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ABSTRACT
A genetic algorithm encoding is proposed which is able to
automatically satisfy a class of important cardinality con-
straints where the set of distinct values of the design vari-
ables must be a subset –of cardinality not exceeding a given
value– of a larger set of available items. The solution of
the practically important structural optimization problem
where the set of distinct values of the design variables must
be a small subset of a larger set of commercially available
values is used as a test-bed. Very good results have been
found in the numerical experiments performed using stan-
dard binary encoding and genetic operators.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
[Heuristic methods]; J.2 [Physical Sciences and Engi-
neering]: Engineering

General Terms
Algorithms

Keywords
cardinality constraint, genetic algorithm, structural opti-
mization

1. INTRODUCTION
The application of genetic algorithms (GAs) to constrained

optimization problems (COPs) gives rise in general to sev-
eral difficulties: (i) the objective function may be undefined
for some or all unfeasible elements, (ii) the check for feasi-
bility can be more expensive than the computation of the
objective function itself, and (iii) an informative measure of
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the degree of unfeasibility of a given candidate solution is
not easily defined. It is easy to see that even if both the ob-
jective function f(x) and a measure of constraint violation
v(x) are defined for all feasible x it is not possible to know
in general which of two given infeasible solutions is closer
to the optimum and thus should be operated upon or kept
in the population. For instance, in a minimization problem,
one can have f(x1) > f(x2) and v(x1) = v(x2) or a situa-
tion where f(x1) = f(x2) and v(x1) > v(x2) and still have
x1 closer to the optimum. As a result, several techniques
have been proposed in the literature in order to enable a
GA to tackle COPs which can be classified[7] either as di-
rect (feasible or interior), when only feasible elements are
considered, or as indirect (exterior), when both feasible and
unfeasible elements are used during the search process.
Direct techniques comprise: a) the design of special closed

genetic operators[11], b) the use of special decoders[6], c) re-
pair techniques[8, 9], and d) the “death penalty”, when un-
feasible elements are just discarded. However, direct tech-
niques require domain knowledge (with the exception of
the “death penalty”) and are actually of extremely reduced
practical applicability, specially for handling implicit con-
straints. As a result, it seems always worthwhile to avoid
constraints by carefully designing representations for the
candidate solutions such that all elements in the search space
satisfy one or more of the problem constraints.
One type of constraint which appears in real-world appli-

cations is the so-called cardinality constraint. An important
example arises in portfolio optimization where a portfolio
manager is faced with the problem of selecting from a usu-
ally large set of assets offered in the market (stocks, bonds,
options, etc.) a subset of assets for investment following a
given objective concerning performance and risk while re-
specting certain constraints from budget, legal regulations
and other guidelines[3]. To reduce the complexity of portfo-
lio control and also to control transaction costs, it is useful
to introduce an upper bound to the number of assets that
will be included in the portfolio. This simple constraint in-
troduces zero-one variables which increase the size and com-
plexity of the original problem. Meta-heuristics have been
applied in this case by, for instance, Chang et al. [2].
In this paper, a more complex cardinality constraint is

considered and a special encoding scheme is proposed to
deal with it. In words, the class of problems considered
consists in assigning one object (taken from a large set of
available objects) to each item in a set of items in order
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to minimize a given objective function with the constraint
that the resulting assignment of objects contains up to a
given number of different objects. A practical structural
optimization problem –detailed in section 3– will then be
used here not only to provide a concrete example of the
cardinality constraint considered but also as an initial test
bed for the proposed encoding.
Section 4 describes the encoding scheme designed to deal

with the cardinality constraint. Numerical experiments are
described in Section 5 and the paper ends with a Conclusions
section.

2. THE CARDINALITY CONSTRAINT
In several optimization problems, the design variables can

be continuous and/or discrete and the inclusion of the later
usually makes the problem harder. The techniques from
mathematical programming which are used in the continu-
ous case must be augmented with procedures to deal with
the discrete variables leading to a computational code with
increased complexity.
In practice, it is often desirable (or even mandatory) to

choose design variables from commercially available sizes or
types. The use of a continuous optimization procedure –
although usually more straightforward– will lead to non-
available sizes and any attempt to “round” or substitute
those values by the “closest” available commercial sizes can
potentially make the design unfeasible (constraints are vio-
lated) or with unnecessarily degraded performance.
Even when the parts are to be fabricated and thus could

be of the desired sizes, the solution obtained by a typical op-
timization code will usually prescribe as many sizes as the
number of design variables defined for the problem. A com-
mon procedure, often referred to as variable linking, groups
different design variables of the problem in a single design
variable. That is useful when symmetry conditions are to be
enforced, for example. This procedure allows for a reduction
in the total number of design variables and, usually, in the
complexity of the search problem.
It should be noted that each choice of design variable link-

ing leads to a different optimization problem with a poten-
tially substantially different optimal solution. However, the
choice of which variables should be grouped together is not
trivial, but must be made a priori by the analyst. As a re-
sult, the final set of independent design variables may be far
from optimal and the corresponding optimal solution more
expensive than necessary due to inadequate design variable
linking.
A better solution for the problem above would be to pro-

vide the designer with the possibility of directly controlling
only the number of different sizes or types to be used in a
given problem and let the GA search also for the grouping
of the design variables. The introduction of such cardinality
constraint would lead to

1. economies and simplification in procurement, storage,
and assembling which are more difficult to quantify
and thus not usually included in the optimization pro-
cedure, and

2. it would also alleviate the designer’s task of choosing
which variables to link in a group.

To the best of the authors’ knowledge, the mixed discrete-
continuous optimization problem with the additional cardi-

nality constraint on the set of the final distinct values of the
design variables has not been solved in the literature.
Within the context of weight minimization of structures,

Shea et al.[10] try to reduce the number m of groups formed
by adding to the weight of the structure, W , a penalty term
which grows with m. A procedure to form/re-arrange groups
is introduced (with the additional control parameters to be
set by the user) but due to the combination of W and m in
the objective function, the user has not much control over
m.
In this paper, a GA encoding is proposed where the user is

able to prescribe the maximum number m of different sizes
or types he or she is willing to use in a particular design in
a way that both goals (1) and (2) above are attained.
For the discrete variable case, the GA simultaneously sear-

ches, among the commercially available sizes, for the opti-
mal subset (of cardinality not exceeding m) of properties
to be used, and the corresponding assignment to the design
variables. For the continuous variable case, the GA simul-
taneously searches for a set (of cardinality not exceeding m)
of properties in a given range and the corresponding assign-
ment to the design variables.
In the following the optimization problem considered is

detailed.

3. THE STRUCTURAL OPTIMIZATION
PROBLEM

A standard constrained optimization problem in Rn can
be thought of as the minimization of a given objective func-
tion f(x), where x ∈ Rn is the vector of design/decision
variables, subject to inequality constraints gp(x) ≥ 0, p =
1, 2, . . . , p̄ as well as equality constraints hq(x) = 0, q =
1, 2, . . . , q̄. Additionally, the variables may be subject to
bounds xL

i ≤ xi ≤ xU
i but this type of constraint is trivially

enforced in a GA and does not require further consideration.
The constrained optimization problems considered here

include also discrete variables, that is, some components of
x ∈ Rn are further constrained to assume values belonging
to a given discrete set.
A common structural design problem is the weight min-

imization of structures subject to stress, displacement, and
other constraints. To fix ideas, truss structures can be con-
sidered and the problem reads: Find the set of areas

x = {A1, A2, . . . , AN}
which minimizes the volume of the structure

f(x) =
NX

i=1

Aili, (1)

where li is the length of the i-th member of the truss and
N is the number of bars. The most common constraints are
stress constraints:

|σi|
σmax

− 1 ≤ 0, i = 1, 2, . . . , pσ (2)

where σi is the stress at the i-th member and σmax is the
maximum allowable stress. Displacements constraints can
also be considered:

|dj |
dmax

− 1 ≤ 0, j = 1, 2, . . . , pd (3)

where dj is the displacement at the j-th global degree of
freedom, dmax is the maximum allowable displacement, and
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pσ + pd = p̄. Additional constraints such as buckling or a
minimum natural vibration frequency can also be included.
The additional cardinality constraint of interest here re-

quires that no more than m different areas should be used,
that is,

Ai ∈ Cm = {S1, S2, . . . , Sm}, i = 1, 2, . . . , N (4)

where the areas Sj , j = 1, 2, . . . , m are unknown but:

• belong to a larger (M > m) given set
S = {A1, A2, . . . , AM} for the discrete case, or

• are within a prescribed range R = [Amin, Amax] for
the continuous variable case.

It is clear that the standard optimization problem with no
cardinality constraints is recovered when m = N .
In the following the genetic encoding proposed for han-

dling the cardinality constraint is presented.

4. THE GENETIC ALGORITHM
The essential component of the GA used to handle the

cardinality constraint is the encoding scheme detailed in the
following.

4.1 The chromosome structure
For explicative purposes, assume that one has a set of 32

available commercial sizes from which a maximum of 4 types
are to be used in a given design problem. Assume further
that the problem has 10 design variables and, to simplify the
presentation, that no variable links have been introduced,
that is, each design variable is actually the cross sectional
area of a given bar in the truss structure considered.
The chromosome proposed here is a string of variables in

the form:

type(1) type(2) type(3) type(4) pt(1) pt(2) ... pt(10)

where type(i)∈ {1, 2, . . . , 32}, i = 1, . . . , 4 are pointers to
the (at most) 4 different sizes allowed to be chosen from the
table of 32 available sizes

table(1), table(2), ..., table(32)

and

pt(1), pt(2), ..., pt(10),

with pt(i)∈ {1, 2, 3, 4}, are pointers to one of the 4 types
listed in the beginning of the chromosome for each of the 10
design variables/cross-sectional areas. As a result, the area
of the i-th bar in the structure is given by

area(i) = table(type(pt(i))).

The chromosome illustrated in the Figure 1 has the first
four variables (type(i), i=1,4), pointed by the other vari-
ables stored in positions 5 to 14. The variables with values
23, 4, 12, and 31, are pointers to the table containing 32
different values of cross-sections as detailed in the left side of
the Figure 1. For example, the sixth position, corresponding
to the second design variable, stores the value 1 indicating
type(1) which stores the value 23 which, in turn, points to
table(23)=4.80. In this way one has

A2 = table(type(1)) = table(23) = 4.80.

Also, the sixth design variable A6, coded in the tenth posi-
tion, points to type(3), which is equal to 12, resulting,

A6 = table(type(3))) = table(12) = 3.80,

and so on.
For the continuous case one specifies the maximum num-

ber of different sizes allowed, for instance m = 4, and the
chromosome structure proposed here is as follows:

size(1) size(2) size(3) size(4) pt(1) pt(2) ... pt(10),

with size(i)∈ [Ai
min, Ai

max], where again 10 design vari-
ables (cross-sectional areas) are assumed. Analogously to
the discrete case, the area of the i-th bar in the structure is
given by

area(i) = size(pt(i)).

Now the variable size(i) is continuous and has lower (Ai
min)

and upper (Ai
max) bounds specified by the designer, and the

variable pt is again a pointer to one of the m = 4 sizes listed
in the beginning of the chromosome. The chromosome ex-
emplified in Figure 2 corresponds to the following values of
the design variables: A1 = A7 = 1.08, A2 = A6 = A8 =
2.16, A3 = A10 = 0.6, and A4 = A5 = A9 = 1.44.
In the actual implementation in this paper all variables

are binary encoded in the chromosome. For the example
shown in Figure 1 the length of the chromosome is cl =
4× 5 + 10× 2 = 40 bits.
Finally, it is worth mentioning that less than m distinct

values can be used for the design variables in any candidate
solution. This happens whenever:

• one of the variables, say type(k) (in the discrete case)
or size(k) (in the continuous case), is not assigned to
a design variable, that is, pt(i)�= k,∀i, or

• there are repeated values among the variables type(k)
or size(k).

The first case is exemplified in Figure 3 (for continuous vari-
ables).

4.2 Handling the other constraints
In order to take the remaining implicit constraints (2)

and (3) into consideration in the GA, several penalty pro-
cedures can be found in the literature [1]. Among them, a
parameter-less adaptive penalty scheme introduced by the
authors in [1] has been chosen due to its simplicity and good
performance [7].
Defining [1] the amount of violation of the j-th constraint

by the candidate solution x as

vj(x) =

� |hj(x)|, for an equality constraint,
max{0,−gj(x)} otherwise

the fitness function is given by

F (x) =

�
f(x), if x is feasible,

h(x) +
PM

j=1 kjvj(x) otherwise
(5)

where M is the number of constraints to be penalized, and
h(x) is defined as

h(x) =

�
f(x), if f(x) > 〈f(x)〉,
〈f(x)〉 otherwise

(6)

with 〈f(x)〉 denoting the average of the objective function
values in the current population.
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2.13 4.80 2.13 2.133.8013.904.8013.90 3.80 4.80

2 2 2 1312 31423 1 4 1 43

table(1) = 1.62

table(4) = 2.13

table(23) = 4.80

table(32) = 14.20

table(31) = 13.90

table(12) = 3.80

1 2 7 83 4 5 6 9 10

chromosome

Figure 1: Chromosome for the discrete case (above) and the corresponding values of the cross-sectional areas
in each bar (below).

0.6 1.44 1 3 2 4 4 3 31 4 2

1 2 3 4 5 6 7 8 9 10

2.16 0.6 2.16 1.441.441.44 0.62.16 1.081.08

1.08 2.16

Figure 2: Example of chromosome for the continuous variable case. The third design variable has its area
defined by the third pointer value (2) which indicates the second continuous area value (0.6). For convenience,
the values are shown in decimal representation; as explained in the text, a binary representation is used in
the GA.

1.08 0.6 2.16 1.44 1 1 2 4 4 2 21 4 2

1 2 3 4 5 6 7 8 9 10

1.08 0.6 1.441.441.44 0.61.081.08 0.6 0.6

Figure 3: Example of chromosome where less than m variables are used in the continuous variable case. Only
3 areas are actually used. No design variable has been assigned to the third value (2.16) since there is no
pointer equal to 3 stored in positions 5 to 14.
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In the Figure 4, feasible as well as unfeasible solutions
are shown for a minimization problem. Among the 6 unfea-
sible solutions, the individuals number 3, 4, 5, and 6 have
their objective function values (represented by open circles),
smaller than the average objective function and, accordingly,
have f given by 〈f(x)〉. The solutions number 1 and 2 have
objective function values which are worst than the popula-
tion average and thus have f(x) = f(x).

f (x)

f (x)

f (x)

65 x 

0

infeasible feasible

=(x)g

3 41 2

Figure 4: The definition of the function f .

The penalty parameter is defined at each generation by:

kj = |〈f(x)〉| 〈vj(x)〉PM
l=1[〈vl(x)〉]2

(7)

and 〈vl(x)〉 is the violation of the l-th constraint averaged
over the current population. The idea is that the penalty
coefficients should be distributed in such a way that those
constraints which are more difficult to be satisfied should
have a relatively higher penalty coefficient.
For the structural optimization problems considered in

this paper the objective function is defined by (1). When
the j-th constraint is a stress constraint in a given bar or a
nodal displacement constraint one has, respectively,

vj =

� |σj |
σmax

− 1

�+
or vj =

� |dj |
dmax

− 1

�+
(8)

where [α]+ = α, if α ∈ R is positive, and zero otherwise.
The fitness function is finally defined from equations (1),
(8), (5), and (6).
In the next section the proposed GA is applied to some

structural optimization problems.

5. NUMERICAL EXPERIMENTS
In the GA used for the numerical experiments, a linear

rank selection scheme is adopted with elitism: the best el-
ement is always copied into the next generation along with
one copy where one bit has been mutated. In all cases
the one-point, two-point, and uniform crossover operators
were applied with probabilities p1

c = 0.16, p2
c = 0.32, and

pu
c = 0.32, respectively, followed by the standard mutation

operator applied with rate pm = 0.03. These are standard
settings previously used by the authors in structural opti-
mization problems and no tuning of the GA parameters was
attempted here.

5.1 The first experiment
The well known test problem studied by Goldberg and

Samtani[5] which corresponds to the weight minimization of
the ten-bar truss shown in the Figure 5 will be analyzed
here with a cardinality constraint in addition to the stan-
dard constraints involving the stress in each member and
the displacements at the nodes. The design variables are
the cross-sectional areas of the bars (Ai, i = 1, 10). The
allowable stress is limited to ± 25ksi and the displacements
are limited to 2 in, in the x and y directions. The density
of the material is 0.1 lb/in3, Young’s modulus is E = 104

ksi and vertical downward loads of 100 kips are applied at
nodes 2 and 4.

Figure 5: Test-problem 1 – The ten-bar truss.

360 in 360 in

360 in

5

46

5

8

7 9
6

10

21 3 1

2
43

P P

Two cases are analyzed: discrete and continuous variables.
For the discrete case the values of the cross-sectional areas
(in2) are chosen from the set S with 42 options: 1.62, 1.80,
1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47,
3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97,
5.12, 5.74, 7.22, 7.97, 11.50, 13.50, 13.90, 14.20, 15.50, 16.00,
16.90, 18.80, 19.90, 22.00, 22.90, 26.50, 30.00, 33.50 . Using
a six-bit string for each design variable, as in [4], a total
of 64 strings are available. In this way, the first 22 values
of the set S (from 1.62 to 4.59) are listed twice (1.62, 1.62,
1.80, 1.80, etc.). For the continuous case the minimum cross
sectional area is equal to 0.1 in2.
The Table 1 presents the results found using the Adaptive

Penalty Method (APM)[1] for the discrete and continuous
cases without any kind of cardinality constraints, and also
setting m = 2 and m = 4. In this Table, the values of the
vertical displacements at the nodes 1 and 2 of the truss are
displayed since these are the hardest constraints observed
for this problem. One can observe from the Table 1 that the
values found for the discrete cases are greater than those
of the corresponding continuous case as expected. Where
no cardinality constraints are imposed the values presented
in this experiment can be compared with those available in
the extensive discussion found in [7]. For the case m = 2
the GA found the sets {2.62, 22.00}, and {0.1, 22.73555}
for the discrete and continuous cases, respectively, and one
can note from the Table 1 a clear coherence between these
assigned values and their respective design variables. Using
m = 4 the GA found the sets {1.62, 14.20, 22.00, 30.00},
and {0.1, 9.45096, 20.24207, 31.98362} for the discrete and
continuous cases, respectively. Again, as expected, the GA
found a better value for the continuous case.
The Table 2 summarizes the performance of the GA for

the 10-bar truss in 20 independent runs.
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Table 1: Comparison of results for the 10-bar truss. Subscripts d and c denote the discrete and continuous
cases, respectively. Final weight in lb, and uy1 and uy2 are the displacements at the nodes 1 and 2, respectively.

Design
Variables APMd APMc APMm=2

d APMm=2
c APMm=4

d APMm=4
c

A1 33.50 31.27305 22.00 22.73555 30.00 31.98362
A2 1.62 0.10715 2.62 0.10000 1.62 0.10000
A3 22.90 23.23471 22.00 22.73555 22.00 20.24207
A4 14.20 15.97336 22.00 22.73555 14.20 20.24207
A5 1.62 0.11142 2.62 0.10000 1.62 0.10000
A6 1.62 0.39052 2.62 0.10000 1.62 0.10000
A7 7.97 7.66543 22.00 22.73555 14.20 9.45096
A8 22.90 22.68053 22.00 22.73555 22.00 20.24207
A9 22.00 19.20086 22.00 22.73555 22.00 20.24207
A10 1.62 0.10000 2.62 0.10000 1.62 0.10000

Weight 5490.738 5086.851 6152.520 5947.479 5603.697 5167.010
uy1 −1.9591 −1.9999 −1.8868 −1.8757 −1.9013 −1.9978
uy2 −1.9889 −1.9908 −1.9956 −1.9999 −1.9933 −1.9999

Table 2: Performance of the GA for the 10-bar truss.
discrete m = 2 m = 4 no c.c
best 6152.520 5603.697 5490.738

average 6152.520 5725.113 5551.846
worst 6152.520 5812.963 5631.638

pop. size 200 200 200
max. eval. 240000 360000 360000
continuous m = 2 m = 4 no c.c

best 5943.847 5167.010 5086.851
average 5944.508 5262.947 5129.474
worst 5947.479 5402.350 5259.076

pop. size 200 200 200
max. eval. 280000 360000 400000

5.2 The second experiment
In this experiment, a truss with 25 bars shown in the Fig-

ure 6 is submitted to weight minimization. The constraints
require that the maximum stresses in the members remain
in the interval [−40, 40] ksi and that the maximum displace-
ments at the nodes 1 and 2 be limited to 0.35 in, in both the
x and y directions. The design variables are cross-sectional
areas of the bars to be chosen from the set with 30 different
options (in square inches): 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1.0 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1,
2.2, 2.3, 2.4, 2.5, 2.6, 2.8, 3.0, 3.2, 3.4. In order to use a
five-bit string for each design variable the first and the last
values (0.1 and 3.4) are listed twice in this set. The member
areas are grouped in eight design variables as detailed in the
Table 4. The material has density equal to 0.1 lb/in3 and
the Young’s modulus is equal to 104 ksi. The loading data
is listed in the Table 3.

Table 3: Loading data for the 25-bar truss (kips).
node Fx Fy Fz

1 1 −10.0 −10.0
2 0 −10.0 −10.0
3 0.5 0 0
6 0.6 0 0

The Table 5 displays the results found in the discrete and
continuous cases using the APM technique with no cardinal-

10
0 

in
10

0 
in

200 in

75 in

200 in

1
2

6

4
3

5

7

10

8

9

Y

X

Z

75 in

Figure 6: The 25-bar truss.

Table 4: Variable linking for the 25-bar truss.
group bar connectivities
A1 1-2
A2 1-4, 2-3, 1-5, 2-6
A3 2-5, 2-4, 1-3, 1-6
A4 3-6, 4-5
A5 3-4, 5-6
A6 3-10, 6-7, 4-9, 5-8
A7 3-8, 4-7, 6-9, 5-10
A8 3-7, 4-8, 5-9, 6-10

ity constraints as well as setting m = 2, m = 4 and m = 8.
The values of the vertical displacements uy1 and uy2, at the
nodes 1 and 2 respectively, are also shown since these are
the hardest constraints observed for this problem. In the
absence of cardinality constraints, several solutions found in
the literature are discussed in [7].
For the case where m = 2 the values found were {3.4,

0.8} and they are assigned as shown in the fourth column
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Table 5: Comparison of results for the 25-bar truss. Subscripts d and c denote the discrete and continuous
cases, respectively. Final weight in lb, and uy1 and uy2 are the displacements at the nodes 1 and 2, respectively.

Design
Variables APMd APMc APMm=2

d APMm=2
c APMm=4

d APMm=4
c APMm=8

d APMm=8
c

A1 0.1 0.10901 0.8 0.78568 0.1 0.10022 0.1 0.10015
A2 0.3 0.47443 0.8 0.78568 0.1 0.10022 0.3 0.41636
A3 3.4 3.39863 3.4 3.39846 3.4 3.38392 3.4 3.39566
A4 0.1 0.10000 0.8 0.78568 0.1 0.10022 0.1 0.10015
A5 2.1 1.73260 0.8 0.78568 1.6 1.50448 2.1 2.20206
A6 1.0 1.01379 0.8 0.78568 0.9 0.92025 1.0 0.98439
A7 0.5 0.43589 0.8 0.78568 0.9 0.92025 0.5 0.41636
A8 3.4 3.39859 3.4 3.39846 3.4 3.38392 3.4 3.39566

Weight 484.854 484.736 514.451 510.943 488.651 488.625 484.854 484.855
uy1 −0.3498 −0.3499 −0.3479 −0.3499 −0.3494 −0.3499 −0.3481 −0.3499
uy2 −0.3478 −0.3479 −0.3468 −0.3478 −0.3483 −0.3489 −0.3477 −0.3477

of the Table 5. For the continuous case (fifth column) the
values found were {0.78568, 3.39846} and one can note the
coherence between the continuous and the discrete cases.
For m = 4 the values found were {0.1, 0.9, 1.6, 3.4}

and they are assigned as shown in the sixth column of the
Table 5. For the continuous case the GA found the set
{0.10022, 0.92025, 1.50448, 3.38392} and, again, a complete
coherence between the discrete and the continuous case with
a better value for the last one (488.625 against 488.651).
For m = 8, the values found for the discrete case were

{0.1, 0.3, 0.5, 1.0, 2.1, 3.4} where only 6 different areas are
chosen. They correspond exactly to the solution found for
the case with no cardinality constraint shown in the second
column of the Table 1. Since the bars of the truss are linked
in eight groups, the optimum should be equal to the case
where m = 8. Finally, for the continuous case the values
found by the GA were {0.10015, 0.41636, 0.98439, 2.20206,
3.39566} and, again, only 6 values were assigned and the
best value achieved for the weight of the truss is practically
equal to the weight of the corresponding discrete case.

Table 6: Performance of the GA for the structural
optimization of the 25-bar truss.

discrete m = 2 m = 4 m = 8 no c.c
best 514.451 488.651 484.854 484.854

average 514.451 493.269 488.715 486.177
worst 514.451 499.447 496.358 488.320

pop. size 70 200 200 200
max. eval. 35000 160000 160000 160000
continuous m = 2 m = 4 m = 8 no c.c

best 510.943 488.625 484.855 484.736
average 511.187 492.869 491.397 487.665
worst 512.090 498.065 495.944 493.039

pop. size 70 200 200 200
max. eval. 35000 240000 400000 240000

It is important to note in this example that a great re-
duction (from 8 to 4) in the number of different types of
bar can be achieved –with the corresponding economies not
usually included in the optimization process– with a very
small impact in the final weight of the structure: less than
1 %.

5.3 An additional experiment
In order to provide some comparative results, the first ex-

periment is revisited using a standard penalty scheme with-
out any kind of special encoding as the one proposed in this
work. The idea is to define for the constraint correspond-
ing to the maximum number of distinct cross-sectional areas
(m) of the truss a violation term analogous to those given in
(8) for the standard structural optimization constraints (2-
3). In this way an additional constraint vj to be considered
is:

vj =

�
k

m
− 1

�+

where k is the number of distinct cross-sectional areas for a
given solution. As in the previous experiments, 20 indepen-
dent runs were performed. The population size was set to
200 and 200000 function evaluations were allowed.
The Table 7 presents the solution found in the best run

with the corresponding weight of the structure (objective
function) as well as the value of the fitness function F (x).
In the previous experiments these values were omitted since
they are exactly the same of the objective function, indi-
cating that all solutions found are feasible with respect to
(2-3) and the cardinality constraint. The number of dis-
tinct cross-sectional areas used in the best solution found is
indicated by m∗.
In Table 7 one can notice, for instance, that when m = 2

in the continuous case, the best solution found after 200000
evaluations has a weight of 7156.388 with a set of design vari-
ables of cardinality 8 {1.44996, 2.62560, 10.47752, 12.36701,
22.95446, 24.34380, 26.54509, 34.05173} which, although
feasible with respect to (2-3), has much more than m = 2
distinct cross-sectional areas. Feasible solutions were found
only for the discrete cases, although for m = 4 the solution
is worse than that found using the proposed encoding (sixth
column of the Table 1).
Comparing Table 1 against Table 7 one observes that even

using a smaller number of function evaluations the special
encoding proposed in this work reached much better solu-
tions which were also feasible with respect to the whole set
of constraints. The performance of the GA for both cases is
displayed in Tables 2 and 8.
Summarizing, the experiment illustrates the efficacy (by

design) and efficiency of the proposed encoding when com-
pared to penalization of the cardinality constraint by means
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of an adaptive penalty scheme (APM), which has been shown
to be robust for several constrained (not necessarily struc-
tural) optimization problems as discussed in [7].

Table 7: Results found using a standard penalty
scheme not considering any special encoding for the
10-bar truss.

Var. APMm=2
d APMm=2

c APMm=4
d APMm=4

c

A1 22.00 22.95446 26.50 21.12460
A2 2.62 22.95446 1.62 15.20247
A3 22.00 34.05173 26.50 25.17763
A4 22.00 10.47752 22.90 8.46919
A5 2.62 1.44996 1.62 19.93876
A6 2.62 2.62560 1.62 13.57450
A7 22.00 26.54509 7.22 25.63037
A8 22.00 10.47752 22.90 13.57450
A9 22.00 24.34380 22.90 16.90908
A10 2.62 12.36701 1.62 22.65287

Weight 6152.520 7156.388 5689.175 7735.689
F (x) 6152.520 1185993 5689.175 815320
m∗ 2 8 4 9
uy1 −1.8868 −1.5529 −1.9632 −1.8096
uy2 −1.9656 −1.9482 −1.9826 −1.9425

Table 8: Performance of the GA for the structural
optimization of the 10-bar truss using a standard
penalty scheme.

APMm=2
d APMm=2

c APMm=4
d APMm=4

c

best 6152.5 1185993.2 5689.1 815320.1
average 47773.9 477983.6 6225.5 150924.3
worst 152431.9 1421780.1 7334.3 1312701.9

pop. size 200 200 200 200
max. eval 400000 400000 400000 400000

6. CONCLUSIONS
A genetic algorithm encoding has been proposed which is

able to automatically satisfy a class of important cardinal-
ity constraints where the set of distinct values of the design
variables must be a subset –of low cardinality– of a larger
set of available items. The practically important structural
optimization sizing problem with discrete and/or continuous
variables which inspired the research can be dealt with and
very good results have been found in the numerical experi-
ments performed using the proposed solution representation
which has been encoded in a binary chromosome and oper-
ated with standard genetic operators.
It is worth mentioning that the technique can be applied

to other similar (not necessarily structural) optimization
problems where it would be desirable to enforce a cardinal-
ity constraint on the set of distinct values of the (continuous
or discrete) design variables.
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