
Automatic Feature Selection in Neuroevolution

Shimon Whiteson
Dept. of Computer Sciences
University of Texas at Austin
1 University Station, C0500

Austin, TX 78712-0233

shimon@cs.utexas.edu

Peter Stone
Dept. of Computer Sciences
University of Texas at Austin
1 University Station, C0500

Austin, TX 78712-0233

pstone@cs.utexas.edu

Kenneth O. Stanley
Dept. of Computer Sciences
University of Texas at Austin
1 University Station, C0500

Austin, TX 78712-0233

kstanley@cs.utexas.edu

Risto Miikkulainen
Dept. of Computer Sciences
University of Texas at Austin
1 University Station, C0500

Austin, TX 78712-0233

risto@cs.utexas.edu

Nate Kohl
Dept. of Computer Sciences
University of Texas at Austin
1 University Station, C0500

Austin, TX 78712-0233

nate@cs.utexas.edu

ABSTRACT
Feature selection is the process of finding the set of inputs
to a machine learning algorithm that will yield the best
performance. Developing a way to solve this problem au-
tomatically would make current machine learning methods
much more useful. Previous efforts to automate feature se-
lection rely on expensive meta-learning or are applicable
only when labeled training data is available. This paper
presents a novel method called FS-NEAT which extends the
NEAT neuroevolution method to automatically determine
an appropriate set of inputs for the networks it evolves. By
learning the network’s inputs, topology, and weights simul-
taneously, FS-NEAT addresses the feature selection problem
without relying on meta-learning or labeled data. Initial ex-
periments in an autonomous car racing simulation demon-
strate that FS-NEAT can learn better and faster than reg-
ular NEAT. In addition, the networks it evolves are smaller
and require fewer inputs. Furthermore, FS-NEAT’s perfor-
mance remains robust even as the feature selection task it
faces is made increasingly difficult.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Connectionism
and neural nets

General Terms
Experimentation

Keywords
genetic algorithms, neural networks, feature selection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

1. INTRODUCTION
To implement a successful machine learning system, hu-

man designers must make several preliminary decisions. For
example, setup usually requires choosing a representation
for the solution, selecting relevant inputs, and setting all
the parameters associated with the given learning method.
Performing these tasks manually is time-consuming and may
yield sub-optimal results if not done correctly. Hence, one
important goal of machine learning research is to develop
techniques that shift some of the burden off the human de-
signer and place it onto the learning algorithm itself. Doing
so will reduce the time and expertise required to use machine
learning techniques and greatly broaden the set of tasks to
which they can be practically applied.

One of the decisions that is usually addressed manually is
the feature selection problem. In many real world tasks, the
set of potential inputs, or features, that can be fed to the
learning algorithm is quite large. Feature selection is the
process of determining which subset of these inputs should
be included to generate the best performance. Doing so
correctly can be critical to the success of a machine learning
system. If any important features are excluded, it may be
impossible to find an optimal policy. On the other hand,
including superfluous inputs can also impede learning. Since
each input adds at least one dimension to the search space,
even a few extraneous features can be detrimental. However,
the consequences of sub-optimal feature selection are not
limited just to the learner’s performance. If adding inputs
costs money (e.g. putting more sensors on a robot), then
pruning out unnecessary features can be vital.

Feature selection can often be performed by a human with
the appropriate domain expertise. However, in some do-
mains, no one has the requisite knowledge and even when
experts do exist, employing them can be expensive and time-
consuming. In such domains, automatic feature selection is
necessary. Langley [6] divides feature selection techniques
into two categories: filters and wrappers. Filters [1, 5] ana-
lyze the value of a feature set without regard to the learning
algorithm that will use those features. Instead, they rely on
labeled data. The data is analyzed to determine which fea-

1225



tures are most useful in distinguishing between the category
labels. This approach has been successful but works only in
supervised learning tasks. In reinforcement learning scenar-
ios, when no labeled data is available, filtering techniques
are not applicable.

By contrast, wrappers [7, 8] test a feature set by applying
it to the given learning algorithm and observing its perfor-
mance. Labeled examples are not necessary so this approach
can be used in reinforcement learning tasks as well. How-
ever, it requires a meta-learner to search through the space
of feature sets; evaluating any point in that space requires an
entire machine learning run of its own. For most real-world
problems, this approach is computationally infeasible.

Feature Selective NeuroEvolution of Augmenting Topolo-
gies (FS-NEAT) is a new learning method that avoids such
limitations by incorporating the feature selection problem
into the learning task. FS-NEAT searches for good feature
sets at the same time as it trains networks that receive those
features as input. Hence, it does not depend on human ex-
pertise, labeled data sets, or meta-learning.

FS-NEAT is based on the NeuroEvolution of Augmenting
Topologies (NEAT) algorithm [10], which evolves both the
topology and weights of a neural network. NEAT already
goes a long way towards reducing the burden on human de-
signers. While most neuroevolution methods [14] evolve only
the weights of a network with fixed topology, NEAT discov-
ers an appropriate topology automatically. This approach
is highly effective: NEAT outperforms other neuroevolution
methods on many difficult reinforcement learning tasks [10,
11]. FS-NEAT goes one step further than regular NEAT
by learning the network’s inputs too. Using evolution, it
automatically and simultaneously determines the network’s
inputs, topology, and weights. Harvey et al. [4] also used
neuroevolution to find useful subsets of available features
though, unlike FS-NEAT, their system still requires a hu-
man to specify the size of that subset in advance. In [13],
an earlier implementation of FS-NEAT was presented along
with initial results on a contrived supervised learning prob-
lem. This article presents a simpler implementation and
results on a reinforcement learning problem.

A critical feature of NEAT is that it begins with net-
works of minimal topology (i.e. with no hidden nodes and
all inputs connected directly to the outputs). As evolution
proceeds, NEAT adds links and hidden nodes through muta-
tion. Since only those additions that improve performance
are likely to be retained, it tends to find small networks
without superfluous structure. Starting minimally also helps
NEAT learn more quickly. When networks in its population
are small, it is optimizing over a lower-dimensional search
space; it jumps to a larger space only when performance in
the smaller one stagnates.

FS-NEAT further exploits this same premise. It begins
with a population of networks that are even smaller than
in regular NEAT. These networks contain no connections at
all (save those added by an initial mutation step) and are
little more than pools of inputs and outputs. Evolution then
proceeds as in regular NEAT, with hidden nodes and links
added through mutation. Feature selection occurs implicitly
as only those links emerging from useful inputs will tend to
survive.

In addition to introducing this novel method, this paper
presents experiments comparing FS-NEAT to regular NEAT
in a challenging reinforcement learning domain: an autono-

mous car racing simulation called RARS [12]. The results
of these experiments confirm that when some of the avail-
able inputs are redundant or irrelevant, FS-NEAT can learn
better and faster than regular NEAT. In addition, these re-
sults demonstrate that the networks FS-NEAT evolves are
smaller and require fewer inputs.

The remainder of this paper is organized as follows. Sec-
tion 2 explains the NEAT algorithm and the modifications
made to it to yield FS-NEAT. Section 3 introduces the
RARS domain and presents the results of our experiments
comparing FS-NEAT to regular NEAT. Section 4 discusses
the implications of these results and Section 5 outlines some
opportunities for future work.

2. METHOD
This section provides background on the NEAT algorithm.

It also introduces FS-NEAT, our novel modification to the
original NEAT method.

2.1 NeuroEvolution of Augmenting Topologies
In most domains, the optimal topology and complexity

for a neural network is unknown. With most neuroevolution
techniques [14], a human designer must try to guess it. Since
the topology determines the size of the search space, the con-
sequences of guessing wrong can be severe. Searching in too
large a space is intractable while searching in too small a
space limits solution quality. NeuroEvolution of Augment-
ing Topologies (NEAT) [10] is a neuroevolution technique
that does not require a designer to choose a topology in ad-
vance. Instead, it automatically evolves the topology to fit
the complexity of the problem. NEAT combines the usual
search for appropriate network weights with complexifica-
tion of the network structure.

This approach is highly effective: NEAT outperforms other
neuroevolution methods, e.g. on the benchmark double pole
balancing task [10]. In addition, because NEAT starts with
simple networks and expands the search space only when
beneficial, it is able to find significantly more sophisticated
controllers than fixed-topology evolution, as demonstrated
in a robotic strategy-learning domain [11]. These proper-
ties make NEAT an attractive method for evolving neural
networks.

In this section, the NEAT method is briefly reviewed;
a more comprehensive description of the NEAT method is
given in [10].

2.1.1 Genetic Encoding with Historical Markings

Evolving network structure requires a flexible genetic en-
coding. Each genome in NEAT includes a list of connec-
tion genes, each of which refers to two node genes being
connected. Each connection gene specifies the in-node, the
out-node, the weight of the connection, whether or not the
connection gene is expressed (an enable bit), and an inno-
vation number, which allows NEAT to find corresponding
genes during crossover.

Mutations in NEAT can change both connection weights
and network structure. Connection weights mutate as in
any neuroevolution system whereas structural changes are
caused by two special mutation operators that allow com-
plexity to increase. Figure 1 shows one of these operators,
which adds a new hidden node to the network. Figure 2
shows the other operator, which adds a new link to the net-

1226



work. Through these mutations, genomes of varying sizes
are created, sometimes with completely different connec-
tions specified at the same positions.

Inputs

Nodes
Hidden

Outputs

Mutation

Add Node

Figure 1: An example of NEAT’s mutation operator
for adding hidden nodes to a network. A new hidden
node, shown on the right, is added to the network,
splitting an existing link in two.

Inputs

Nodes
Hidden

Outputs

Mutation

Add Link

Figure 2: An example of NEAT’s mutation opera-
tor for adding links to a network. The new link,
shown with a thicker black line, is added between
two existing nodes.

To perform crossover, the system must be able to tell
which genes match up between any individuals in the pop-
ulation. For this purpose, NEAT keeps track of the his-
torical origin of every gene. Whenever a new gene appears
(through structural mutation), a global innovation number
is incremented and assigned to that gene. The innovation
numbers represent a chronology of every gene in the system.
Whenever these genomes crossover, innovation numbers on
inherited genes are preserved. Thus, the historical origin of
every gene in the system is known throughout evolution.

Through innovation numbers, the system knows exactly
which genes match up with which. Genes that do not match
are either disjoint or excess, depending on whether they oc-
cur within or outside the range of the other parent’s in-
novation numbers. When crossing over, the genes in both
genomes with the same innovation numbers are lined up.
Unmatched genes are inherited from the more fit parent, or
if they are equally fit, from both parents randomly.

Historical markings allow NEAT to perform crossover with-
out expensive topological analysis. Genomes of different or-
ganizations and sizes stay compatible throughout evolution,
and the problem of matching different topologies [9] is es-
sentially avoided.

2.1.2 Speciation
In many cases, adding new structure to a network ini-

tially reduces its fitness. However, NEAT speciates the pop-
ulation, so that individuals compete primarily within their
own niches instead of with the population at large. This

way, topological innovations are protected and have time to
optimize their structure before they have to compete with
other niches in the population.

Historical markings make it possible for the system to
divide the population into species based on topological sim-
ilarity. The distance δ between two network encodings is a
simple linear combination of the number of excess (E) and
disjoint (D) genes, as well as the average weight differences
of matching genes (W ):

δ =
c1E

N
+

c2D

N
+ c3 · W. (1)

The coefficients c1, c2, and c3 adjust the importance of
the three factors, and the factor N , the number of genes in
the larger genome, normalizes for genome size. Genomes are
tested one at a time; if a genome’s distance to a randomly
chosen member of the species is less than δt, a compatibility
threshold, it is placed into this species. Each genome is
placed into the first species where this condition is satisfied,
so that no genome is in more than one species.

The reproduction mechanism for NEAT is explicit fitness
sharing [2], where organisms in the same species must share
the fitness of their niche, preventing any one species from
taking over the population.

2.1.3 Minimizing Dimensionality
Unlike other systems that evolve network topologies and

weights [3, 14] NEAT begins with a uniform population of
simple networks with no hidden nodes and inputs connected
directly to outputs. New structure is introduced incremen-
tally via the two special mutation operators described above.
Since only those additions that improve performance are
likely to be retained, it tends to discover small networks
without superfluous structure. Starting minimally also helps
NEAT learn more quickly. When networks in its population
are small, it is optimizing over a lower-dimensional search
space; it jumps to a larger space only when performance in
the smaller one stagnates.

2.2 Feature Selective NeuroEvolution of
Augmenting Topologies

NEAT’s initial networks are small but not as small as pos-
sible. The structure of the initial networks, in which each
input is connected directly to each output, reflects an as-
sumption that all the available inputs are useful and should
be connected to the rest of the network. In domains where
the input set has been selected by a human expert, this as-
sumption is reasonable. However, in many domains no such
expert is available and the input set may contain many re-
dundant or irrelevant features. In such cases, the initial con-
nections used in regular NEAT can significantly harm per-
formance by unnecessarily increasing the size of the search
space.

FS-NEAT is an extension to NEAT that attempts to solve
this problem by starting even more minimally: with net-
works having almost no links at all. As in regular NEAT,
hidden nodes and links are added through mutation and only
those additions that aid performance are likely to survive.
Hence, FS-NEAT begins in even lower dimensional spaces
than regular NEAT and feature selection occurs implicitly:
only those links emerging from useful inputs will tend to
survive.

1227



Exactly how should we initialize the population in order
to implement this idea? The most minimal initial topol-
ogy possible would contain no hidden nodes or links at all.
However, such networks would not generate any output. Ob-
viously, spending a generation to evaluate a population of
such networks would be wasteful. Therefore, for each net-
work in the initial population, FS-NEAT randomly selects
an input and an output and adds a link connecting them.
Figure 3 compares the initial network topologies of regular
NEAT and FS-NEAT. After the initial population is gener-
ated, FS-NEAT behaves exactly like regular NEAT[10].

In most tasks, FS-NEAT’s initial networks will lack the
structure necessary to perform well. However, some will
likely connect a relevant input to an output in a useful way
and hence outperform their peers. Such early distinctions
provide an initial gradient to the evolutionary search. Com-
plexification then drives that search towards networks that
use the most appropriate inputs, topology and weights.

Inputs

Outputs

Regular NEAT FS−NEAT

Figure 3: Examples of initial network topologies
for both regular NEAT and FS-NEAT. In regular
NEAT, networks in the initial population have all in-
puts connected directly to all outputs. In FS-NEAT,
those networks have one link connecting a randomly
selected input and output.

Since FS-NEAT incorporates the feature selection prob-
lem into the learning task itself, it avoids the need for ex-
pensive meta-learners used by wrappers. In addition, since
it does not rely on labeled data like filters do, it can be ap-
plied to reinforcement learning problems. The next section
describes one such application.

3. EXPERIMENTS
The experiments presented in this paper were conducted

in the Robot Auto Racing Simulator (RARS) [12], a Java-
based program that uses a two-dimensional model to sim-
ulate cars racing around a track. The simulation is quite
realistic and takes into account effects such as skidding and
traction. In addition, RARS models the noise that occurs in
real-world effectors. For example, the coefficient of friction
is stochastic such that the effect of trying to accelerate is not
entirely predictable. The goal in this domain is to develop a
controller that can race an automobile around the track as
quickly as possible without damaging it.

The RARS simulator offers a plethora of raw data about
the car’s immediate environment. This data was consoli-
dated into a rangefinder system, shown in Figure 4, that
projects rays at different angles relative to the car’s current
heading. These rays measure the distance from the car to

the edge of the road, which allows the agent to estimate its
position in the road and perceive upcoming curves. This sen-
sor system creates a very typical feature selection problem.
How many rangefinders does the controller need in order to
drive the car most effectively? If too few are included, the
networks NEAT evolves will not have enough information
to master the task. If too many are included, NEAT will
be forced to search in an unnecessarily large search space,
which may substantially reduce its performance.

To test the ability of FS-NEAT to automatically address
this problem, the networks are provided with a set of 80
rangefinders (evenly distributed across the 180 degree range
in front of the car), which we expect to be more than neces-
sary. In addition, another 80 irrelevant inputs are included,
each of which supplies random numbers drawn uniformly
from the range [0, 1]. Finally, there is one input specifying
the vehicle’s current velocity and one bias unit, for a total of
162 inputs. If FS-NEAT can automatically discover a useful
subset of these inputs, it should outperform regular NEAT,
which is forced to use all 162.

Figure 4: The range finder sensor system in RARS.
A set of rays (seven in this case) are projected at
different angles to allow the agent to estimate its
position in the road and perceive upcoming curves.

In addition to these inputs, the networks have two out-
puts: one specifying the agent’s desired speed and the other
specifying the agent’s desired heading. In our experiments, a
trial consists of 2000 timesteps on the track called “clkwis,”
shown in Figure 5. This track was selected because it is
small enough to allow efficient evaluations but still captures
a wide range of driving challenges (i.e. straight sections,
turns, and an S-shaped curve). During each timestep, input
from the environment is fed into the network controlling the
car. The network is then activated once and the values of the
outputs are used to adjust the vehicle’s heading and speed.
At the end of each trial a score is computed as S = 2d − b,
where d is the distance traveled and b is a damage penalty
computed internally by RARS as a function of the time the
vehicle spends off the track. Since the simulation is noisy,
each fitness evaluation in NEAT consists of 10 trials; the
agent’s fitness is the average of the scores received in these
trials. See the appendix for details about the NEAT param-
eter settings used in these experiments.

Using this setup, we performed experiments comparing
regular NEAT to FS-NEAT. For each method, we conducted
10 runs, each of which ran for 200 generations. The results
are summarized in Figure 6. Each line in the graph repre-
sents the score received by the best network from each gen-
eration, averaged over all 10 runs. The graph demonstrates
that when some of the available inputs are redundant or
irrelevant, FS-NEAT can learn better networks and learn

1228



Figure 5: The “clkwis” track used in the FS-NEAT
experiments. It captures a wide range of driving
challenges (i.e. straight sections, turns, and an S-
shaped curve).

them faster than regular NEAT. In this graph and all those
presented below, a Student’s t-test verified, with 95% con-
fidence, the statistical significance of the difference between
FS-NEAT and regular NEAT.

Figure 7 shows, for the same experiments, how many in-
puts have at least one connection emerging from them in
the best network of each generation. Regular NEAT always
uses all 162 inputs but FS-NEAT finds better networks that
use only a small fraction of them. In fact, when FS-NEAT’s
performance begins to plateau around generation 65, its per-
formance is already 17.5% better than regular NEAT ever
achieves, at which point its best network has on average only
10% as many connected inputs. FS-NEAT’s performance
continues to creep up slowly after generation 65, improv-
ing another 4.6% by generation 200, at which point its best
network has on average 22.9% as many inputs as regular
NEAT.

Figure 8 shows, for the same experiments, the size of the
best network from each generation, where size is simply the
total number of nodes (only connected inputs are counted)
plus the total number of links. This graph demonstrates
that FS-NEAT evolves substantially smaller networks than
regular NEAT does. When FS-NEAT’s performance begins
to plateau around generation 65, its best network is on av-
erage only 9.7% as large as regular NEAT’s. When the runs
complete at generation 200, FS-NEAT’s best network is on
average only 18.5% as large as regular NEAT’s.

In these experiments, FS-NEAT found high performing
networks that use only 16 inputs, which implies that the
feature set we supplied to the learners, with 80 rangefinders,
was much larger than needed. How would the performance
of FS-NEAT relative to regular NEAT change if the initial
feature set were closer to ideal? How many redundant and ir-
relevant features must be present before FS-NEAT provides
a significant advantage? Does FS-NEAT’s performance im-
provement continue to increase as the feature set gets larger?
To address these questions, we conducted several additional
experiments with feature sets of different sizes. These ex-
periments use the setup described above but, instead of 80
rangefinders, they include 5, 20, 40, or 160 rangefinders.
In each case, the rangefinders are matched with an equal

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 50 100 150 200

S
co

re
s

Generations

Score of Best Net Per Generation

FS-NEAT
Regular NEAT

Figure 6: A comparison of the performance of regu-
lar NEAT and FS-NEAT in the RARS domain with
162 available inputs, 80 of which are irrelevant to the
task. Each line in the graph represents the score re-
ceived by the best network from each generation,
averaged over all 10 runs. By learning appropri-
ate feature sets, FS-NEAT learns significantly bet-
ter networks and learns them faster than regular
NEAT.

number of irrelevant inputs. Adding the velocity and bias
inputs yields initial feature sets of size 12, 42, 82, and 322.
For each size and for each method, we conducted 10 runs,
each of which ran for 200 generations.

Figure 9 summarizes the results of these experiments by
showing, for each method and feature set size, the perfor-
mance of the best network in the entire run, averaged over
all ten runs. Even when the initial feature set contains only
12 inputs, FS-NEAT still performs better. As the size of the
feature set grows, the performance of regular NEAT deteri-
orates. By contrast, the performance of FS-NEAT remains
nearly constant even as the feature selection task it faces
becomes ever more difficult.

Figure 10 compares the number of connected inputs in
the best network in the entire run, averaged over all ten
runs. Regular NEAT always uses all available inputs while
FS-NEAT learns to use much smaller subsets. Even as the
size of the feature set grows, the number of inputs used by
FS-NEAT’s best networks stays nearly constant. Similarly,
Figure 11 compares the sizes of these same networks. The
size of regular NEAT’s best networks increases linearly with
respect to the number of available features, whereas FS-
NEAT’s best networks stay nearly constant in size. There-
fore, FS-NEAT consistently uses features sets with many
fewer extraneous inputs than regular NEAT and, in so do-
ing, finds better solutions faster.

4. DISCUSSION
The empirical results presented in this paper demonstrate

that when some of the available inputs are redundant or
irrelevant, FS-NEAT can learn better networks and learn
them faster than regular NEAT. In addition, the networks
it learns are smaller and use fewer inputs. These results are
consistent across feature sets of different sizes.

1229



0

20

40

60

80

100

120

140

160

180

0 50 100 150 200

C
on

ne
ct

ed
 In

pu
ts

Generations

Connected Inputs of Best Net Per Generation

FS-NEAT
Regular NEAT

Figure 7: A comparison of the number of inputs
used by regular NEAT and FS-NEAT in the RARS
domain with 162 available inputs. Each line in the
graph represents the number of inputs with at least
one connection emerging from them in the best net-
work of each generation. Regular NEAT always uses
all 162 inputs but FS-NEAT evolves better networks
that uses significantly fewer of them.

One interesting question raised by these results is why
the size and number of inputs used by FS-NEAT do not
plateau. For example, Figure 6 shows that performance im-
provements mostly level off by generation 65. However, Fig-
ures 7 and 8 show that the size and number of inputs used by
FS-NEAT’s best networks continue to grow linearly through
generation 200. Shouldn’t we expect them to plateau also
once the “right” size has been found? Counterintuitively,
the answer is no. The goal of both NEAT and FS-NEAT
is to determine the right complexity to solve a given task.
Hence, when performance at a certain complexity plateaus,
these algorithms proceed to explore at higher complexities.
In these experiments, that exploration pays few dividends
after generation 65.

Nonetheless, even given such exploration, we would still
expect to see size plateau if there were a strong selective
pressure against larger networks since none of these net-
works would likely become generation champions. The fact
that they do implies that FS-NEAT is not completely in-
tolerant of redundant and irrelevant inputs. This behavior
makes sense because the presence of such inputs may not be
harmful if, for example, NEAT can learn to set the weights
emerging from them close to zero. In this respect, FS-NEAT
behaves exactly as we would wish: it selects against large
networks only when their size presents a significant disad-
vantage to the learner.

In evolutionary search, it is critical that the fitness of the
initial population have some variance: unless some individu-
als are more promising than others, progress is unlikely. This
issue is of particular concern in FS-NEAT since its initial
population consists of degenerate networks that are almost
completely disconnected. While the experiments presented
in this paper verify that FS-NEAT consistently finds an ini-
tial gradient for learning, those experiments tested only one

0

100

200

300

400

500

600

700

800

0 50 100 150 200

S
iz

es

Generations

Size of Best Net Per Generation

FS-NEAT
Regular NEAT

Figure 8: A comparison of the size of the networks
evolved by regular NEAT and FS-NEAT in the
RARS domain with 162 available inputs. Each line
in the graph represents the number of nodes (only
connected inputs are counted) plus the number of
links in the best network of each generation. FS-
NEAT evolves significantly smaller networks than
regular NEAT does.

population size: 100. We wondered if the relative perfor-
mance of FS-NEAT would deteriorate for smaller popula-
tions since the probability of finding an initial promising net-
work would decrease. However, this problem does not occur
in the RARS domain. In fact, preliminary experiments with
different population sizes indicate that both regular NEAT
and FS-NEAT perform robustly with populations as small
as 25 and that FS-NEAT retains its substantial advantage
over regular NEAT. Hence, at least in RARS, FS-NEAT’s
smaller initial networks seem more likely to point evolution
in the right direction.

The most revealing test of FS-NEAT’s robustness is how
its performance changes when the size of the initial feature
set increases. As this set gets larger, feature selection be-
comes more important, as confirmed by the decline of reg-
ular NEAT’s performance in Figure 9. FS-NEAT’s perfor-
mance, by contrast, does not decline at all. Most strikingly,
the size and number of inputs used by FS-NEAT’s best net-
works remains approximately constant across different fea-
ture set sizes, whereas regular NEAT’s networks grow ever
larger. Together, these results suggest that the efficacy of
FS-NEAT scales well to large feature selection problems.

5. FUTURE WORK
An important question that this paper does not address is

how the effects of irrelevant inputs might differ from those of
redundant inputs. The experiments presented in this paper
study these two types of inputs together to ensure that FS-
NEAT faces the challenges of both. However, studying them
separately would help tease apart their differences. Prelim-
inary experiments suggest that, in the RARS domain, irrel-
evant features are more damaging than redundant ones.

In addition, this paper’s experiments always add nodes
and links to the networks at a rate that remains constant
throughout each run. However, in most problems, this be-

1230



14000

15000

16000

17000

18000

19000

20000

21000

0 50 100 150 200 250 300 350

S
co

re
s

Number of Available Inputs

Score of Best Net Per Run

FS-NEAT
Regular NEAT

Figure 9: A comparison of the performance of reg-
ular NEAT and FS-NEAT across feature sets of dif-
ferent sizes. Each line in the graph represents the
score received by the best network in the entire run,
averaged over all 10 runs. The performance of regu-
lar NEAT gets significantly worse as the feature set
gets larger whereas the performance of FS-NEAT
stays nearly constant.

havior is probably not optimal. Intuitively, such mutations
are more likely to be helpful early in evolution, when most
networks lack the topology and input connections necessary
to solve the task. Later in the search, when good struc-
tures have already been found and need only fine-tuning,
structural mutations are less likely to improve performance.
Hence, FS-NEAT could be considerably improved by plac-
ing these mutations rates on an annealing schedule such that
they decay over time. Of course, regular NEAT could also
benefit from such a modification. However, since its initial
networks already have some connections, the change in op-
timal mutation rates over time is probably less pronounced.

Furthermore, the mutation operators that add new struc-
ture are not balanced in any way by mutations that remove
structure. Despite NEAT’s focus on finding small networks,
this may result in some network bloating unless there is
strong selective pressure against large networks. Such bloat-
ing could potentially be reduced by adding new mutation
operators that remove nodes and links from the networks.
Then, networks would increase in size only when there is
significant selective pressure favoring larger networks. This
could be extremely useful in domains where minimizing net-
work size is important even when it does not improve perfor-
mance. For example, if the networks are to be implemented
in hardware, minimizing size may be a critical factor. In
addition, if we are preparing controllers for real robots, us-
ing the fewest possible inputs can save money on physical
sensors.

In future work, we plan to implement and test the modifi-
cations mentioned above. We also intend to apply FS-NEAT
to additional challenging reinforcement learning problems to
further establish the scope of its efficacy.

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

C
on

ne
ct

ed
 In

pu
ts

Number of Available Inputs

Connected Inputs of Best Net Per Run

FS-NEAT
Regular NEAT

Figure 10: A comparison of the number of connected
inputs in regular NEAT and FS-NEAT across fea-
ture sets of different sizes. Each line in the graph
represents the number of inputs with at least one
connection in the best network of the entire run,
averaged over all 10 runs. Regular NEAT always
uses all available inputs while FS-NEAT learns to
use significantly smaller subsets.

6. CONCLUSION
The primary contribution of this paper is FS-NEAT, a

novel extension to NEAT which enables it to perform auto-
matic feature selection. Unlike other feature selection meth-
ods, FS-NEAT does not rely on expensive meta-learning or
labeled data. Empirical results in a challenging autonomous
car racing domain demonstrate that when some of the avail-
able inputs are redundant or irrelevant, FS-NEAT can learn
better networks and learn them faster than regular NEAT.
In addition, the networks it discovers are smaller and use
fewer inputs. Experiments on initial feature sets of different
sizes confirm that FS-NEAT’s performance is robust even
as the feature selection problem it faces grows increasingly
difficult. By reducing the need for human experts to manu-
ally select appropriate features, we hope that FS-NEAT will
increase the set of tasks to which the NEAT method can be
practically applied.

Acknowledgments
This research is supported in part by a grant from Toyota
USA, NSF CAREER award IIS-0237699, and an IBM fac-
ulty award.

APPENDIX

A. NEAT AND FS-NEAT SYSTEM
PARAMETERS

The population size was 100. Each fitness evaluation re-
quired 10 trials, yielding 1000 trials per generation. The
coefficients for measuring compatibility were c1 = 1.0, c2 =
1.0, and c3 = 3.0. The compatibility distance was δt = 3.0.
The champion of each species with more than five networks
was copied into the next generation unchanged. The inter-

1231



0

200

400

600

800

1000

1200

1400

0 50 100 150 200 250 300 350

S
iz

e

Number of Available Inputs

Size of Best Net Per Run

FS-NEAT
Regular NEAT

Figure 11: A comparison of network size in regular
NEAT and FS-NEAT across feature sets of different
sizes. Each line in the graph represents the size of
the best network of the entire run, averaged over
all 10 runs. Regular NEAT’s best networks increase
in size significantly as the number of available fea-
tures grows, whereas FS-NEAT’s best networks stay
nearly constant in size.

species mating rate was 0.05. The probability of adding a
new node was 0.02 and the probability of a new link muta-
tion was 0.1.

B. REFERENCES
[1] B. V. Bonnlander and A. S. Weigend. Selecting input

variables using mutual information and nonparametric
density estimation. In Proceedings of the 1994
International Symposium on Artificial Neural
Networks (ISANN’94), pages 42–50, Tainan, Taiwan,
1994.

[2] D. E. Goldberg and J. Richardson. Genetic algorithms
with sharing for multimodal function optimization. In
Proceedings of the Second International Conference on
Genetic Algorithms, pages 148–154, 1987.

[3] F. Gruau, D. Whitley, and L. Pyeatt. A comparison
between cellular encoding and direct encoding for
genetic neural networks. In J. R. Koza, D. E.
Goldberg, D. B. Fogel, and R. L. Riolo, editors,
Genetic Programming 1996: Proceedings of the First
Annual Conference, pages 81–89. MIT Press, 1996.

[4] P. R. Harvey, D. M. Booth, and J. F. Boyce. Evolving
the mapping between input neurons and multi-source
imagery. In Proceedings of the 2002 Congress on
Evolutionary Computation, pages 1878–1883, 2002.

[5] K. Kira and L. Rendell. A practical approach to
feature selection. In Proceedings of the Tenth
International Conference on Machine Learning,
Amherst, Massachusetts, 1992. Morgan Kaufmann.

[6] P. Langley. Selection of relevant features in machine
learning. In Proceedings of AAAI Fall Symposium on
Relevance, 1994.

[7] P. M. Narendra and K. Fukunaga. A branch and
bound algorithm for feature subset selection. IEEE
Transactions on Computers, 26:917–922, 1977.

[8] J. Novovivova, P. Pudil, and J. Kittler. Floating
search methods in feature selection. Pattern
Recognition Letters, 15:1119–1125, 1994.

[9] N. J. Radcliffe. Genetic set recombination and its
application to neural network topology optimization.
Neural computing and applications, 1(1):67–90, 1993.

[10] K. O. Stanley and R. Miikkulainen. Evolving neural
networks through augmenting topologies. Evolutionary
Computation, 10(2):99–127, 2002.

[11] K. O. Stanley and R. Miikkulainen. Competitive
coevolution through evolutionary complexification.
Journal of Artificial Intelligence Research, 21, 2004. In
press.

[12] M. E. Timin. The robot auto racing simulator, 1995.
http://rars.sourceforge.net.

[13] S. Whiteson, K. O. Stanley, and R. Miikkulainen.
Automatic feature selection in neuroevolution. In
GECCO 2004: Proceedings of the Genetic and
Evolutionary Computation Conference Workshop on
Self-Organization, July 2004.

[14] X. Yao. Evolving artificial neural networks.
Proceedings of the IEEE, 87(9):1423–1447, 1999.

1232


