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ABSTRACT
This paper aims at an important, but poorly studied area in
genetic algorithm (GA) field: How to design the crossover
operator for problems with overlapping building blocks
(BBs). To investigate this issue systematically, the rela-
tionship between an inaccurate linkage model and the con-
vergence time of GA is studied. Specifically, the effect of the
error of so-called false linkage is analogized to a lower ex-
change probability of uniform crossover. The derived quali-
tative convergence-time model is used to develop a scalable
recombination strategy for problems with overlapping BBs.
A set of problems with circularly overlapping BBs exemplify
the recombination strategy.

Categories & Subject Descriptors
G.1.6 [Mathematics of Computing]: Global Optimization–
Analyze.

General Terms
Algorithms, Design, Theory.

Keywords
Genetic Algorithms, Linkage Learning, Model Building,
Overlapping Building Blocks.

1. INTRODUCTION
In 1975, Holland [6] suggested that operators learning

linkage information to recombine alleles might be necessary
for genetic algorithm (GA) success. More recently, a GA
design theory proposed by Goldberg, Deb, and Clark [2]
indicated that proper problem decomposition is one of the
keys to ensure the effectiveness of GA. Since then, many
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such GA designs [1] that respect linkage have been devel-
oped. The linkage model can be implicit (e.g. linkage
learning GA [5]) or explicit (e.g. linkage identification by
nonlinearity check procedure [9]), probabilistic (probabilis-
tic model building GAs [10], or estimation of distribution
algorithms [7]) or deterministic (e.g. dependency structure
matrix GA [18]). Some of these linkage learning methods
should be capable of identifying overlapping building blocks
(BB [1]), and DSMGA is known to have such ability.
A question that needs to be answered is: Given overlap-

ping BBs, how do we design a scalable recombination oper-
ator to maximize BB mixing and minimize BB disruptions?
Consider a problem where BB1 and BB2 are overlapped. If
the crossover operator exchanges only BB1, the information
carried by BB2 is disrupted. The same thing happens if
crossover operator exchanges only BB2. However, if BB1

and BB2 are exchanged together, there is no chance to re-
combine the information carried by BB1 and BB2. Here we
are facing a decision-making problem between higher BB
disruption or lower BB mixing, and we need a recombina-
tion strategy to help us make the decision.
To systematically design a recombination strategy for

problems with overlapping BBs, we need to understand the
effect of BB disruption and BB mixing on the GA conver-
gence time, and the former has been studied [17]. This paper
focuses on the latter issue, namely, how the mistaken con-
catenation of BBs (called false linkage in this paper) reduces
the mixing rate, and how the lower mixing rate affects GA
convergence.
This paper first shows the effects of several different

crossover operators on an illustrative problem with over-
lapping BBs. Then it defines several commonly used terms
and briefly recaps the results in [17]. The effect of false
linkage is analogized to uniform crossover with a lower ex-
change probability. A number of experiments are done to
verify the analogy. Given the qualitative convergence-time
model by considering both BB disruptions and BB mixing, a
recombination strategy is proposed for problems with over-
lapping BBs. The convergence time model can take care
of the tradeoff, and more details can be found in section 6.
Finally, discussions and possible future work conclude this
paper.
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Figure 1: A problem with 8 overlapping BBs. The
fitness of each BB is calculated by a trap5 function.
The overlapping length is 2. If we exchange BB1

only, both BB2 and BB8 are disrupted.

2. EFFECTS OF DIFFERENT
CROSSOVER OPERATORS ON A PROB-
LEM WITH OVERLAPPING BUILDING
BLOCKS

Consider the following problem composed of overlapping
trap5 functions, where the trap5 function is defined as:

trap5(x1x2x3x4x5) =

�
4−u

5
, u = 0, 1, 2, 3, 4

1, u = 5
, (1)

where xi are binary values, and u denotes the number of
ones among xi’s.
The overlapping length is 2, and the overlapping scheme

is circular (figure 1). For example, for a problem with 3
BBs, the fitness is trap5(y1y2y3y4y5) + trap5(y4y5y6y7y8) +
trap5(y7y8y9y1y2), where yi is a random permutation of
genes xi. Note that the arrangement of genes is randomly
shuffled so the problem in general is not of tight linkage.
Three different crossover operators are tested: (1) allele-

wise two-point crossover, (2) BB-wise uniform crossover,
and (3) least-disruptive crossover. The allele-wise two-point
crossover does not exploit the information of BBs. The
BB-wise uniform crossover is similar to an ordinary allele-
wise uniform crossover, but it performs on BBs instead of
genes. The least-disruptive crossover performs like a two-
point crossover on BBs. It randomly chooses two BB bound-
aries as cross sites on the circle, and swap the two parti-
tions. The least-disruptive crossover is so named because
it disrupts only 2 BBs during the recombination. It is not
difficult to see that the least-disruptive crossover yields the
least number of BB disruptions among any non-trivial re-
combination.
The testing problem contains 20 circularly overlapping

BBs. The results shown in figure 2 are averaged out of 100
independent runs. Both the allele-wise two-point crossover
and the BB-wise uniform crossover failed to find all correct
BBs. On the contrary, the GA with the least-disruptive
crossover successfully converged to the optimum. Note that
we terminated the GA when 19 out of 20 BBs is correctly
converged.
The least-disruptive crossover achieves the lowest BB dis-

ruption at the price of a lower mixing rate than the BB-wise
uniform crossover because it concatenates many BBs as one
big chunk during recombination. To fully understand why it
outperforms other crossover operators on this type of prob-
lems, the effects of BB disruptions and BB concatenation
need to be studied. A brief recap of the study of the relation-
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Figure 2: The convergence time for the circu-
larly overlapping problem. Three different crossover
operators are used. Both allele-wise two-point
crossover and BB-wise uniform crossover fail, and
the lines are overlapped. Only the least-disruptive
crossover which respects both BBs and overlapping
topology succeeds.

ship between BB disruptions and convergence time in [17]
can be found in the next section.

3. ASSUMPTIONS AND THE ERRORS OF
A LINKAGE MODEL

In this paper, several assumptions are made to simplify
derivations:

• Selectorecombinative GAs: In this paper,
crossover probability is always 1, and mutation
operator is not taken into consideration. We focus
only on the mixing behavior of the crossover operator.

• Fixed-length χ-ary encoding: The chromosome
length is assumed to be fixed. The results can
be applied to non-binary encoding, but the size of
alphabets should be fixed.

• Infinite population size: This is a necessary as-
sumption to use the convergence-time model derived
in [8, 16]. To mimic the asymptotic behavior , we use
population size 10 times larger than what the gam-
bler’s ruin model [4] predicts during all experiments.
For finite population, readers are referred to [12].

• BB-wise uniform crossover: The BB-wise uniform
crossover is similar to allele-wise uniform crossover,
but now it acts on BBs not genes. The BB information
is retrieved by some linkage learning algorithm, and
it is not necessarily accurate. The least-disruptive
crossover can be thought as a BB-wise uniform
crossover with a linkage model which concatenates
BBs into two chunks.
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Next, we define some terms used in this paper. Some of
them are popular in GA research field, but their meanings
are different in different papers. The remainder of this sec-
tion tries to clarify the meaning of these terms when they
are used in this paper.
The term “linkage” is widely used in GA field, but defin-

ing linkage is not an easy task. In this paper, the linkage
is roughly defined as follows [17]. If linkage exists between
two genes, recombination results in low-fitness offspring with
high probability if those two genes are not transferred to-
gether from parents to offspring. A group of highly linked
genes forms a linkage group, or a building block (BB) in [1].
A linkage model is a model telling which genes form link-

age groups. For instance, the boolean flags in LEGO [14],
the genetic ordering in LLGA [4], the clustering model
in eCGA [3], and the DSM clustering arrangement in
DSMGA [18] are all linkage models. Two different types
of errors can happen when a linkage model is adopted to
describe the genetic linkage. One is that the linkage model
does not link those genes which are linked in reality, which is
called detection failure. The other is that the linkage model
links those genes which are not linked in reality, which is
called false linkage. Yu and Goldberg [17] has investigated
the error of detection failure, and this paper primarily fo-
cuses on the error of false linkage.
The quality of a linkage model can be quantified by the

number of errors it makes. For example, consider a problem
with four BBs, where {BB1, BB2, BB3, BB4}={{1,2,3},
{4,5,6} , {7,8,9}, {10,11,12}}, and a linkage model {BB′

1,
BB′

2 ,BB
′
3, BB

′
4, BB

′
5}={{1,2}, {3,4,5,6}, {7,8}, {9,10,11},

{12}}. The linkage model has 3 detection failures and 1 false
linkage.
Yu and Goldberg [17] indicated that if the linkage model

has ed detection failures, the convergence time tconv elon-

gates by a factor of
�
1− ed

I
√

m

�−1

, where m is the number

of BBs, and I is the selection intensity. When ed is greater
than 2I

√
m, the GA will fail to find all correct BBs.

4. FALSE LINKAGE AND EFFECTIVE EX-
CHANGE LENGTH

The positions where false linkages occur can be either
fixed or random. For example, in the four-BB problem from
the previous section, if the model builder always links BB1

and BB2, that is, the linkage model is {1,2,3,4,5,6}, {7,8,9},
{10,11,12}, then the false linkage occurs at a fixed position.
Since two BBs of order k are linked together, the population
size required to ensure the presence of at least one copy of
the correct BB1 and BB2 in the initial population is O(2

2k).
Note that whereas there is no false linkage, the population
size dictated by BB supply is O(2k). Even if we rely on
GA operators to generate the correct allele values in BB1

and BB2, the number of mutations needed is still O(2
2k),

and crossover does not help because of the inaccurate link-
age model. The false linkage at fixed position occurs when
the linkage-learning method is applied off-line, or the link-
age model is biased to some particular positions for some
reason.
On the other hand, if the linkage-learning method is ap-

plied on-line (e.g. every generation) and is non-biased to
particular positions, the false linkages occur at random po-
sitions. In other words, the linkage model randomly links
BBs by mistake when false linkages happen. This paper fo-

cuses on errors due to false linkage at random positions. It
should be noted that when false linkage occur in random
positions then population size dictated by BB supply does
not change and is O(2k). If the linkage model mistakenly
links two BBs together in the current generation, there is a
non-zero probability that the linkage model would not link
these two BBs in the next generation so that crossover oper-
ator will mix them. The remainder of this section will focus
on how false linkage affects BB mixing.
Consider the following two scenarios: (1) the linkage

model links BB1 and BB2, and (2) the linkage model iden-
tifies BB1 and BB2 correctly (as two separate BBs), and
the BB-wise uniform crossover by chance transfers BB1

and BB2 together. These two scenarios produce the same
crossover result, but with different probabilities. In the first
scenario, the information of BB1 and BB2 are transferred
with a probability 1; while the scenario does the same thing
with a probability 0.5. The difference changes the effective
exchange length (EEL) during crossover. EEL is defined as
the effective number of BBs of which the information is ex-
changed during crossover. Note that in a problem with m
BBs, the minimal EEL is 0 and the maximal EEL is m

2
be-

cause exchangingm′ BBs is the same as exchanging (m−m′)
BBs, where m′ > m

2
.

It is not difficult to calculate EEL for uniform crossover
with perfect BB information. Suppose that the problem has

m BBs. There is a probability of
Cm

0 +Cm
m

2m that the crossover
exchanges 0 BB (and m BBs), where Ca

b is the binomial co-
efficient of the order-b term in an order-a binomial or called
“a choose b”. For simplicity, we assume m is even. The EEL
can be then expressed as follows.

EELunif = 2
−m
hm
2

· Cm
m
2
+ Σ

m
2 −1

i=0 i · (Cm
i + Cm

m−i)
i
. (2)

EELunif can be reduced by the following three arithmetic
relations: (1) Ca

b = Ca
a−b, (2) b · Ca

b = a · Ca−1
b−1 , where

a, b > 0, and (3) Σa
i=0C

a
i = 2

i.

EELunif = 2−m
h�
2Σ

m
2

i=1i · Cm
i

�
− m

2
· Cm

m
2

i
= 2−m

h�
2Σ

m
2

i=1m · Cm−1
i−1

�
− m

2
· Cm

m
2

i
= 2−m

h�
mΣm−1

i=0 C
m−1
i

�− m
2
· Cm

m
2

i
.

=
m2m−1− m

2 Cm
m
2

2m

= m
2

�
1−

Cm
m
2

2m

�
. (3)

Consider the Stirling approximation [15], m! � √
2πm ·

mme−m. Cm
m
2
can be approximated as 2m

q
2

πm
. Therefore,

the EEL of uniform crossover can be approximated as

EELunif � m

2

 
1−

r
2

πm

!
. (4)

Unsurprisingly, for a large m, uniform crossover on av-
erage exchange m

2
BBs, which is the maximal information

exchange.
Consider a problem with only 4 BBs. If the linkage

model is perfect, the probability that crossover operator
exchanges {0, 1, 2, 3, 4} BBs is 1

24 {C4
0 , C

4
1 , C

4
2 , C

4
3 , C

4
4} =

1
16
{1, 4, 6, 4, 1} respectively (note that exchanging 3 BBs is
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Figure 3: Probabilities of a certain number of ex-
changed BBs for a problem with 10 BBs. Parame-
ter e is the number of false linkages in the linkage
model. EEL for ef = 0 is roughly 10/2=5, and that
for ef = 8 is roughly 10/8=1.25.

the same as exchanging 1 BB). The EEL is 0 · 2
16
+1 · 8

16
+2 ·

6
16
= 1.25. Now suppose that the linkage model mistakenly

links BB1 and BB2. If BB1 and BB2 are not exchanged,
the probability that {0, 1, 2, 3, 4} BBs are exchanged is
1
4
{1, 2, 1, 0, 0}; if BB1 and BB2 are exchanged, the proba-

bility that {0, 1, 2, 3, 4} BBs are exchanged is 1
4
{0, 0, 1, 2, 1}.

Therefore, to sum up, the probability that {0, 1, 2, 3, 4} BBs
are exchanged given 1 false linkage is 1

8
{1, 2, 2, 2, 1} respec-

tively. The EEL is reduced from 1.25 (perfect linkage model)
to 1.00 (1 false linkage).
When there are 2 false linkages, the calculation becomes

somewhat more complicated, because the linkage model
might have two linked chunks of two BBs, or might have
one big chunk of three BBs. The effect of false linkage for a
problem with 10 BBs is illustrated in Figure 3. The dashed
line represents e = 8. Note that (m − 2) is the maximal
number of false linkages which still yields information ex-
change. The m BBs become only one chunk when there are
(m− 1) concatenations, and hence no information exchange
is possible during crossover. When there are (m − 2) false
linkages for a problem with m BBs, the linkage model has
only two big chunks of BBs. With a probability 0.5, these
two chunks might be exchanged together (m BBs) or no ex-
change at all (0 BB). With a probability 0.5, exactly one
chunk is exchanged, and the effect is similar to two-point
crossover. The EEL is then roughly 1

2
m
4
= m

8
, where the m

4
comes from the EEL of two-point crossover.
The relationship between EEL and false linkage for a prob-

lem with 20 BBs is shown in figure 4. The EEL drops from
roughly m

2
= 10 to m

8
= 2.5 for no false linkage (ef = 0) to

maximal false linkage (ef = (m− 2) = 18).
To sum up, a perfect linkage model with uniform crossover

has an EEL of m
2
; and a nearly worst linkage model which

contains (m− 2) false linkages has an EEL of m
8
. The worst

linkage model with (m − 1) false linkages has only one big
chunk, and the GA does not work unless with a O(2�) pop-
ulation size (enumeration).
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Figure 4: Relationship between EEL and false link-
age count ef . The problem is composed of 20 BBs.

5. EFFECTIVE EXCHANGE LENGTH
AND CONVERGENCE TIME

This section investigates the relationship between EEL
and convergence time of GA. As shown in the previous sec-
tion, uniform crossover with exchange probability 0.5 on
average exchanges 0.5m BBs. This statement can be gen-
eralized for other exchange probabilities by examining the
nature of binomial distribution. The mean of a binomial
distribution is Ap, where A is the number of Bernoulli tri-
als and p is the probability that the Bernoulli trial gives a
true value. Although the calculation is somewhat different
(we treat exchanging (m − m′) is the same as exchanging
m′ BBs), it is not difficult to show that for large m, the
EEL of uniform crossover with exchange probability p is ap-
proximately mp by the similar derivations in the previous
section. Therefore, the effect of crossover with EEL η (call
it EEL-crossover) should be similar to uniform crossover
with exchange probability η

m
. The EEL-crossover simply

randomly chooses η BBs to exchange. Figure 5 illustrates
the similarity of these crossover operators. We can see that
EEL-crossover with crossover length η is similar to uniform
crossover with exchange probability η/m.
By assuming perfect mixing and infinite population size,

the following convergence time model has been developed [8,
16].

tconv =
cc
√
�

I
, (5)

where tconv is the convergence time, � is the problem size, I
is the selection intensity, and cc is a constant. Assuming the
order of BBs k is fixed, the problem size � is proportional
to the number of BBs m. In the derivations of Eq 5, bino-
mial distribution is assumed, i.e., if current population has
a proportion p of correct BBs, the variance of correct BBs
for each individual is

p
mp(1− p). Rabani, Rabinovich, and

Sinclair [11] derived bounds of the relaxation time that uni-
form crossover needs to make the population exactly random
as follows.

lnn

2 ln q−1
≤ τunif ≤ 2 lnn

ln q−1
, (6)

where q is the probability that two positions are not sep-
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Figure 5: Convergence time for different crossover
operators. EEL-crossover with crossover length η
has the roughly the same convergence time as uni-
form crossover with exchange probability η/m.

arated. In the case of uniform crossover with exchange
probability p, q = p2 + (1 − p)2. For the exchange prob-
ability reduced from 1

2
to 1

8
, the relaxation time increases

roughly by 2.8 times. Therefore, the distribution of correct
BBs can no longer be modeled as a binomial distribution.
The variance should be smaller than

p
mp(1− p), and that

makes GA converges more slowly. Followed by the notion of
facetwise modeling in [1], and empirical findings (figure 5),
Eq 5 still yields good approximation, but with a different
constant c′c = r · cc when uniform crossover probability is
not 0.5. We call parameter r the elongation factor. For m
varying from 10 to 50, the elongation factor varies only from
roughly 1.18 to 1.21. Therefore, the elongation factor is not
tightly related to m, and treating r as invariant to m should
give us a good-enough model to use.
From the previous section, we know that given an inaccu-

rate linkage model with ef errors of false linkage, the EEL
η is reduced (η < m

2
). The effect of the uniform crossover

with a reduced EEL η is similar to the effect of the uni-
form crossover with exchange probability p = η

m
< 1

2
. Then

finally, it elongates the convergence time tconv = r·cc
√

m
I

.
Figure 6 shows the relationship between ef and tconv. It is
easily seen that η is a function of ef , and r is a function of
p � η

m
. Both relationships are non-linear and difficult to

model quantitatively. However, the qualitative model pro-
vides a way to compare the impacts of the error of detection
failure versus the error of false linkage.

Recall that tconv(ed) =
1

1− ed
2I

√
m

π
√

m
I

for the detection fail-

ure error, where the elongation factor rd is
1

1− ed
2I

√
m

. The

quality of a linkage model can be defined as the probability
that the model produces an error (either detection failure
or false linkage). We can calculate when one type of error
dominates the other as follows.

rf < rd
⇒ rf <

1

1− ed
2I

√
m

⇒ m < 1�
2I

�
1− 1

rf

��2 ed
2. (7)
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Figure 6: The relationship between convergence
time and false linkage. The testing problem con-
tains 20 BBs.

Recall that rf varies only from 1 to 1.2 for ef from 0
to (m − 2). The term 1�

2I

�
1− 1

rf

��2 can be treated like a

constant over wide range of m. Call the constant cs. In
addition, assume that the linkage model has equal proba-
bilities p to produce detection failure or false linkage errors.
The quality Q of the linkage model can be then defined as
(1− p). Given that the number of detection failures ranges
from 0 to m, Q can be approximated as 1−p � 1− ed

m
. The

above inequality relation can be then re-expressed as

m >
1

cs(1−Q)2 . (8)

Given the empirical findings that selection intensity I �
0.5 for problems composed of trap5 functions, a control map
can be drawn (figure 7). In most problems, the detection
failure error affects the convergence time more severely than
false linkage. The error of false linkage dominates only when
the problem size is small and the linkage model is very ac-
curate.
To sum up, two important things can be learned from the

qualitative model. First, the error of false linkage results in
a longer convergence time, and for a specific ef , the elonga-
tion factor rf is a constant independent of the problem size.
Second, for many problems, the linkage learning algorithm
should put more efforts on eliminating detection failure than
false linkage. This argument is used to develop the a recom-
bination strategy for problems with overlapping BBs in the
next section.

6. RECOMBINATION STRATEGY FOR
PROBLEMS WITH OVERLAPPING BBS

Given the argument that the detection failure error elon-
gates the convergence time much more severe than false link-
age, the recombination strategy is proposed as follows: Treat
the whole problem as two big BB chunks. If we want to in-
crease the mixing rate and hence increase the number of
cross sites, the number of BB disruptions would grow very
fast. Therefore, the recombination strategy when dealing
with a group of overlapping BBs is as follows:
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Figure 7: The control map of the two types of errors,
where rd is the elongation factor of detection failure,
and rf is that of false linkage. In most problems,
the detection failure error affects the convergence
time more severe than false linkage. The error of
false linkage dominates only when the problem size
is small and the linkage model is very accurate.

1. Perform BB identifying algorithm to capture the
overlapping topology.

2. Construct a graph G = (V,E) where the nodes are
BBs, and the edges are overlapping relations between
BBs. There is an edge between two BBs if and only if
the two BBs overlap.

3. Randomly choose two nodes n1 and n2. Then partition
the graph G into two subgraphs G1 = (V1, E1) and
G2 = (V2, E2) which satisfy the conditions: n1 ∈ V1,
n1 ∈ V1, and |E| − |E1| − |E2| is minimal.

In other words, the two chunks need to be chosen at random,
and the choice disrupts minimal number of overlapping BBs.
The results of the GA using the above recombination

strategy for the circularly overlapping problem is shown in
figure 8. The solid line is the GA convergence theory. The
dashed line considers only the effect of false linkage, and the
dotted line considers only the effect of detection failure. The
elongation factors rd and rf are empirically measured and
plotted in figure 9. Since ed = 2 is a constant, rd tends to
be 1 when m goes to infinity, and rf remains constant.
According to Yu and Goldberg [17], the elongation fac-

tor rd caused by detection failure can be approximated as�
1− cm−0.5

�−1
, where c is a constant decided by the se-

lection intensity, the number of misidentified BBs. We can
verify the above approximation by the following derivations.

tconv =
π
√

m
I
/
�
1− cm−0.5

�
(9)

⇒ cm−0.5 = 1− π
√

m
Itconv

(10)

⇒ c1 − 0.5 log(m) = log(1− π
√

m
Itconv

). (11)

(12)

If we plot log(m) versus log(1 − π
√

m
Itconv

), we should get a
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Figure 8: The convergence time using the proposed
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straight line with slope -0.5. Empirically, the slope is found
be roughly -0.45 (Figure 10), which validates the approxi-
mation.
Note that the above strategy seems similar to an ordinary

two-point crossover, but it has a significant difference. The
ordinary two-point crossover does not respect the concept
of linkage. It will succeed only for problems with tight link-
age. For problems with overlapping BBs and random link-
age, (1) if no BB-identification method is applied, the GA
will fail, and (2) if BBs are correctly identified but careless
crossover (which does not respect the overlapping topology,
e.g., a blind BB-wise uniform crossover), the GA will fail,
too. When dealing with overlapping BBs, crossover oper-
ators that respect both BBs and overlapping topology are
necessary for GA success. Finally, the strategy of splitting
the group of overlapping BBs into two chunks is only applied
to those overlapping BBs. If a problem contains overlapping
BBs and non-overlapping BBs, BB-wise uniform crossover
should be applied to non-overlapping BBs to achieve maxi-
mal mixing.

7. CONCLUSIONS
This paper systematically designs a recombination strat-

egy for problems with overlapping BBs. To achieve the goal,
the effect of false linkage on convergence time is investigated.
A linkage model with more false linkages causes a lower ef-
fective exchange length (EEL) during the crossover. The
reduced EEL has a similar effect as uniform crossover with
a lower exchange probability. With the results of the ear-
lier work [17], a qualitative convergence-time model for both
detection failure and false linkage is given. The elongation
factor of false linkage is constant in terms of the problem
size. The control map of the two types of error is given.
For most of the problems, the impact of detection failure
dominates that of false linkage. The error of false linkage
dominates only when the problem size is small and the link-
age model is very accurate. Finally, the convergence-time
model is then used to develop a recombination strategy for
problems with overlapping BBs.
In this paper, only a qualitative model of the convergence

time is derived. To be able to derive a quantitative model,
a better understanding of the relationship between mixing
rate and convergence time is needed, which is one of the
highlighted issues in GA research area. Once such a model
of mixing rate versus convergence time is done, it can be
plugged into this framework, and all the arguments should
still be valid.
Combined with the earlier work [17], this paper investi-

gates how an inaccurate linkage model affects GA conver-
gence. Nevertheless, it is known that BB disruptions and
BB mixing also affect the GA population sizing [13]. To be
able to calculate the total number of function evaluations,
we need to investigate the relationship between GA popula-
tion sizing and the two types of error: detection failure and
false linkage.
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