

s
u
c
c
e
s
s
f
u
l

r
u
n

with insertion

without insertion

Performance of GA for F7

0

4

8

12

16

20

24

0 10 20 30 40 50

Generation

N
o
.
o
f

s
u
c
c
e
s
s
f
u
l

r
u
n
s

with insertion

without insertion

1192

