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ABSTRACT
Competent Genetic Algorithms can efficiently address prob-
lems in which the linkage between variables is limited to a
small order k. Problems with higher order dependencies can
only be addressed efficiently if further problem properties ex-
ist that can be exploited. An important class of problems for
which this occurs is that of hierarchical problems. Hierarchi-
cal problems can contain dependencies between all variables
(k = n) while being solvable in polynomial time. An open
question so far is what precise properties a hierarchical prob-
lem must possess in order to be solvable efficiently. We study
this question by investigating several features of hierarchi-
cal problems and determining their effect on computational
complexity, both analytically and empirically. The analyses
are based on the Hierarchical Genetic Algorithm (HGA),
which is developed as part of this work. The HGA is tested
on ranges of hierarchical problems, produced by a generator
for hierarchical problems.

Categories and Subject Descriptors
F.2 [Analysis of algorithms and problem complexity]:
General

General Terms
Algorithms, Theory, Experimentation, Performance

Keywords
Modularity, hierarchy, scalability, representation develop-
ment

1. INTRODUCTION
A primary challenge in evolutionary computation is to in-

crease the size of problems that can be addressed reliably.
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The feasible sizes of a problem strongly depend on the prob-
lem properties that can be exploited. In the absence of any
such properties, there is no basis for reducing or biasing the
search space, so that large problems cannot be addressed
due to the exponential size of the search space.

A useful problem property that can render large prob-
lems feasible when identified is that of dependencies. Two
variables in a problem are interdependent if the fitness con-
tribution or optimal setting for one variable depends on the
setting of the other variable. If all variables are indepen-
dent, they can be optimized one by one, and the problem
can be solved in linear time.

A somewhat more realistic assumption is that the or-

der of the dependencies is limited to some small number
k, e.g. k = 2 or k = 3, where the order is the largest number
of variables that are interdependent. Such order-k separable
problems can be solved reliably by Competent Genetic Al-
gorithms (Goldberg, 2002); examples include the fast messy
GA (Goldberg, Deb, Kargupta, & Harik, 1993), the gene
expression messy GA (Kargupta, 1996), the linkage learn-
ing GA (Harik, 1997), the extended compact GA (Harik,
1999), the Bayesian Optimization Algorithm (BOA) (Pe-
likan, Goldberg, & Cantu-Paz, 1999), LFDA (Mühlenbein &
Mahnig, 1999), and EBNA (Etxeberria & Larrañaga, 1999).

The assumption that all interactions in a large problem
will be limited to a small number k is still a strong one.
An important question therefore is which problems can be
solved when many variables may be interdependent. We
focus on a particular form of problem structure called hier-

archy, which permits addressing certain large problems with
high order dependencies, up to the case where all variables
are interdependent (k = n).

Examples of hierarchical problems include HIFF (Watson,
Hornby, & Pollack, 1998) and Hierarchical Trap Functions
(Pelikan & Goldberg, 2001a). Methods that can solve cer-
tain hierarchical problems include SEAM (Watson & Pol-
lack, 2003), H-BOA (Pelikan & Goldberg, 2001a, 2003),
Compact Genetic Codes (Toussaint, 2005), and the Hier-

archical Genetic Algorithm (HGA) (De Jong, Thierens, &
Watson, 2004). The HGA is a new hierarchical method
which has so far only been described theoretically (De Jong
et al., 2004), but will be investigated in experiments here.

The feasibility of addressing certain hierarchical problems
has been demonstrated. The question that will be studied
here is which hierarchical problems can be addressed effi-
ciently.
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A definition of the class of hierarchical problems is pro-
vided in (De Jong et al., 2004). This definition employs
several parameters. By varying these parameters, differ-
ent hierarchical problems are specified. These parameters
therefore provide a way to study the space of hierarchical
problems. To this end, we have developed a generator for
hierarchical problems, which is described in detail elsewhere
(De Jong, Watson, & Thierens, 2005).

Our goal in this paper is twofold. First, we aim to study
the effect of the parameters that characterize hierarchical
problems on the computational requirements for these prob-
lems. Second, we aim to investigate the operation of the
HGA. To address these goals, we apply the HGA to sev-
eral ranges of hierarchical problems, and study the effect of
the parameters on computational expense, measured both in
evaluations and in runtime. The problems are obtained by
means of a generator for hierarchical problems. The Hierar-
chical Problem Generator is available from the homepage of
the first author.

The structure of this paper is as follows. The introduc-
tion is followed by a description of the class of hierarchical
problems (Section 2) and of the generator for hierarchical
problems that will be employed (Section 3). Next, Section 4
describes the implementation of the HGA that will be em-
ployed in detail. Section 6 reports the experiments, and
investigates the effect of the different problem parameters.
Finally, a discussion is provided (Section 7) and conclusions
are drawn (Section 8).

2. THE CLASS OF HIERARCHICAL
PROBLEMS

A formal delineation of the class of hierarchical problems
was first given in (De Jong et al., 2004).1 Below, an informal
description of the problem class is given.

Watson (2002) defines decomposability as the property
that the number of optimal settings for a module is lower
than its total number of settings, and provides an extensive
discussion of this and related ideas. Based on this concept,
the notions of modularity and hierarchy can be defined.

A module is a subset of the variables in a problem for
which it holds that only part of the variable settings are
near-optimal for some context setting, or ε-context-optimal.
Here a context setting is a setting for the remaining variables,
i.e. the variables not contained in the module. A variable
setting is near-optimal given a context setting if the fitness
it results in is at most a small value ε less than the highest
fitness that can be obtained given the context setting. Since
only part of the possible settings for a module are ε-context-
optimal, the remaining settings can be safely excluded from
the search. Thus, the detection of a module reduces the
computational expense required to address the problem.

Hierarchy applies the modularity principle recursively and
thereby permits reductions at increasingly large scales. This
makes it possible to address certain problems with high or-
der linkage in a scalable manner.

More precisely, hierarchy is defined as follows. Let the
primitive modules in a problem consist of the problem vari-
ables. A set of existing modules can be combined into a com-

1While generators of hierarchical problems have been de-
scribed in the literature, these are not restricted to generat-
ing hierarchical problems, and thus do not serve to delineate
the problem class.

posite module if and only if the number of ε-context-optimal
settings for the combination is lower than the product of
the numbers of context-optimal settings for the components,
and no subset of the module combination establishes such a
reduction.

Given these notions, a modular problem can be defined as
a problem that contains at least one composite module. Hi-
erarchy refers to the presence of modules at multiple levels
above the base layer of primitive modules. Thus, a hierar-

chical problem can be defined as a problem in which there is
at least one composite module that contains another com-
posite module.

A problem is called fully hierarchical if there exists a sin-
gle module that covers all indices and whose settings thus
specify complete individuals; such a module will be called a
maximal module. To indicate the complexity of a fully hi-
erarchical problem, it is useful to determine the maximum
number k of component modules that must be considered for
combination into a larger module. A problem will be called
order-k fully-hierarchical if, starting from the initial level of
primitive modules, recursively combining up to k modules
into larger modules will lead to identification of the maximal
module.

3. A GENERATOR FOR HIERARCHICAL
PROBLEMS

Based on the definition of the class of hierarchical prob-
lems, we have developed a generator for hierarchical prob-
lems which will now be discussed; for a detailed account the
reader is referred to (De Jong et al., 2005).

A hierarchical problem is characterized by the following
factors:

• n: the number of variables

• k: the maximum number of components of a module

• m: the maximum number of context-optimal settings
for a module

• s: the arity of the alphabet (e.g. s=2 for binary prob-
lems).

The Hierarchical Problem Generator (HPG) accepts values
for the above parameters and randomly generates a hier-
archical problem with these properties. The operation of
the HPG is as follows. First, a module set is initialized to
contain all primitive modules. Next, the following cycle is
repeated until the module set contains a single module:

Combinations of k modules are selected randomly without
replacement from the module set, until the set is exhausted.
Each combination will form a new module, and the resulting
modules constitute the new module set.

For each new module, m context-optimal settings are cho-
sen randomly. Each context-optimal setting is a combina-
tion of context-optimal settings for the components of the
module.

All context-optimal settings of a module at level r are
used at least once in a context-optimal setting at level r+1.
Employing this principle recursively ensures that the chosen
context-optimal settings of a module at the lowest level will
occur at higher levels, up to the highest level of the max-
imal module, and will therefore occur in one of the global
optima. This guarantees that the chosen settings will indeed
be context-optimal as intended.
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find-cosettings(m, nrsettings)

1. for i := 1 : |S| ∧ (|m.cos| < nrsettings))

2. fmax:=find-best-fitness(m,samples[i]);

3. m.cos:=m.cos ∪ find-settings(m, sample[i], fmax);

4. end

Figure 1:

The above description implies that the HPG generates
order-k fully-hierarchical problems; we believe these to be
most relevant in studying the computational properties of
hierarchical problems. The above choices can be varied how-
ever to generate a larger set of hierarchical problems. For
example, the following variations may be considered:

• Unbalanced trees. As given, the HPG produces fully
hierarchical problems. If module formation is inter-
rupted below the top level of the tree, some degree of
the hierarchical structure can still be exploited, while
identifying the global optima may no longer be com-
putationally feasible.

• Variable k. In the above implementation of the HPG,
all modules contain the same number of components
k. This number could be varied, for example by select-
ing a random number k′ ≤ k of components for each
module.

• Variable m. The HPG assigns the same number m

of context-optimal settings to each module. A varia-
tion would be to assign a variable number m′ ≤ m of
context-optimal settings to each module.

• Variable s. All variables are assumed to come from
the same alphabet. A possible variation is to permit
different alphabets for different variables.

The above variations, and all combinations thereof, pro-
vide a means to extend the class of hierarchical problems
generated by the HPG. In the following section, we describe
the HGA, which will be used to address hierarchical prob-
lems.

4. THE HIERARCHICAL GENETIC
ALGORITHM

The Hierarchical Genetic Algorithm framework was de-
scribed theoretically in (De Jong et al., 2004). The idea
of the algorithm is as follows. The methods starts from a
set of primitive modules which equals the set of variables in
the problem. Next, the following cycle is repeated. For any
combination of up to k existing modules, test whether the
combination is a module itself. If so, the module is formed.

Module formation works as follows. Given a candidate
module, it must be tested whether the number of context-
optimal settings is smaller than the number of possible set-
tings. If this is the case, the module is formed and replaces
its component modules, and the context-optimal settings for
the new module are stored.

The contexts are generated by sampling; the sampling
procedure takes the current set of modules and for each

H-GA()

1. t := 0;

2. Mt:=find-primitive-modules();

3. for i := 1 : |S|

4. samples[i]:=find-sample(M);

5. done:=false;

6. while (¬ done)

7. Mt+1:=module-formation(Mt);

8. if Mt+1 = Mt

9. done:=true;

10. t + +;

11. end

12. Construct-Solution(M);

Figure 2: Main loop of the HGA; see text.

module-formation(M)

1. k′ := 2;

2. formed:=false;

3. while k′ ≤ k ∧ ¬formed{

4. if k′ > |M|

5. return true;

6. forall mc ∈Mk′ ∧ ¬formed

7. nrsettings := Π
m∈mc

|m.cos|

8. find-cosettings(mc, nrsettings);

9. if |mc.cos| < nrsettings

10. M′ := mc ∪ M \ {m|m ∈ mc}

11. update-samples(mc);

12. formed:=true;

13. end

14. end

15. end

16. k′ + +;

17. return M′;

Figure 3:
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module randomly selects one of the context-optimal set-
tings. Since sampling only uses the context-optimal set-
tings of modules, the formation of a module has the effect
that all non-context-optimal settings for the module will be
excluded for the remainder of the search. The number of
excluded settings grows quickly over time, and this is how
the method operates; if the method makes correct decisions,
which can be guaranteed to any desired degree by choosing
a sufficiently large sample size, the module set will eventu-
ally contain only a single module, and any context-optimal
settings for this maximal module are global optima.

We describe an implementation of the HGA framework
described in (De Jong et al., 2004). The pseudocode for the
algorithm is shown in Figures 2, 3, and 1. The algorithm
closely follows the description in (De Jong et al., 2004), but
two ideas have been added: first, the samples that are used
to assess the validity of a module are not discarded, but
maintained so that they can be used again in the future. All
fitness values are cached, so that unnecessary double evalu-
ations are avoided. The initial samples can however not be
used indefinitely; if a new module is formed for which the
excluded settings occur in some samples, then these sam-
ples must be discarded. Therefore, a check is performed
every time a new module is formed. The procedure update-
samples discards such invalidated samples, and fills the set
of samples with new samples until it reaches its original size
again.

A second new element of the algorithm is that in finding
the context-optimal settings of a candidate module (See Fig-
ure 1), the algorithm does not necessarily consider all sample
points; as soon as all possible settings for the module have
been identified as being context-optimal, no further sample
points need to be considered. The following functions are
used:

find-best-fitness(m, sample) finds the maximum achiev-
able fitness for a combination of modules given the context
setting defined by sample.

find-settings(m, sample, f) finds all settings for m,
using sample to define the remaining variables, that yield a
fitness within ε of fitness value f .

4.1 Determining the Sample Size Analytically
One of the main choices that must be made when apply-

ing the HGA concerns the sample size. The sample size
must be sufficient to detect all context-optimal settings of
a candidate module; if some context-optimal settings of an
incorrect module combination are not discovered, the combi-
nation will appear to be a module, and the missing settings
will be excluded for the remainder of the search. Choos-
ing the sample size higher than necessary does not affect
the correctness of the algorithm’s operation, but results in
superfluous computational expense.

A question of theoretical interest is whether the sample
size required to achieve correctness with sufficient probabil-
ity can be calculated. In the following, we will derive an
analytical expression that addresses this issue.

We consider the case where an incorrect module combi-
nation is tested for modularity. The goal is to choose the
sample size such that with sufficient probability, all context-
optimal settings, which are given by the product of the
context-optimal settings of the components, will be found.

First, we consider the probability that given a single sam-
ple point, a particular context-optimal setting will be found.

Since a module combination consists of at most k compo-
nents, the components of an incorrect module combination
mc can form part of at most k modules overlapping with mc.
Each of these overlapping modules has at most m context-
optimal settings. Therefore the probability that a particular
setting for an element of mc will be context-optimal for a
given context is 1

m
. The probability of finding a specific

context-optimal setting for mc therefore equals pfind = 1
m

k
.

The probability of not finding a particular context-optimal

setting given one sample point is pmiss = 1−pfind = 1− 1
m

k
.

The probability that a particular context-optimal setting is

not found for any sample point is p
|S|
miss = (1− 1

m

k
)|S|. Thus,

the probability of not missing the context-optimal setting is

Pdetect = 1− (1− 1
m

k
)|S|.

The probability of finding all mk context-optimal settings

at least once given |S| sample points is Pdetect
mk

, and this
gives the probability that an incorrect candidate module is
revealed to be incorrect. The probability that every incor-
rect candidate module considered before encountering a cor-

rect module is revealed to be incorrect is Pdetect
mknk

. Thus,
the probability that all modules in the problem are found

without constructing incorrect modules is Pdetect
mknknm ,

where nm is the number of modules in the problem. Finally,
to achieve correct results for every run, the probability is

Pdetect
mknknmnr , where nr is the number of runs.

In order to use the above expression, the number of mod-
ules in the problem must be determined.

At the lowest level, the n variables of the problem can be
combined into n

k
modules. At the next level, the resulting

modules can be combined into n

k2 modules. Continuing like
this, the number of modules in the problem equals

n

k
+

n

k2
. . . +

n

klogkn

= n(
1

k
+

1

k2
. . . +

1

klogkn
)

This expression can be simplified using the following geomet-

ric series:
1− 1

k

n+1

1− 1
k

= 1 + 1
k

+ 1
k2 .. + 1

kn Using this equality,

we obtain the following:

n(
1− 1

k

logk(n)+1

1− 1
k

− 1) =

n(
1− 1

kn

1− 1
k

− 1) =

n(
kn− 1

kn− n
− 1) =

n(
n− 1

kn− n
) =

n− 1

k − 1

Given this expression for the number of modules nm, we can
determine the required sample size as follows. Let

a = 1−m
−k

b = m
k ∗ n

k ∗ nm ∗ nr

nm =
n− 1

k − 1
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Then the probability of achieving correct results for each
module in every run equals pcorrect = (1 − a|S|)b. This ex-
pression can be used to determine the required sample size
as follows:

ln(pcorrect) = b ln(1− a
|S|)

ln(1− a
|S|) =

ln(pcorrect)

b

1− a
|S| = e

ln(pcorrect)
b

a
|S| = 1− e

ln(pcorrect)
b

|S| =
ln(1− e

ln(pcorrect)
b )

ln(a)

=
ln(1− e

ln(pcorrect)

mk
∗nk

∗nm∗nr )

ln(1−m−k)

As an example, let us consider a 64-bit problem with k =
m = 2. Then the sample size required to obtain correct
results for each of 30 runs with probability pcorrect = .99
equals 76.

The required sample size depends linearly on the number
of level in the problem, or logarithmically on the problem
size, as seen in Figure 4. We will now discuss the assump-
tions made by the above derivation. The expression is opti-
mistic in that it assumes that the true modules with which
an incorrect module overlaps have been formed up to the
same level as the candidate module’s components. On the
other hand, it is pessimistic in that it assumes that all com-
binations of k out of n elements must be considered; this is
only true in the worst case at the lowest level. A further pes-
simistic assumption is that all parts of an incorrect module
are part of different module.

5. COMPUTATIONAL COMPLEXITY
We now turn to the computational complexity of the Hi-

erarchical Genetic Algorithm that has been described, mea-
sured in terms of the number of fitness evaluations. De
Jong et al. (2004) establish an upper bound for the HGA of
nmknk

mmk|S|. In the following, we will derive a more precise
expression for the expected number of evaluations. To this
end, we first consider the expected amount of evaluations
required to form the modules of the lowest level.

In a fully hierarchical problem where all modules have
the same number of components k, the algorithm will first
consider smaller combinations from k′ = 2 up to k′ = k − 1
modules. Since these do not lead to the construction of
modules when correct decisions are made, we first consider
the final iteration of k′ = k.

Since all variables are part of some module in a fully hier-
archical problem, the first component of the first module to
be formed may be chosen arbitrarily; the algorithms visits
the modules it maintains in order, and will thus select the
first variable for this purpose. Let us say this variable is part
of a module M . Then the number of modules that must be
tested before the remaining component of M are found is
given by the number of ways in which k−1 of the remaining
n− 1 variables can be chosen, i.e.

`

n−1
k−1

´

. For the remaining
modules at the first level, the number of candidate modules
is lower than this. Since the number of modules at the first
level equals n

k
, the number of candidate modules that must

be considered to form the modules of the first level is at
most n

k

`

n−1
k−1

´

.

However, before the case of k′ = k, the algorithm must
consider lower values of k′ since the true value of k is as-
sumed unknown. For k′ = k − 1, all combinations of k − 1
modules must be considered; this number is slightly higher
than for k′ = k, namely

`

n

k−1

´

. For lower values of k, the
number is lower. Therefore, the total number of module
combinations that must be considered to form modules in
the first layer is less than (k − 1)

`

n

k−1

´

. For the remain-
ing layers, the number of modules that may be combined
is smaller than for the first layer. Thus, forming all mod-
ules involves considering at most nm(k − 1)

`

n

k−1

´

modules
combinations.

For each candidate module, the number of complete indi-
viduals that must be evaluated is at most mk|S|. Thus, an
upper bound for the time complexity of the algorithm is

nm(k − 1)

 

n

k − 1

!

m
k|S|

=
n− 1

k − 1
(k − 1)

 

n

k − 1

!

m
k|S|

< (n− 1)
nk−1

(k − 1)!
m

k|S|

=
nk − nk−1

(k − 1)!
m

k|S|

For the case of k = 2, this amounts to (n2 − n)mk|S|.

6. RESULTS
In the following, we describe experimental results with

the HGA. The main question of interest is its computa-
tional complexity. Therefore, we will investigate how the
amount of computational expense varies with properties of
the problems considered. The problems that will be used
are produced using the HPG.

When considering the computational complexity of an al-
gorithm, two measures are of interest: the number of evalua-
tions spent and the overall number of operations. The num-
ber of evaluations facilitates easy comparison with methods
from the literature, and is of interest as the fitness calcu-
lation is often thought to be an expensive step in the algo-
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Figure 5: Computation time in number of evalua-
tions as a function of n.

rithm. However, when applying a method, the actual num-
ber of operations is the more relevant factor, and further-
more the cost of certain algorithms is determined more by
the operation of the algorithm itself than by the calculation
of fitness values. We therefore consider both factors; which
factor is more relevant for a given application will depend
on the balance between the amount of time required by the
fitness calculation and by the rest of the algorithm.

6.1 Scalability: effect of n

The main factor of interest when evaluating an algorithm
is its scalability, i.e. the relation between computation time
and the size of the problem, typically measured in terms of
the number of variables n. To study this relation, random
hierarchical problems were generated for n=32, 64, 128, 256,
512. The remaining parameters for the problem generator
are : k = 2 and m = 2, where k is the number of components
per module and m is the number of context-optimal settings
per module. The HGA has parameters k = 2.2

The sample size |S| was chosen empirically to be sufficient
for making correct decisions only, and set to 100. Since the
order in which candidate modules are considered is deter-
ministic, when only correct decisions are made the algorithm
is deterministic. Therefore, we average the performance of
the method over 30 instances of the hierarchical problem for
each combination of parameters.

6.1.1 Number of evaluations
Since the expression found for the complexity of the algo-

rithm is quadratic in n, the number of evaluations found in
the experiments was fit to the analytical expression an2 +
bn + c, yielding the parameters a = 2.30, b = 321, and
c = −2377. As Figure 5 shows, this expression fits the
empirical data very well.

6.1.2 CPU time
We have analyzed the total runtime of the HGA as a func-

tion of n. find-primitive-modules() costs O(n|S|mftn(n)),

2We note that a larger k would have no effect, as the mod-
ule formation step first considers combinations of k′ = 2
modules and the algorithm terminates when the number of
remaining modules is less than k′.
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Figure 6: Computation time in CPU seconds as a
function of n.

where ftn(n) is the amount of time taken up by the fit-
ness function for problem size n. The central loop of the
algorithm is the module formation loop. The complexity for
this loop is given by multiplying the expression for the num-
ber of fitness evaluations by the amount of time required
to perform a fitness evaluation, which can be written as
ftn(n. Thus, for k = 2, the total complexity of the algo-
rithm amounts to (n2 − n) mk|S|ftn(n).

For extra precision, the linear term will be given a param-
eter of its own, so that we need to fit the runtime data to
(an2 + bn + c)ftn(n). To this end, we divide the measured
runtimes by averaged values of ftn(n) obtained by calculat-
ing the fitness of 1000 randomly generated individuals, and
multiply by the same values after fitting. The results are
shown in Figure 6. The fitted quadratic curve fits the data
very well, so that the fitted curve is difficult to distinguish
in the figure.

For all experiments except n = 512, a sample size of 50
is also sufficient to obtain correct results for all runs. Using
this sample size, the 256-bit version of the problem is solved
in approximately half a minute on a regular PC.

6.2 Effect of m

We measured the computational complexity as a function
of m, the number of context-optimal settings per module.
The dependency of the complexity of the algorithm on m

is given by a ∗ mk + b; thus, the HGA is polynomial in m.
While the number of components per module k used by the
generator was 3, all instances of these problems were solved
by the HGA using k = 2. Therefore, we used both k = 2
and k = 3 to compare the data with the above analytical
expression. Further parameters are n = 81 and |S| = 50.
In order to obtain a consistent value of m for all levels, the
alphabet size s was set to equal m.

As Figure 7 shows, a closer fit is obtained using k = 3.
A possible explanation for this is that while all modules
could be found using only two components, the number of
modules required to address the problem in this manner is
larger than for a balanced binary decomposition; for exam-
ple, when modules of size 2 and 1 are combined to form a
size 3 module, the two module formation steps have only
combined 3 variables, as compared to 4 in the binary case.
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Figure 8: Dependency of the number of evaluations
on m using a fixed alphabet size of s = 2.

In a further experiment, we considered the effect of us-
ing a binary alphabet (s = 2) for the same experiments, see
Figure 8. As a result of this change, the modules in the
problem can no longer all be found by considering combi-
nations of 2 modules only; the HGA sometimes needs to
combine k = 3 components into a module. The average
number of components for modules formed by the methods
was k = 2, 2, 2.01, 2.03, 2.51 for m = 2, 3, 4, 5, 7 respectively.

For m = 4, in two runs the HGA identified modules that
cannot be combined into larger modules without considering
values of k larger than three. Such dead-end modules can
for example arise when two components of a module already
establish a reduction, and thus represent a correct module,
while the addition of the third variable does not establish a
further reduction, and will thus not be performed. If this
occurs for three size-3 modules that form part of a size-9
module, identifying the size-9 module would require consid-
ering combinations of 3 size-2 and 3 size-1 equals k = 6
modules.

While a correct composition of these problems exists for
which k = 3, the problems are not order-k fully hierarchi-
cal. In order to limit the investigation to true order-k fully
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Figure 9: Dependency of the number of evaluations
on k.

hierarchical problems therefore, two additional runs were
performed to replace the runs concerned. For the case of
m = 6, dead-end module arose in many of the runs; this
datapoint is therefore omitted. For other values of m, in-
cluding m = 7, the problem did not occur; even if a size-2
and a size-1 module cannot be joined together, they can
sometimes be joined together with a size-3 or a size-6 mod-
ule to a size-6 or size-9 module that does establish a further
reduction of the number of context-optimal settings. The
variations in the effective value of k may explain why the fit
of the curve is not very close.

6.3 Effect of k

Finally, we consider the effect of k on the computational
complexity. The expression derived for the complexity of the
HGA shows that the dependency on k is exponential. We
therefore fit the experimental data to the expression abk +c.

Experiments were run for k = 2, 3, 4, 5. The effective aver-
age values of k used by the HGA in these experiments were
k = 2, 2, 2.49, 2.97 respectively. Figure 9 show the results; a
reasonably close fit is obtained.

7. DISCUSSION AND RELATED WORK
Four factors have been investigated that determine the

complexity of hierarchical problem solving: n, m, k, and
|S|. It was seen that the time required to address fully hier-
archical problems is polynomial in n and m, and exponential
in k. For the required sample size, an analytical expression
has been derived.

An upper bound of nk−nk−1

(k−1)!
mk|S| has been established

for the complexity of the HGA when measured in terms of
the number of fitness evaluations.

Two existing algorithms that can reliably address certain
hierarchical problems are hBOA and SEAM. For SEAM, an
upper bound of O(n2ln n) has been established for the case
of m = k = 2. For this case, the HGA has a complexity
of O(n2 − n).3 A main distinction between SEAM and the
HGA is that whereas the HGA combines variables, SEAM

3As in the SEAM analysis, the sample size |S| can be as-
sumed constant here since the accuracy of sampling is inde-
pendent of n.
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combines variable settings. For problems where m > s, a
module setting at one level may need to feature in more
that one module at the next level. In order to address such
problems, the initial module supply of SEAM can be in-
creased, although this increases the computational require-
ments of the method. Conversely, considering the combina-
tion of variables settings rather than variables may permit
addressing certain problems with overlapping modules.

For the hBOA algorithm, a bound of O(n1.5log m has
been proposed (Pelikan & Goldberg, 2001b). This bound is
for problems of bounded difficulty; an interesting question
is how the complexity of hBOA relates to our variable k.

hBOA employs a model building step that requires O(n3+
n2N) operations (Pelikan et al., 1999), where N is the num-
ber of instances and the maximal number of incoming edges
k is assumed constant. Depending on the complexity of the
fitness function, this procedure, which must be performed
at every generation, may have more impact on the overall
complexity than the bound for the number of evaluations.

The overall complexity of the HGA is reflected by the
runtime of the algorithm in terms of CPU time, which was
discussed above. Based on this, we expect that the HGA
can be more efficient than existing methods for hierarchical
problems where the fitness function itself is not overly expen-
sive. A relevant direction for future research is to analyze
the conditions that determine this by means of analytical
and/or comparative experimental studies. The simplicity
of the HGA is another property that may make it a useful
candidate for addressing hierarchical problems.

8. CONCLUSIONS
We have investigated four central properties of hierarchi-

cal problems: the number of variables n, the number of com-
ponents per module k, the number of context-optimal set-
tings per module m, and the sample size |S| used to address
the problem. The influence of these factors on the computa-
tional complexity of hierarchical problem solving has been
investigated both analytically and empirically based on the
Hierarchical Genetic Algorithm (HGA). As part of this in-
vestigation, a generator of hierarchical problems has been
developed and described.

Analytical expressions for the dependency of the complex-
ity on the different factors have been derived. It was found
that hierarchical problems can be solved in time polyno-
mial in both n and m, but depend exponentially on k. The
findings are confirmed by empirical data. The sample size
required to achieve correct results with a fixed probability p

depends logarithmically on n.
The Hierarchical Genetic Algorithm is a fast, simple hi-

erarchical genetic algorithm; empirical measurements were
consistent with an overall complexity of O(n2), and 256-
bit problems were solved correctly in approximately half a
minute on a regular PC. Interesting possibilities for future
work include investigating the properties and feasibility of
real-world hierarchical problems, the application of the HGA
to such problems, and the further development of efficient
hierarchical genetic algorithms.
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Schoenauer, M., & Schwefel, H.-P. (Eds.), Parallel Problem
Solving from Nature, PPSN-V., Vol. 1498 of LNCS, pp. 97–
106, Berlin. Springer.

Watson, R. A., & Pollack, J. B. (2003). A computational model of
symbiotic composition in evolutionary transitions. Biosys-
tems, 69 (2-3), 187–209. Special Issue on Evolvability, ed.
Nehaniv.

1208


