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ABSTRACT
The global search properties of heuristic search algorithms
are not well understood. In this paper, we introduce a new
metric, mobility, that quantifies the dispersion of local op-
tima visited during a search. This allows us to explore two
questions: How disperse are the local optima visited dur-
ing a search? How does mobility relate to algorithm per-
formance? We compare local search with two evolutionary
algorithms, CHC and CMA-ES, on a set of non-separable,
non-symmetric, multi-modal test functions. Given our mo-
bility metric, we show that algorithms visiting more disperse
local optima tend to be better optimizers.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
[heuristic methods]; G.1.6 [Optimization]: [global opti-
mization]

General Terms
Algorithms, Measurement, and Performance

Keywords
Evolutionary algorithms, global search, mobility

1. INTRODUCTION
We define a new metric, mobility, that quantifies the dis-

persion of local optima visited during a search. Intuitively,
an effective global search will spend most of its time com-
paring the best local optima. We pose two questions that
we believe will help quantify this intuition. First, how dis-
perse are the local optima visited during a search? Second,
do effective global search algorithms tend to be more mo-
bile? We show that on two difficult multi-modal functions,
algorithms that visit more disperse local optima tend to find
better overall solutions.
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We believe mobility is a useful metric for understanding
global search. Often, algorithms are classified as global op-
timizers based on empirical studies that, in reality, may say
little about how the algorithm will perform on real world
multi-modal problems. Several multi-modal test functions
routinely used in these empirical studies can easily be solved
by local search methods. This is problematic when the only
criteria for evaluation is the fitness of the final solution and
not the actual global search properties.
Evolutionary algorithms are population-based search

methods that employ selection, recombination, and muta-
tion as a heuristic to find competitive solutions. These
search methods work well in practice and have been success-
ful on multi-modal problems where more elaborate gradient-
based methods become trapped. Despite their success on
these rugged landscapes, the global search properties of evo-
lutionary algorithms are not well understood.
After a detailed description of the algorithms, we iden-

tify some critical test function properties that make search
more difficult. We describe a method for quantitatively an-
swering questions about global search. Then, we compare
local search with two advanced evolutionary algorithms on
two difficult benchmark functions. Specifically, in addition
to local search, we look at CHC, a variation of the tradi-
tional genetic algorithm [1], and an Evolution Strategy with
Covariance Matrix Adaption, or CMA-ES [3]. We conclude
the paper with an analysis of our findings.

2. SEARCH ALGORITHMS
In this section, we describe the three algorithms evaluated

in this paper: CHC, CMA-ES, and local search.

CHC
One of the more successful variants of the traditional ge-
netic algorithm is CHC [1]. Genetic algorithms represent
individuals in the search space as finite bit strings, called
genotypes, which undergo mutation and recombination. In
most genetic algorithms, the crossover rate for recombina-
tion is set much higher than the mutation rate, making the
crossover operator responsible for more of the transforma-
tion. CHC uses a modified version of uniform crossover,
where half of the non-matching bits are exchanged. Further
steps are taken to ensure that parents are not allowed to
cross unless they are sufficiently different. Eshelman refers
to this as incest prevention [1]. No mutation is used to alter
one generation to the next.
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CHC diverges from genetic algorithms in that it uses trun-
cation selection: newly created offspring must compete with
the parent population for survival. This replaces the more
traditional selection process with a “survival of the fittest”
philosophy. The children under this scheme are always the
same maximal Hamming distance from both parents. CHC
also includes a restart mechanism, called cataclysmic mu-
tation, that reinitializes the entire population by randomly
flipping 35% of the bits of the best individual.

CMA-ES
Evolution strategies emphasize mutations over recombina-
tion. The traditional evolution strategy is an iterative pro-
cess where µ parents produce λ offspring based on distri-
butions around the parents. This distribution is defined by
strategy parameters that, over time, adapt to create distribu-
tions that have a higher likelihood of producing more effec-
tive offspring. Strategy parameters are coded onto the chro-
mosome along with the objective parameters and are indi-
rectly adapted based on the assumption that highly fit indi-
viduals will carry better strategy parameters. The mutation
strength of the strategy parameters must be high enough to
create significant differences between offspring while mini-
mizing adaption time [3].

De-randomized Evolution Strategy with Covariance Ma-
trix Adaptation, or CMA-ES, uses a covariance matrix to
explicitly rotate and scale the mutation distribution [3]. The
orientation and shape of the distribution are not indirectly
adapted, but calculated based on the evolution path and,
when applicable, local information extracted from large pop-
ulations. Hansen and Ostermeier define the reproduction
phase from generation g to generation g + 1 as:

x
(g+1)
k = 〈x〉(g)

µ + σ(g)B(g)D(g)z
(g+1)
k

where z
(g+1)
k are randomly generated from an N(0, I) distri-

bution. This creates a set of base points that are rotated and
scaled by the eigenvectors (B(g)) and the square root of the

eigenvalues (D(g)) of the covariance matrix C. The single

global step size, σ(g), scales the distribution based on adap-
tation. Finally, the points are translated to center around

〈x〉(g)
µ , the mean of the µ best parents of the population.
Instead of only using a single generation to compute co-

variance, CMA-ES uses the entire evolution path, called cu-
mulation. The evolution path updates after each generation

using a weighted sum of the current path, p
(g)
c , and a vector

that points from the mean of the mu best points in gen-
eration g to the mean of the mu best points in generation
g + 1.
When a larger population (λ) is used, the best µ indi-

viduals may help describe the topology around the mean of
the current generation. In order to exploit this information,
CMA-ES uses a rank-µ-update, that calculates the covari-
ance of the µ best individuals

Z(g+1) =
1

µ

X
B(g)D(g)z

(g+1)
i (B(g)D(g)z

(g+1)
i )T

This information, along with the evolution path, p
(g)
c , is used

to update the covariance matrix. Assuming Z(g+1) is the
covariance of the µ individuals, and P(g+1) is the covariance
of the evolution path, the new covariance matrix, C(g+1), is

(1− ccov)C
(g) + ccov

“
αcovP

(g+1) + (1− αcov)Z
(g+1)

”
,

where ccov and αcov are constants that weight the impor-
tance of each input.
Hansen et al. assert that the initial step size, σ, for CMA-

ES should be chosen “comparatively large” on multi-modal
test functions [3]. Furthermore, they note that the local
optimum found by using “small” step sizes is almost com-
pletely determined by the initial starting points [3]. We used
an initial step size of 25% of each function’s domain, which
seems consistent with other research [2].

Local Search
Local search encompasses a broad range of algorithms that
search from a current state, moving only if new states im-
prove objective fitness. This has proven to be a simple, yet
often effective search method. In this paper, local search
refers to a Gray coded steepest ascent bit climber. Each pa-
rameter is encoded as a Gray bit string and, by flipping
one bit at a time, a neighborhood pattern forms around
the current best solution. Local search evaluates all these
neighborhood points before taking the best, or steepest, step.
Because each neighbor differs from the current best by only
one dimension, the neighborhood forms a coordinate pat-
tern. Local search terminates when no improving move is
found.

3. OBJECTIVE FUNCTIONS
Ideally, algorithms that are empirically effective on a set

of test functions would also be effective on real-world appli-
cations. It is unclear if this is ever the case. Whitley et al.
noticed that many of test functions used to evaluate evo-
lutionary algorithms are separable [8]. Separable problems
contain no non-linear interactions between the parameters
of the objective function1. Separability implies functions
can be easily solved by searching for the optimal solution
separately in each dimension [8].
Salomon also found separability to be problematic [4]. Sa-

lomon rotated some of the common separable benchmark
functions to create non-separable problems without chang-
ing the structure of the original problem. He found the
breeder genetic algorithm (BGA) was significantly less effec-
tive when the coordinate system is rotated in n−dimensional
space. The reason for this failure is largely due to the low
probability that a parameter is modified under mutation
(commonly 1/l, where l is the chromosome length). More
specifically, the probability that two or more parameters
change simultaneously is small.
The limitations of the breeder genetic algorithm do not

extend to all genetic algorithms that use crossover. As men-
tioned previously, CHC uses a variation of uniform crossover
that changes many parameters at once. Nevertheless, CHC
does use a fixed coordinate system and it is unclear if CHC
will suffer from the same limitations as BGA.
In addition to avoiding separable functions, we also wish

to avoid highly symmetric functions [8]. One drawback of
using symmetric functions for evaluation is their potential
bias toward search neighborhoods that use a bit-encoding.
For example, standard reflective Gray code always creates
a symmetric neighbor reflected about the origin. On func-

1Some problems can be separable and still have some degree
of non-linearity (e.g. f(�x) = x1 ·x2+x3). The problems no-
ticed by Whitely et al. contained no non-linear interactions
between parameters [8].
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Figure 1: The two dimensional Rana surface.

tions like the two dimensional Rosenbrock, finding the local
optima at (1,-1) implies one of the neighbors for the next
search will be the global optima located at (1,1).
Since we are interested in global search properties, we are

limiting our experiment to multi-modal test functions. The
most challenging benchmark function for our experiment is
the Rana function, whose surface is dotted with local min-
ima, only to be interrupted by dominating ridges that run
along the 45 degree lines (figure 1) [8]. We also used the
highly multi-modal Schwefel function2[6]. These base func-
tions are summarized in Table 1.

Name Function

Rana f(x, y) = x sinα cosβ + (y + 1) sinα cosβ
with α =

√−x + y + 1
and β =

√
x + y + 1

Schwefel f(�x) =
PN

i=1

“
−xi sin

“p|xi|
””

Table 1: The Rana and Schwefel base functions. No-
tice the Rana function is non-separable.

We used the following function to expand the base Rana
function into a higher dimensions.

f(�x) =

n−1X
i=1

frana(xi, xi+1)

Clearly, the Schwefel function is separable and symmet-
ric. The Rana function is symmetric. As previously men-
tioned, these properties create undesirable biases. In or-
der to make our evaluation more robust, we rotated each
function 22.5 degrees in all dimensions. This is similar to
Salomon’s method but differs in that the rotation is not ran-
dom. Random rotations would create a different test surface
for each trial and potentially a different number of local op-
tima. Since we are interested in counting and comparing
local optima, a static rotation seems more reasonable. We
chose 22.5 degrees to ensure that the Rana problem did not
become more predictable. Each function was translated by
five percent of the domain, or 5.12 units, to reduce the po-

2This function is actually one of several described by Hans-
Paul Schwefel and with which his name is unofficially con-
nected. This particular function is based on problem 2.3,
page 328 in the 1995 edition of “Evolution and Optimum
Seeking” [6].

tential bias caused by symmetry. Additionally, each dimen-
sion was scaled by five percent to create slightly more local
optima. For the rest of the paper, Rana and Schwefel re-
fer to the rotated, translated and scaled versions of these
functions.

4. LOCAL OPTIMA AND MOBILITY
As mentioned previously, our goal is to quantify global

search by answering the question: How disperse are the lo-
cal optima visited during search? In order to measure how
many of the local optima were sampled during search,we
need quantify what it means to be “close” to a local op-
tima. Once we know which local optima were sampled, we
need to define a metric to measure their dispersion.
We ran local search, CHC, and CMA-ES on the two bench-

mark functions discussed previously. Each function was con-
sidered in five and ten dimensions. Since parameter settings
affect performance, we ran two versions of each algorithm.
Local search and CHC were run using 10-bits and 20-bits of
precision. CHC used the time-tested population size of 50.
CMA-ES heuristically chooses a population size. Hansen et.
al. found that CMA-ES did surprisingly well on multi-modal
functions when the population size was drastically increased
and the algorithm used rank-µ-updates [2]. As mentioned,
the rank-µ-update exploits the topological information con-
tained in larger populations when updating the covariance
matrix. In our tests, we ran CMA-ES with rank-µ-updates
and a population size of 200 and 500. We distinguish each
algorithm based on its parameters; CHC-10, CHC-20, LS-
10, LS-20, CMA-200, and CMA-500. Each algorithm was
run for 30 trials and each trial ran for exactly 25,000 and
50,000 evaluations in five and ten dimensions respectively.
We used restarts to ensure that each algorithm used all

the alloted evaluations. That is, if an algorithm finished
before all the evaluations were used, the algorithm was given
a random restart during the same trial and allowed to run
until all the remaining evaluations were used.

Threshold - defining local optima
Two problems arise with respect to measuring the number
local optima sampled during search. First, how do we define
boundaries for the basins that surround local optima Sec-
ond, once we have defined this boundary, how do we cluster
points that fall within a given basin?
Ideally, we would look at the basins of attraction that

contain the best points of the search space. We can do this
by choosing a fitness threshold, and only considering points
that fall below this value. This defines a measure of closeness
to the local optima that is based on fitness and only includes
the best local optima of the search space – the local optima
we are interested in counting. Figure 2 shows an example
on the two dimensional Schwefel function. Notice that the
threshold leaves only the best local optima.
What is the appropriate threshold value for each function?

In low dimensions, we can approximate this value by enu-
merating a fine mesh grid in the search space, sorting the
points by fitness, and retrieving the maximum fitness of the
best percentage of points. For example, we may want to
find the threshold that defines the best 10% of the search
space. This estimation is only an approximation due to finite
precision effects. In higher dimensions (more than three),
the enumeration and evaluation is intractable so another
method must be used.
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Figure 2: The two dimensional Schwefel surface
(left) and the remaining local optima (right) after
thresholding the surface.

We estimated a threshold for each function by combining
all the points, from all 30 trials of each algorithm, and choose
the threshold to be the fitness of the best 20% of the points.
In other words, we looked at every point evaluated during
30 trials of CHC-10, CHC-20, LS-10, LS-20, CMA-200 and
CMA-500, sorted the points and picked the threshold value
to be the maximum fitness of the best 20% of all the points.
We use this aggregate number to evaluate the global search
properties of each trial.
Once a threshold has been calculated, we consider only

the unique points that are below threshold. We assume that
these points fall into the basins of attraction for the local
optima we are interested in counting.

Mobility - a measure of dispersion
What we would like to measure is the dispersion of local
optima visited during search. Often in real world search
problems and problems in high dimension, little is known
about the shape of the fitness landscape. An algorithm that
samples many, disperse local optima increases confidence
that its solutions are globally competitive.
Schuurmans and Southey defined three metrics that char-

acterized local search performance on satisfiability problems
[5]. The first metric, depth, measures the average depth lo-
cal search travels into the fitness function. More specifically,
depth, refers to the number of unsatisfied clauses at any
point during search. Mobility measures how rapidly local
search moves away from recently explored areas. Finally,
coverage captures how well local search is exploring new
regions that have not been previously visited. Schuurmans
and Southey show that effective local search algorithms tend
to have low depth and high mobility and coverage.
We are defining and exploring similar properties in the

parameter optimization domain. Schuurmans’ depth mea-
surement is similar to our threshold. Our mobility metric is
similar to both Schuurmans’ mobility and coverage. Schuur-
man and Southey used Hamming distance to quantify local
search. In the parameter optimization domain, Euclidean
distance is more meaningful. Like Schuurmans and Southey,
we relate mobility to algorithm effectiveness.
In the next section, we describe our method for assigning

each sub-threshold point to a unique local optima. Once we
have determined these points, we constructed a completely
connected graph of the local optima with edges weighted by
Euclidean distance. From this, we created a minimum span-
ning tree of the local optima. Figure 3 shows an example of
the minimum spanning tree for local optima found by CHC
on the Rana function in two dimensions. We call the sum
of the weights on the minimum spanning tree mobility.

Figure 3: A minimal spanning tree of local optima
on the Rana function.

Mobility measures the minimum connecting distances be-
tween a set of points, and does not distinguish, for example,
between four points connected on a line and four points on
connected on a box with equal edge lengths (Figure 4). In
this example the mobility metric has a value of 4 for both
configurations. We believe mobility gives a rough estimate
of the dispersiveness of the visited local optima.
Bit-encoded algorithms can explore a large portion of the

search space by only changing a few bits. One concern
is: does measuring Euclidean mobility bias our results to
bit-encoded algorithms? Although a small change in Ham-
ming distance can correspond to a large change in Euclidean
space, mobility is only measuring the distance to those sub-
threshold neighbors. In other words, local search visiting
a distant neighbor, as guided by its heuristic, does not im-
ply that the point will be included in the mobility mea-
surement. As discussed earlier, this point is considerably
stronger when the test functions are non-symmetric and
non-separable. We also observe that Hamming-space mobil-
ity would mean something completely different, which ren-
ders a direct comparison in Euclidean space confusing and
potentially impossible.

5. MOBILITY IN LOW DIMENSIONS
In low dimensions, we use a modified form of local search

to assign each sub-threshold point to a unique local optima.
The neighborhood pattern of our modified local search was
created by modifying the current best solution by ±0.001
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Figure 4: The mobility metric is invariant under
certain sets of patterns.

in each dimension. This creates a compact neighborhood
that includes two points in each dimension that surround
the current best point. Keeping the neighbors close to the
sub-threshold point is important for two reasons. First, it
ensures that each point is assigned to the correct local op-
tima. That is, local search can’t discover better basins far-
ther away. Second, a high precision local search also de-
creases the number of false local optima generated by ridges
in the search space.
Ridges induce false optima when search algorithms use a

coordinate pattern to find improving moves. If an algorithm
looks for improving moves by changing only one dimension
at a time, it will not see better points that fall between the
neighborhood axis. In this case, a lower precision search will
get stuck on the ridge, blindly assuming it has found a local
optima. Increasing the precision will generally decrease the
number of false optima. That is, a higher precision search
algorithm will move further down the ridge by taking smaller
steps along the ridge direction [7].
Various measurements for both the 5-D Rana and Schwe-

fel functions are listed in Table 2. For each function, CHC-10
and CHC-20 visit significantly more basins of attraction and
have significantly higher mobility than either local search
(LS-10 and LS-20) or CMA-ES (CMA-200 and CMA-500).
LS-10 had significantly higher mobility and visited more
basins than the 20-bit local search. On the Rana Function,
CMA-500’s higher mobility was significant when compared
with CMA-200. There were no other statistical significant
patterns found between the algorithms.

Rana Schwefel
Mobility Basins Mobility Basins

CHC-10 6,667.6 52.2 8,702.9 23.1
CHC-20 5,423.1 48.4 6,632.8 15.5
LS-10 995.3 6.47 2,530.9 6.17
LS-20 4.72 1.87 169.0 1.4
CMA-200 277.6 10.9 492.9 2.43
CMA-500 712.3 8.43 348.8 3.1

Table 2: Average mobility and number of basins vis-
ited per trial after 25,000 evaluations on the Rana
and Schwefel 5D functions.

Rana Fitness Schwefel Fitness

Best known -2,651 -2,371
CHC-10 -2,411.9 -2,334.4
CHC-20 -2,370.9 -2,274.9
LS-10 -2,010.6 -2,015.0
LS-20 -1,614.1 -1,790.4
CMA-200 -1,991.0 -1,906.2
CMA-500 -2,085.5 -1,884.0

Table 3: Average fitness per trial after 25,000 eval-
uations on the Rana and Schwefel 5D functions.
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Figure 5: The number of basins visited (local op-
tima) vs. Mobility on the Schwefel and Rana 5D
test. Algorithms that visit more local optima tend
to have a higher mobility and vice versa.
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In five dimensions we noticed a high correlation between
the number of basins visited and the mobility. Intuitively,
this makes sense. Algorithms that visit more local optima
will tend to have higher mobility and vice versa. Figure 5
shows the number of basins vs. the mobility on the Schwefel
five dimension test. The Schwefel test has a strong corre-
lation of 0.94. The correlation on the Rana five dimension
test was 0.68.

Mobility in Higher Dimensions
In higher dimensions, performing modified local search from
each of the threshold points becomes extremely computa-
tionally intensive. The primary problem here is that the
modified local search simply takes too long to converge from
the sub-threshold points to the local optima we wish to
count.
This requires us to calculate the mobility metric discussed

in the previous section without explicitly knowing to which
basin of attraction each sub-threshold point belongs. We
did this by constructing a minimal spanning tree of all the
sub-threshold points. In other words, all the sub-threshold
points will now be included as nodes of the minimal spanning
tree. The mobility metric is different from the previous mo-
bility metric in several ways. Most importantly, the nodes of
the tree are no longer local optima, but rather sub-threshold
points. As a result, the edges that join them will be included
in the mobility measurement. That is, this mobility metric
is still the sum of the edge lengths in the tree, but will now
include the edges between points that lie in the same basin.
This means the mobility measure will be slightly inflated
because points within the same local optima will now add
to the mobility metric. Comparing Figure 3 with Figure 6
graphically explains this difference.

Figure 6: A minimal spanning tree of all the sub-
threshold points on the Rana function. The minimal
spanning tree in Figure 3 was constructed using the
same sub-threshold points as a staring position for
local search.

In ten dimensions, we calculated each algorithms mobil-
ity after 10,000 and 50,000 evaluations. The ten dimensional
results for both the Rana and Schwefel functions are listed
in Table 4. After 10,000 evaluations, CHC-10 and CHC-20
had significantly higher mobility than the other algorithms
on both the Rana and Schwefel functions. Similarly, local
search (LS-10 and LS-20) had higher mobility than CMA-ES
(CMA-200 and CMA-500). After 50,000 evaluations, CHC-

10 still exhibits significantly higher mobility than all the
other algorithms on the Schwefel function. However, the dif-
ference between CHC (CHC-10 and CHC-20) and CMA-ES
(CMA-200 and CMA-500) on Rana after 50,000 evaluations
was not significant. All four algorithms outperformed lo-
cal search (LS-10 and LS-20) on both functions after 50,000
evaluations.

Rana Schwefel
10K 50K 10K 50K

CHC-10 23,793.1 21,316.8 19,179.7 65,009.2
CHC-20 21,068.3 24,951.0 19,433.4 49,907.7
LS-10 9,819.6 835.5 11,512.6 2,137.4
LS-20 3,709.0 0.0 3,330.5 1,609.4
CMA-200 255.7 28,249.0 45.8 20,973.0
CMA-500 48.1 32,475.9 0.0 43,249.8

Table 4: Average mobility after 10,000 and 50,000
evaluations on the Rana and Schwefel 10D functions.

Rana Schwefel
10K 50K 10K 50K

Best Known -4,933.0 -4,933.0 -4,556.9 -4,556.9
CHC-10 -3,184.2 -4,177.8 -3,411.6 -4,038.7
CHC-20 -3,319.0 -4,313.3 -3,523.5 -4,013.1
LS-10 -3,011.8 -3,382.5 -3,143.2 -3,464.0
LS-20 -2,822.2 -2,958.3 -2,749.3 -3,083.7
CMA-200 -2,253.4 -3,574.0 -2,159.3 -3,285.3
CMA-500 -2,124.5 -3,757.2 -1,989.3 -3,386.3

Table 5: Average fitness after 10,000 and 50,000
evaluations on the Rana and Schwefel 10D functions.

Mobility and Performance
Is mobility a good measure of global search performance? To
answer this question we looked at the correlation between
average fitness and mobility for each trial. Figure 7 shows
the general trend for all six tests. Notice that algorithms
with higher mobility tend to have more effective solutions.
There is one exception to this observation. Some trials

have no mobility, but vary in solution quality. In other
words, each graph in figure 7 has trials that have a large
range of fitness values, yet have zero mobility. These are
the “stacked” points in the leftmost position of the graphs.
There are two reasons why trials could have low mobility

and a large range of fitness values. Some algorithms may
have no mobility and a poor range of fitness values. Re-
call that both mobility metrics defined in this paper only
include points below a given threshold value, which is com-
puted based on competing fitness values among all trials,
across all algorithms. In order for a trial to have mobility, it
must have some points below the threshold. So, trials that
have no mobility and poor fitness simply did not visit below
threshold basins of attraction. Notice that many of the low
mobility points lie above the fitness threshold.
On the other hand, some algorithms tend to have low

mobility and rather effective solutions. This is most pro-
nounced in Local search (LS-10 and LS-20) after 50,000
evaluation in 10 dimensions (figures 7(e) and 7(f)). One
explanation for this is that local search visited a few good
basins of attraction that were probably relatively close to-
gether and failed to explore other below threshold areas of
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Figure 7: Mean Fitness vs. Mobility. In each case, there is some correlation that indicates more fit trials
had high mobility. Intuitively, we would expect algorithms that explore more to find better solutions.
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the search space. This could happen, for example, on a long
ridge where local search creeps toward good solutions. In
this case, local search uses many evaluations exploring only
a small part of the space.

6. DISCUSSION
In ten dimensions, local search is significantly more mo-

bile during the 10,000 evaluation measurement, but falls off
the map entirely after 50,000 evaluations. At the same time,
CMA-ES has more mobility after 50,000 evaluations. Longer
running snapshots have higher thresholds. As algorithms
begin to converge, densely populated sub-threshold distri-
butions lower the threshold. So, early on in the search, the
distribution of CMA-ES is still quite large and unfocused.
Local search, on the other hand, has already focused in on
several local optima. Eventually, CMA-ES starts to form a
compact (and densely populated) distribution that focuses
in on one or more local optima. This effectively lowers the
threshold to a point that nearly excludes local search. No-
tice that CHC remains fairly consistent in during the 10,000
and 50,000 evaluation mobility snapshots.
In all but the Rana ten dimensional, 50,000 evaluations,

test, CHC had significantly higher mobility. Why does CHC,
on average, tend to visit more of the search space? Per-
haps some of the answer lies in CHC’s distribution. CHC’s
crossover operator HUX, or Half Uniform Crossover, ex-
changes half the non-matching bits. One consequence of
this, according to Eschelman, is that children are always
maximum Hamming distance from their two parents [1].
This highly disruptive operator tends to spread search out
until good schemata start to form. It is possible that the
distributed nature of CHC’s child distribution, at least to
some degree, accounts for its high mobility.
Restarts also help algorithms with stale distributions ex-

plore new parts of the search space. Cataclysmic mutation,
for example, forces CHC to look in other parts of the search
space once the population begins to converge. In the five di-
mensional tests, the lower precision search was significantly
more mobile than its high precision counterpart in every
case. This held in ten dimensions for the 10,000 evaluations
tests, where local search actually had some mobility. The
high precision local search has twice as many neighbors in
each step, which quickly burns up valuable evaluation calls.
And all of the neighbors are within the low precision neigh-
borhood, which, in terms of exploration, adds nothing to
the search. Furthermore, the small step size allows the high
precision search to creep on ridges where the low precision
search gets stuck and is forced to restart.
As previously mentioned, the initial step size for CMA-

ES must be relatively large for the algorithm to be effective
on multi-modal functions. Unfortunately, even with a large
step size, the volume covered by each restart is less signifi-
cant because the search space expands exponentially. This
means CMA-ES must also rely on random restart to explore
other parts of the search space. To make matters worse, un-
like traditional evolution strategies, CMA-ES’s population
stays together. It is not possible for each member of the
population to explore different parts of the search space at
the same time unless the step size is large. Even then, the
new children are based on a distribution around the mean

and not the exploring parent. Several of the two dimensional
trials we looked at would get trapped spanning several good
local optima. The distribution of CMA-ES would continue
to span all the local optima unable to explore each one in-
dividually.

7. CONCLUSION
In this paper, we have explored the global search prop-

erties of evolutionary algorithms. In particular, we com-
pared local search with CHC, an aggressive genetic algo-
rithm, to CMA-ES, which represents the state-of-the-art in
evolution strategies. Each algorithm was tested on two ro-
tated, translated and scaled multi-modal functions to ensure
that the tests included non-separable and non-symmetric
functions. Defining thresholds creates basins of attraction
that are close to local optima in terms of fitness. Addi-
tionally, it focuses our study on only the best local optima.
High precision local search provides a reliable way of cluster-
ing points in the same basin of attraction in low dimensions.
The minimal spanning tree metric, mobility, was shown to
be highly correlated with the number of optima found in a
search. In high dimensions, estimating the mobility gives
a reliable measure of the dispersion of local optima visited
during search. In either case, algorithms with higher mobil-
ity tend to have more effective solutions.
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