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ABSTRACT 
Using a dynamic systems model for the Simple Genetic Algorithm 
due to Vose[1], we analyze the fixed point behavior of the model 
without crossover applied to functions of unitation.  Unitation 
functions are simplified fitness functions that reduce the search 
space into a smaller number of equivalence classes.  This 
reduction allows easier computation of fixed points.   We also 
create a dynamic systems model from a simple nondecreasing EA 
like the (1+1) EA and variants, then analyze this models on 
unitation classes. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]:Problem Solving, Control Methods, 
and Search – Genetic Algorithms. 

General Terms 
 Algorithms, Artificial Intelligence 

Keywords 
theory of evolutionary algorithms, infinite population models, 
unitation functions, fixed points, genetic algorithms. 

1. INTRODUCTION 
The Vose infinite population model [1] of simple genetic 
algorithms is a dynamic systems model that represents 
populations as a vector of proportions.  This vector has dimension 
s, where s is the size of the search space.  Each entry in the vector 
is the proportion of members in the global population that are 
represented by a given chromosome in the search space.  This 
representation allows utilization of techniques and theorems from 
the mathematical theory of dynamic systems to analyze the 
Genetic Algorithm (GA).   

This paper is restricted to examining a class of fitness functions 
called 'functions of unitation.'  These functions establish 
equivalence classes, allowing a reduction in the dimensionality of 
the corresponding Vose model.  The analysis will also be 
restricted to mutation-selection GAs with no crossover, elitism or 
other advanced techniques. 

Using the eigensystem of the mutation-only Vose model, fixed 
points of the mutation-selection GA can be found.  Fixed points 
are population vectors such that applying the GA to them results 
in the same population vector.  Fixed points are not the optimal 
points in the fitness landscape, they represent the expected long-
run distribution of a population for a GA given a large enough 
population.  A fixed point may or may not contain a significant 
proportion of the global optima of the fitness landscape. 

This paper is largely an extension of Rowe [4] that further 
explores the effect of mutation rates on fixed points.  We also 
reintroduce two simple variants of the (1+1) EA and model them 
using the same tools. The intent of this exploration is to lay the 
groundwork for studying how adaptive mutation schemes can be 
understood and designed. 

2.  THE VOSE DYNAMIC SYSTEMS 
MODEL 
The Vose infinite population model is largely the work of Michael 
Vose[1].  The intent of the model is to allow a mathematical 
analysis of the Simple Genetic Algorithm.  For our purposes, we 
define the Simple Genetic Algorithm as a GA with proportionate 
selection, bitwise mutation, and several standard crossover 
operators. 

2.1  Background 
The Vose model is a discrete dynamical system and is a kind of 
'map.'  Maps are discrete dynamic systems that translate an input 
to an output.  An example is the well-known Logistic Map [2].  
 

f(x) =λx(1-x)    {where λ ∈ ℝ ;  λ > 0 ; x ∈ ℝ } (1)
 

The Vose model translates the current population vector to the 
next population vector.  Iterating the map simulates the trajectory 
of the GA (in the limit of infinite population size), where the next 
population vector becomes the input to the next generation of the 
GA.  This forms a sequence of population vectors p1, p2 , p3 ,..., pk. 
This sequence is the trajectory of the GA model through the 
population space. 
 
The Vose model is a deterministic dynamical system.  For a 
sufficiently large population in a real GA, this model allows us to 
make fairly accurate predictions of the expected next population 
and the long term behavior of the population [3].  If the 
population is small, then the actual populations produced by the 
GA will have wide variability compared to the predicted 
population.  If the population is very large, then the actual 
population distributions produced by the GA should be close to 
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the predicted model for large number of generations [1].  Thus the 
Vose model is called an infinite population model. 

2.2  Theory 
The following section summarizes Rowe [3] as it applies to 
selection-mutation models of GAs. Given a binary genome of 
length d, the search space of the GA is of size s=2d.  To use the 
Vose model, we represent the population as a vector of 
proportions of length s, p = {p0,... ps-1} Each  pi is the proportion 
of membership in the population by the binary string i. 
 
For a 2-bit genome, a possible population vector is p = {0.1, 0.2, 
0.5, 0.2}.   This could represent a population of 10 individuals, 1 
copy of 00, 2 copies of 01, 5 copies of 10, and 2 copies of 11. 
Note that the population vectors have the simplex property.  Each 
component of the vector is in the range [0,1], and the sum of the 
components equals 1.  
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Next, the properties of the model for mutation-selection GAs are 
given.  The mutation-selection infinite population model is 
created as follows.  Operator G is defined by: 
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where µ(pt) is the average fitness of the population pt .  The s x s 
mutation matrix U is composed of the probabilities that a 
chromosome string j will mutate into string i.  Note that this U 
matrix is symmetric.  The probability a given bit in the 
chromosome string mutates to its complement state is q.  The s x s 
selection matrix S is a diagonal matrix consisting of fitness values 
along the diagonal and zeros elsewhere.  Dividing by µ(pt) 
implements proportionate selection. 
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From the theory we know these five properties of the US matrix 
[3].   
 
1. US is an irreducible, positive matrix, all entries are non-

negative. 
2. Fixed-points of the model are the normalized (so that all 

elements sum to 1) eigenvectors of US. 
3. Only one normalized eigenvector is in the simplex (via 

Perron-Frobenius theorem [3][7]). 
4. Eigenvalues of US are the average fitness of the population 

given by the corresponding eigenvector. 
5. The largest eigenvector corresponds with the lone 

eigenvector inside the simplex. 
 
These properties allow the computation of the fixed points of the 
infinite population model for a given fitness function and 
mutation rate.  By normalized vector we mean that all elements 
have been scaled such that they all sum to 1, creating a vector that 
obeys the simplex property. The lone normalized fixed point is the 
global attractor of the dynamical system modeling the GA.  This 

fixed point is the expected population distribution of the GA for a 
sufficiently large number of generations and population size. 
 
There can exist fixed points outside, but very near the simplex.  
Such fixed points contain at least one negative component and 
thus cannot represent a real population.  Finite populations p near 
such fixed points may be metastable states [3] in that the distance 
from p to G(p) is small.  Thus, the region of the simplex near such 
a fixed point may be called a metastable region.  If the GA 
population enters such a region, it will typically spend a long time 
in the region before escaping. 
 
Note that fixed size populations form a subset of the simplex 
called a lattice. Some simplex population vectors (an example is 
any vector with an element like 2/3 where the cardinality of the 
vector is not a multiple of 3) are not representable with finite 
populations.  Finite populations move from lattice point to lattice 
point in the simplex.  The smaller the population size, the sparser 
the lattice points are in the simplex. 

 

3.  FUNCTIONS OF UNITATION 
Unitation functions are fitness functions where fitness is defined 
only by the number of ones in a chromosome x:{1,0}d.  All fitness 
values are non-negative:  

 

u(x):{0,1}d  →  ℝ+   (5)

 

An example function for 3 bits is 

 

 u(0) = 3 u(1) = 2 u(2) = 1  u(3) = 4 

This definition allows us to reduce the dimensionality of the 
infinite proportionality population vector from 2d x 1 to (d+1) x 1.  
This vector is represented as p = {p0 ,..., pd}, where pk is the 
proportion of the population having exactly k ones.   Note that 
this vector is of d+1 dimension as it must have an entry for the all 
zeros case.  Using the above fitness function, a selection matrix S 
is defined as the (d+1) x (d+1) diagonal matrix Sk,k = u(k).   

The mutation matrix is Û, whose entries are the probabilities that 
a string with j ones mutates to a string with i ones. Û is defined as 
an (d+1) x (d+1) matrix with each entry representing the 
probability that a bitstring with j ones mutates to a string with i 
ones.  Equation 6 is the formula from [4] where δx,y is the 
Kronecker delta function and q is the mutation probability.  Note 
that like U, Û is a column stochastic matrix. Each column sums to 
1.   Equation 7 contains a three bit example of Û where q=1/3. 
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3.1 Example Functions of Unitation 
The three fitness functions pictured in Figure 1 are called 
NEEDLE, BINEEDLE and ONEMAX, and have been 
theoretically studied for parameter static simple GAs by Rowe [3] 
and Wright [4].  For Figure 1, values of d=10 and α=10 are used 
for NEEDLE and BINEEDLE. 
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Figure 1.  NEEDLE, BINEEDLE and ONEMAX fitness 

functions. 
 

4.  FIXED POINTS AS A FUNCTION OF 
MUTATION RATE 
At this point, fixed points of the infinite population model can be 
calculated for various functions of unitation.  Rather than simply 
choosing a few values of q and finding the fixed point in the 
simplex, these distributions will be calculated over a range of q.  
This gives the reader a visual picture of how the fixed point 
distributions change as the mutation rate changes. Note that all 
fitness functions used were changed slightly to contain no zero 
entries (a small ε is used) to avoid not meeting the conditions for 
Perron-Frobenius. 

4.1 Fixed-point Surfaces for ONEMAX 
Figure 2 shows two fixed points for the ONEMAX fitness 
function.  These are the normalized leading eigenvector of G with 
mutation rate q=0.005 and q=0.03 both with d=10, providing 11 
unitation classes.  For example, they show that for q=0.005 
approximately 62% of the population should contain strings with 
10 bits of value 1 after a sufficiently large number of generations 
of the mutation-selection GA have been computed using a very 
large population.  These values of q were chosen to highlight the 
movement of the distribution off of the global maxima.  At q=0.03 
only 10% of the population contains strings of 10 bits of 1. 

Next, a sequence of fixed points were computed for mutation rates 
starting at q=0.01 and the population distributions were plotted as 
a 3-dimensional surface.  Figure 3 shows the ONEMAX fixed 
points plotted from q=0.01 to q=0.20.   
 

 

 
Figure 2. ONEMAX fixed point distributions for q=0.005 and 

q=0.03. 
 
 

 
Figure 3. ONEMAX fixed point surface. 

 
Note that at mutation rates near 0.01, the population contains a 
significant proportion of the f(10)=10 optimal mutation class.  By 
q=0.10 there is near zero membership. 
 

4.2 Fixed-point Surfaces for NEEDLE and 
BINEEDLE 
Figures 4 and 5 contain the fixed point surfaces of NEEDLE and 
BINEEDLE for both α=5 and α=15.  Figure 4 tells us that for low 
mutation rates (i.e. mutation rates below q=0.10 and q=0.15 
respectively), NEEDLE has a significant proportion of the 
population at the maximum.  
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Figure 4.  NEEDLE fixed point surfaces with α=5 and α=15. 

 

In Figure 5 note the dramatic change in population distribution for 
BINEEDLE that occurs near q=0.10 (for α=5).  Above this 
mutation rate the population contains near zero proportional 
membership in either global optimum. This tells us that mutation 
rates below this value are likely very important for good GA 
performance.  For α=15 this phase change occurs near q=0.20, 
indicating that this version of the fitness function is more tolerant 
of higher mutation rates.   NEEDLE has similar properties. 

 

 
Figure 5. BINEEDLE fixed point surfaces with α=5 and α=15. 

 
Notice that for mutation rates greater than the critical q values for 
both functions, the population is centered around the unitation 
midpoint, a string of 5 ones and 5 zeros.  
 

4.3  Fixed-point Surface for a Fully Deceptive 
Trap Function 
Trap functions are piecewise linear functions that divide the 
search space into two Hamming space basins [6].  Each basin has 
an optimal point, one of which is the global optimum.  In Deb and 
Goldberg [6], a set of conditions for calling a fitness function 
'fully deceptive' is given.  A fully deceptive function from [6] is 
adopted here and is referred to as DECTRAP. 

 

1 if  ( )
   ( ) 10* 1 ( )1 otherwise

u x d
f x u x

d

= 
 = + −  

 (9)

 

Figure 6 illustrates DECTRAP and its fixed-point surface.  The 
trap function is at fitness of 9 for the all zeros string, and is fitness 
10 for the all ones string.  The all zeros basin takes up the 
majority of the function space. 

 
Figure 6. Fully deceptive trap functions DECTRAP and fixed 

point surface. 
 

The fixed-point surface has a drastic phase change at 
approximately q=0.02.  Below this mutation rate a high 
proportion of the globally optimal string exists.  Above this 
mutation rate the fixed point contains nearly zero proportion of 
the global optimal.  Notice again that as the mutation rate 
increases, the fixed point moves towards a population centered 
around the unitation midpoint. 

4.4 Fixed-point Surface for Functions with 
Two Traps 
Figure 7 illustrates a trap function containing two traps, referred 
to as 2TRAP.  The fixed point surface is very similar to the 
BINEEDLE surface with a critical phase change at q=0.10.  Note 
that mutation rates below 0.05 are slightly superior since the fixed 
points are still centered much closer to the two local optima.  
Between 0.05 and 0.10 the population clusters are moving away 
from the maximums, as the mutation rates are too high for the 
population to maintain high membership.   

 

 
Figure 7.  Double trap function 2TRAP and fixed point 

surface. 
Figure 8 shows a deceptive double trap function, or DEC2TRAP.  
This function is modeled after the fully deceptive function given 
in [6].   The formula is given here:  

1 if  ( ) / 2
1 ( )( ) 10* 1 if  ( ) / 2

/ 2
( ) / 2 1 if  ( ) / 2

/ 2

u x d
u xf x u x d
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u x d u x d

d
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Figure 8. Deceptive double trap function DEC2TRAP and 

fixed point surface. 
 

DEC2TRAP’s fixed point landscape is very interesting in that it 
has virtually no membership of the u(x)=0 and u(x)=10 high 
fitness points.  It varies between 10-13 at q=.001 to 10-2 at q=.020.  
This result is counter-intuitive to the expectations of a 
practitioner.  The regions on either side of the center optimal 
needle have smooth hills to climb that lead to the local 
maximums.  A practitioner might expect empirical GAs to retain 
membership in the local optimas, given that low mutation rates 
make it harder for a population to move outside the basin of either 
local maxima.  Lack of elitism and other advanced features in the 
model partially explains the result, as well as the fact that after a 
high enough number of generations has passed, the Simple GA 
will converge totally into the basins of global maximums.  
Another contributing factor is that there are many strings of 
fitness u(5)=1 and only one string in the two local maxima 
classes. 

5.  (1+1) EAs AND VARIANTS 
Next, we briefly review three simple variants of the genetic 
algorithm applied to functions of unitation and their associated 
Markov models.  These algorithms and models have been studied 
extensively.  Examples are [8][9][11]. 

5.1 Algorithms 
Algorithm 1 is the (1+1) EA and its properties are summarized 
extensively in [8].  Again, the fitness function is f(x):{0,1}d →ℝ.   
 
Algorithm 1: The (1+1) EA 
1. Choose p(n)  є (0,1/2] 
2. Choose x є {0,1}d uniformly at random. 
3. Create y by flipping each bit of x independently with p(n) 
4. If f(y) ≥ f(x), set x := y 
5. Continue at line 3 
 
If we remove the restriction in line 4 that the child bitstring y 
must have a better fitness than the parent bitstring x, we create the 
(1,1) EA.  This algorithm is more precisely denoted a ‘random 
walk’ and is commonly covered in introductory stochastic 
modeling texts like [12].  The U and Û matrices are the Markov 
transition matries of the (1,1) EA for standard and unitation 
(respectively) fitness functions. 
 
Equation 11 details how Equation 6 is used to construct the (1+1) 
EA transition matrix.  Equation 12 is an example of the Û+ 
transition matrix for a 3-bit bitstring with q=1/3 with a 3-bit 
ONEMAX fitness function.  Note that these matrices are lower-
triangular since they are built in a column stochastic manner. 
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.296 0 0 0

.444 .522 0 0

.222 .391 .750 0

.037 .087 .250 1
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The matrix in Eq. 12 is an absorbing Markov model.  Once the 
transition is made from some bitstring to the optimal string of all 
ones, all further transitions stay at this string.  This is in contrast 
to Eq. 7, where transition from any unitation class to any other 
class is possible.  Figure 9 is the state diagram for Eq. 12. 

 

 
Figure 9.  (1+1) EA example state diagram 

 
The following algorithm is based upon one detailed and analyzed 
in [9]. 

Algorithm 2: The (1+1) Metropolis EA 

1. Choose p(n) є (0,1/2] 

2. Choose  α є (1,∞) 

3. Choose x є {0,1}d uniformly at random. 

4. Create y by flipping each bit of x independently with p(n) 

5. If f(y) ≥ f(x), set x := y 

6. Else set x := y with probability 1/α |f(y) - f(x)| 

7. Continue at line 3 

This algorithm allows selection of child bitstrings with lower 
fitness values.  The probability of selection is in inverse 
exponential proportion to the drop in fitness.  Algorithm 2 is an 
example of the Metropolis algorithm of [10].  The classic 
Metropolis algorithm restricts line 4 by mutating only one 
randomly chosen bit of x.  The constant α is always greater than 1, 
usually much greater.  Equation 13 details the construction of the 
(1+1) MEA transition matrix and Equation 14 is an example 
matrix for a 3 bit bitstring with q=1/3 and α=1024 for a 3-bit 
ONEMAX fitness function. 
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The maxtrix Ü+ contains what can be called a probabilistically 
absorbing state at state 3.  The algorithm has a small probability 
of leaving the state, and if it does will likely rapidly return and 
stay there for long periods of time. 
 
Algorithm 2 can also be converted into a simulated annealing 
algorithm by having α be a function of time α(t) that decreases as 
time increases [9][13]. 
 
Both Algorithm 1 and 2 are modeled by applying two operators 
together.  The Markov transition generated by each has both a 
mutation component that is exactly the same as Û.   The matrices 
in Equations 12 and 14 are really a composition of  P Û  where P 
is a matrix that implements an elitist selection strategy. Here there 
are three different versions of P, one for each of Equations 12 and 
14.  One implements line 4 of Algorithm 1 and the other 
implements Algorithm 2’s line 5. 

5.2 Modeling a (µ+µ) Metropolis EA 
We now have a matrix associated with Algorithm 1 that we could 
apply the infinite population model selection matrix to via Û+S.  
This new transition matrix incorporates both the non-decreasing 
selection of the (1+1) EA and the proportional selection matrix S, 
and is capable of modeling the behavior of the (µ+µ) EA (see [8]) 
where µ is large.  Unfortunately we cannot use the Perron-
Frobenius theorem to analyze this matrix.  It is a reducible matrix 
since Û+ contains an absorbing state at location Û+

d,d.   
 
Algorithm 3 is an extension of Algorithm 2 to support populations 
greater than 1. We will refer to it here as the (µ+µ) MEA.  
Conceptually this new population version of Algorithm 2 
implements a Simple GA with the slight modification that 
generational replacement is done with a Metropolis style selection 
scheme. 
Algorithm 3 (µ+µ) MEA 
1. Choose p(n) є (0,1/2] 
2. Choose  α є (1,∞) 
3. Choose µ є (1,∞) 
4. Create a population P of size µ and initialize each member 

uniformly at random where P[i]  є {0,1}d . 
5. For i=1 to µ do 
6. Select an individual x from P via proportional selection 
7. Create y by flipping each bit of x independently with p(n) 
8. If f(y) ≥ f(x), set Pnew[i] := y 
9. Else set Pnew[i] := y with probability 1/α |f(y) - f(x)| 
10. Set P := Pnew 
11. Continue at line 5 
 
The ‘+’ notation here is kept to remain consistent with the 
notation used in [9].  One can make an argument that since the 
transition matrix of the (1+1) MEA supports going from any 
string to any other string it should have been referred to in [8] as a 
variant of a (1,1) EA.  We keep the ‘+’ notation to stress the 

connection with the standard (1+1) EA and use the MEA to 
denote the Metropolis modification. 
 
It is important for the reader to realize two things about Algorithm 
3.  The first is that the algorithm has two selection operators.  One 
of them is the Metropolis operator that acts on the choice of 
replacing the single parent with the mutated child, the other is the 
population-wide proportional selection operator that selects 
individuals to be parents for mutation.  Equation 15 augments 
Equation 3 to supply this elitist operator P.  The second thing to 
realize is that this algorithm does not implement truncation 
selection as is implied in the usual meaning of the (µ+λ) EA[8]. 

1
1( ( ))
( )t t

t

p G p t UPS p
pµ+ = =  (15)

 

6. INFINITE POPULATION MODELS 
We now have a new model that is amenable to applying the 
Perron-Frobenius theorem as was done in section 4.  An important 
question is how the new fixed points will compare with those of 
the no-crossover Simple GA.  This new model will be referred to 
as the (µ+µ) IPMEA (Infinite Population Metropolis EA).  More 
corectly, µ = ∞ since this is an infinite population model. The µ 
notation is kept to stress the linkage between infinite population 
models and real GAs with large populations. 

6.1 Metropolis Fixed Points for ONEMAX, 
NEEDLE and BINEEDLE 
Figure 10 gives the infinite population model fixed point surface 
of the (µ+µ) IPMEA for q є [0.01, 0.4] and α=1024. Note that the 
distribution for the EA contains 1-ε proportion of the all-ones 
string for very small values of q, and this proportion shrinks to 
about 80% by q=0.30 before rapidly decreasing to 58% at q=0.40.  
Notice also that the proportion of the second best string, 
containing d-1 ones, is steadily increasing as the mutation rate 
grows, growing to about 40% by q=0.40 
 

 
Figure 10. ONEMAX Metropolis EA fixed point surface. 

It is not well visible in the figure, however by q=0.40 the 
proportion of the d-2 ones string grows to nearly 3%.  Each 
successively less fit state’s proportion decreases by a factor near 
10-3.  Peeking back at the matrix in Equation 14 we can see the 
cause of this.  As the mutation rate grows the probability of 
making a mutation transition from the ‘all ones’ string to the ‘d-1 
ones’ string grows as well.  Adding proportional selection 
mitigates this effect to a degree, however it still remains true when 
we move from the (1+1) MEA to the (µ+µ) IPMEA.  More 
importantly the probability of staying in the ‘d-1 ones’ state is 
fairly high. 
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This interesting drop off of the optimal proportion at about q=0.3 
was curious enough to merit a full surface computation from q є 
[0.01, 0.99] using 80 discrete mutation rates in this range.  
Normally mutation rates above 0.5 are ignored by the EA 
community, they tend to result in optimizers that do not do much 
optimizing.  The resulting Figure 11 is has interesting structure.  
A partial explanation may be that at certain points in the mutation 
range the negative effect of a high mutation rate and positive 
effect of proportional selection cancel each other and come to a 
stalemate of two strongly attracting states.   
The phase transitions displayed were not expected, and the 
intuitive expectation was a gentle curve that sloped down to a 
high membership in the half ones string while retaining the 
greatest membership in the all ones string. 
 

 
Figure 11.  ONEMAX (µ+µ) IPMEA over full range of q 

Figure 12 displays the fixed point surfaces for the NEEDLE and 
BINEEDLE functions.  Note that the phase transitions displayed 
in Figures 4 and 5 are gone.  The rising mutation rates were not 
enough to overcome the effect of proportional selection in 
favoring copies of the optimum strings, the difference in fitness 
between the optimum(s) and all other strings is too great.   This 
result is a clear example of a situation where the technically 
(provably) non-convergent IPMEA algorithms are indeed strongly 
convergent in a practical sense. 
 

 
Figure 12.  NEEDLE and BINEEDLE Metropolis EA fixed 

point surface. 

6.2 Metropolis Fixed Points for the Trap 
Functions 
The next sequence of figures revisits the fitness functions from 
section 4.  Figure 13 gives the fixed point surface for the 
deceptive trap function DECTRAP.  The results for the (µ+µ) 
IPMEA are interesting if somewhat expected.  The results from 
the NEEDLE apply since the fitness difference between the all-
ones string and the d-1 ones string is the same.  This gives a 
transition matrix that is dominated at low mutation rates by the 
action of the Metropolis selection plus the proportional selection 
operator.  Looking back at Figure 6, the SGA DECTRAP function 
showed a phase transition at about q=0.05 moving the bulk of the 
population from the global fixed point to a population centered 
most of the way up the basin of the zero string.  Here the phase 
change is pushed back to about q=0.30 and above that rate the 
global string still retains a decent proportion in the population. 
 

 
Figure 13. DECTRAP Metropolis EA fixed point surface. 

Figure 14 contains the results of the IPMEA algorithm applied to 
the 2TRAP function.  The nearly absorbing states at the all ones 
and all zeros strings have a very low probability of moving to 
lower fitness states.  The effect of the double selection is too great 
for the mutation operator to overcome.  This is in contrast to 
Figure 6 where there is a strong phase change as the mutation rate 
is about q=0.07.  The elitism of this algorithm eliminated this 
phase change. 
 

 
Figure 14.  2TRAP Metropolis EA fixed point surface. 

Figure 15 displays the surfaces produced by the algorithm on 
DEC2TRAP.  Figure 8 showed that the SGA had a slow 
degradation of the quality of convergence to the global optima, 
and it is eliminated with these elitist algorithms.  It is also worth 
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noting again that this function is comparatively easy to optimize 
as result of the binomial distribution of the unitation classes.  If 
DEC2TRAP were formed by the opposite concatenation of two 
DECTRAP functions we would expect to see behavior very 
similar to that of 2TRAP. 
 

 
Figure 15. DEC2TRAP Metropolis EA fixed point surface. 

7.   A NOTE ON EMPIRICAL VALIDATION 
AND LIMITATIONS 
In [3] Rowe validated the correctness of this type of analysis by 
conducting several experiments on real GAs with large 
populations optimizing functions of unitation.  He showed that 
real populations do converge to the theoretical fixed points 
predicted by the model.  Space considerations eliminated similar 
experiments here.  It will be interesting to study the effect of 
various population sizes and their convergence to these fixed 
points. 
This analysis has several limitations.  It only applies to non-
crossover GAs of a specific type.  Crossover is a quadratic 
operator and in general the addition of crossover to the Vose 
model makes it not analyticaly solvable.  This model also does not 
hold for GAs with true elitism.  This analysis also only applies to 
functions of unitation, other families of functions cannot 
necessarily be reduced dimensionaly to allow easier matrix 
computations. 

8. CONCLUSIONS 
Using the techniques that find fixed-points of dynamic systems 
models of GAs a number of fitness functions were studied to 
examine how those fixed points move as the mutation rate 
changes.  In addition two new infinite population models were 
built to examine the performance of simple elitist GAs on these 
same functions. 

It is common in GA research papers to use a specific mutation rate 
with no justification for the value chosen.  Hopefully this paper 
will cause the reader to questions the validity of the mutation rate 
they choose for their next GA project.  The results shown here 
even call into question the often cited 1/d (or 1/l) from Bäck [14].  
As we have seen this rate of q=0.10 for the functions studied here 
would place the fixed-point dynamics above the phase change 
observed for several functions.  In addition the value of even 
simple probabilistic forms of elitism is underscored. 

In the future we hope to explore more extensions of common 
simplified GA models into a infinite population model framework 

and show how these models relate to commonly studied Markov 
models.  It is also hoped that an examination of the various 
schemes for dynamically adjusting the mutation rates of EAs 
during a run will come out of this first step.  It is also likely that 
many more common forms of fitness functions have interesting 
structure when analyzed in this way. 
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