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ABSTRACT 
Designing efficient sorting networks has been a challenging 
combinatorial optimization problem since the early 1960’s. The 
application of evolutionary computing to this problem has yielded 
human-competitive results in recent years. We build on previous 
work by presenting a genetic algorithm whose parameters and 
heuristics are tuned on a small instance of the problem, and then 
scaled up to larger instances. Also presented are positive and 
negative results regarding the efficacy of several domain-specific 
heuristics.   

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning – parameter learning; I.2.8 
[Artificial Intelligence]: Problem Solving, Control Methods, and 
Search - heuristic methods, graph, and tree search strategies; F.1.1 
[Computation by Abstract Devices]: Models of Computation – 
unbounded-action devices; F.2.2 [Analysis of Algorithms and 
Problem Complexity]: Nonnumerical Algorithms and Problems – 
sorting and searching, computations on discrete structures; G.2.1 
[Discrete Mathematics]: Combinatorics – combinatorial 
algorithms, permutations and combinations;  

General Terms 
Algorithms, Performance, Experimentation, Design, Theory, 
Measurement 

Keywords 
Sorting Networks, Genetic Algorithms, Parameter Tuning. 

1. INTRODUCTION 
Sorting is a fundamental operation in computer science, with 
algorithms ranging from straightforward to highly complex. The 
challenge is to devise an algorithm that is guaranteed to arrange an 
input set of data items according to some given ordering function, 
while minimizing quantities like total time or (for large data sets) 
space used. 

Sorting networks are a particular instantiation of sorting algorithms 
that are particularly suited for implementation in hardware. The 
basic element of a sorting network is the "comparator". Each 
comparator has two input lines and two output lines. Two items 
enter the input lines in arbitrary order; the comparator then orders 
the pair of items, and outputs the lesser one on the first output line 
and the greater one on the second output line. 

By chaining together sets of comparators into a sorting network, any 
set of items can be sorted.  The Zero-One Principle guarantees that if 
a sorting network can sort all possible binary input vectors (or "bit-
lists") then it can also sort any arbitrary input vector. Thus, a "brute-
force" method of checking the validity of a sorting network with N 
input lines is to try it on all 2N bit-lists of size N, and ensure that the 
output is correctly sorted in all cases. (Note that imperfect sorting 
networks can be ranked by the number of bit-lists which they 
correctly sort – herein referred to as the network “score”)  

Knuth’s classic volume [7] discusses sorting networks in some 
detail, and in particular records lower and upper bounds for the best 
known sorting networks. There are two natural metrics for judging 
sorting networks. First, the number of comparators used. Second, 
the "depth" of the network – this is the number of time steps the 
network takes to complete its computation, if an arbitrary number of 
comparators operating on disjoint elements are allowed to compute 
in parallel at each time step. Each such group of disjoint 
comparators executing in parallel may be referred to as a “level” in 
the network. 

Since the problem of designing sorting networks is theoretically  
challenging, of practical interest, and of some long-lasting notoriety 
in algorithm design circles, it makes a good test problem for 
evolutionary computation.  [5] is an early paper which used co-
evolutionary methods to evolve both sorting networks and bit-lists 
which were particularly good discriminators for the quality of those 
networks. Co-evolutionary methods were more recently used to 
evolve fault-tolerant sorting networks [4]; theoretical approaches 
have also yielded interesting strategies for making a sorting network 
robust, such as adding a fault-fixing layer after the main network 
[9]. There have been several other papers using a variety of 
evolutionary strategies [1, 2, 3, 6, 8]. 

In this paper, we make several new contributions to this area. First, 
we discuss the methodology, network representation, and the 
parameters of the GA. We use statistical methods to get confidence 
intervals on the value of parameter settings and heuristic choices. 
Second, we design several heuristics specialized for the problem of 
evolving sorting networks, and evaluate these heuristics to learn 
which ones improve solution quality. Third, we show that the GA 
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performance improves significantly with tuning, and we apply the 
tuned parameters to larger instances of the problem. 

All of our contributions are validated through testing on networks of 
various sizes, from 10 to 14 elements.  Some of our results match 
other records for best known sorting network results (some of which 
were found through human ingenuity, others through computational 
search). A noteworthy feature is that our heuristics are effective 
enough that all of our computations could be carried out on ordinary 
PCs, unlike several previous evolutionary computation results which 
used large clusters of workstations. 

2. THE GENETIC ALGORITHM 
This section explains the approach taken by the authors in terms of a 
breakdown of the important aspects, parameters, and genetic 
operators within the GA. Also explained is the manner in which the 
various parameter values were settled upon during a tuning phase 
for the GA, and then scaled up to larger instances of the problem. 

2.1 Methodology 
The approach taken in this experiment is to run a tuning phase for 
the GA on a small problem instance – in this case 10-input sorting 
networks – and thereafter scale up to 12-, and 14-input networks.  

The tuning phase consists of two steps. The first step is to optimize 
the GA parameters such as crossover rate, mutation, etc. Even given 
a coarse-grained discretization of those parameters whose ranges can 
be thought of as continuous – specifically probabilities ranging from 
0.0 to 1.0 – the number of possible settings is too large for an 
exhaustive search of parameter space. The authors decided to tackle 
the optimization problem one parameter at a time beginning from an 
arbitrary starting point. The criterion used when optimizing a given 
parameter is to choose that value for which the average best 
individual after 200 generations, over multiple runs, is highest. In all 
cases a minimum of 50 runs per parameter value are performed, 
more if the corresponding confidence intervals are too wide for a 
reasonably near-optimal setting to be distinguished. Once a 
parameter is optimized in this way its value becomes fixed and the 
process moves on to the next as yet untuned parameter. 

The second step in the tuning phase is to introduce each of four 
additional domain-specific heuristics which modify the sorting 
network representation and/or the fitness function. Along with each 
heuristic come one or more additional parameters which are tuned in 
a manner similar to that described in step 1. 

Since perfect networks (networks sorting all 1024 bit-lists) become 
more common once the GA is tuned, we abandon average best-of-
run as a measure of goodness and focused instead on success rate. 
The following calculation is performed as a measure of goodness, 
G: 

G = (N1015 + N1016 + ... + N1022 + N1023) / 9 

Where Ni is the number of runs attaining a network score greater 
than i. This is a linear weighting whereby each run attaining a score 
of 1016 contributes equally to G, runs attaining a score of 1017 
contribute twice as much, 1018’s thrice as much, and so on. The 
rationale behind this equation stems from the intuition that the rate 
of attainment of near-perfect scores should act as a useful predictor 
of achievement of perfect scores. In order to validate this intuition 
empirically, the authors collected data from 149 different parameters 
settings of the GA during tuning, each represented by at least 50 

independent runs, and for scores, i, from 1002 to 1023, calculated r 
– the coefficient of correlation with success rate.  
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Figure 1. Correlation coefficient of score rates with success rate 

based on 149 different GA parameter settings 
A graph of i vs. r (see figure 1) shows the relationship to be close to 
linear over the range used to compute G, above. This result lends 
support to the use of G as a measure of goodness for GA parameter 
settings when raw success rate itself is low. 

Once GA parameters and heuristics have been optimized, the 
problem size is scaled up from 10-input networks to 12-, and 14-
input networks, with corresponding increases in population size and 
number of generations. 

2.2 Representation 
Networks are stored as fixed-length arrays of comparators. Each 
comparator is specified by two integers indicating which lines of the 
network partake in the corresponding comparison-exchange 
operation. For example, the 7-input network in figure 2 may be 
represented as [ [0,1], [2,3], [4,5], [6,7], [1,3], [5,7], [2,4], [0,6], 
[1,2], [3,4], [5,6] ]. Inputs (a sequence of integer values, one for 
each horizontal line) arrive at the left and travel through the network 
to the right, undergoing sorting operations along the way. Each 
sorting operation examines two inputs and outputs them in sorted 
order (a potential swap). 

 
Figure 2. A sorting network 

Most of the sorting networks given in Knuth [7] display a symmetry 
in their structure in which many comparators, especially those in the 
initial levels of the networks, are paired with their mirror image (the 
same comparator, but with network input lines renumbered in 
reverse order). Assuming that this reflects a tendency for such 
symmetric networks to be superior to asymmetric networks – an 
assumption tested empirically and shown to be correct via a clear 
distribution-lensing effect in figure 3, based on over 4,000,000 
samples – the population is initialized with networks for which 
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every comparator is paired with its mirror image (provided the 
comparator is not its own mirror image in which case a second copy 
is redundant).  

 
Figure 3: Score distributions for random asymmetric and 

symmetric networks 
This symmetry is enforced only in the initial population, but not in 
subsequent generations. Note also that due to a conflict between this 
symmetric network initialization for networks with odd numbers of 
inputs, and a particular heuristic, to be described in section 3.4, the 
authors have restricted the experiments described here to networks 
with even numbers of inputs. 

2.3 Parameters 
The parameters described below are those that pertain to the 
functioning of the GA. Many of these, such as population size, 
mutation rate, and tournament size, are common to most genetic 
algorithms, while others are specific to this implementation. 

2.3.1 Population Size and Halting Condition 
For runs on 10-input sorting networks, population size and number 
of generations are fixed at 500 and 200, respectively. Once a 
network with perfect score is attained, there still remains the 
possibility for improvement – by finding a network of lesser depth – 
and hence a fixed number of generations is left as the only halting 
condition. 

2.3.2 Fitness, Elitism and Selection 
Network fitness is computed by counting the number of bit-lists (out 
of 2N possible, where N is the number of inputs) which are sorted 
after a pass through the network. In the second phase of tuning, in 
which a handful of heuristics are introduced, the fitness calculation 
is modified by subtracting various penalties from this initially-
computed network score. 

The GA implements elitism by maintaining, from one generation to 
the next, not the highest fitness individual but the highest scoring 
individual. For most runs network fitness and network score are 
synonymous. It is only in those runs using the heuristics described 
in section 3 that fitness can differ from network score. While fitness 
guides selection, we decided that elitism should maintain the highest 
scoring network regardless of its fitness value. Ties are broken using 
network depth, with lower depth networks being superior. 

The selection method chosen is tournament selection with both 
tournament size and tournament probability as parameters to be 
optimized. The best individual in a tournament is determined by 
fitness, as described above. 

Network duplicates are filtered out when producing a new 
generation. This is done via a hash function since this is much faster 
than computing network score. 

2.3.3 Crossover 
Two crossover operators are made available to the GA, uniform 
crossover at the level of individual comparators, and single-point 
crossover. This accounts for two GA parameters. The first is the 
usual crossover probability parameter; the second determines the 
proportion of uniform vs. single-point crossover.  

2.3.4 Mutation 
Three mutation operators are provided. The first, called ‘indirect 
replacement’, chooses a comparator to delete from the network, and 
then chooses an insertion point at which to place a new random 
comparator keeping the total count fixed. The second chooses two 
comparators at random and swaps them. The third performs point 
mutation on up to three consecutive comparators. These operators 
necessitate the usual mutation rate parameter, plus additional 
parameters determining the probabilities for each mutation operator. 
Interestingly, the best results were obtained when mutation was 
restricted exclusively to indirect replacement. 

3. HEURISTICS 
The following subsections describe 4 intuitively useful heuristics for 
guiding the GA evolution and constraining its search space. The 
results obtained during testing indicate that, despite their intuitive 
plausibility, only one of the four heuristics appears to be useful in 
practice. 

3.1 Target Depth and Depth Penalty 
This heuristic established a target network depth, specifically the 
depth of comparison-optimal (having minimal comparator count) 
networks as given in Knuth [7]. Networks are penalized for 
exceeding this depth by an amount which is proportional to the total 
number of comparators in the k smallest levels where k is the 
difference between network depth and target network depth. The 
purpose of this heuristic is to steer GA evolution toward a desired 
network depth, and to do so in a manner that rewards intermediate 
steps between a network of depth d, and a network of depth d-1.  
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In figure 4, a graph of network depth penalty vs. goodness (see 
section 2.1) leads the authors to choose a value of 0.06 for this 
parameter, which translates to a penalty of 0.06 * 210 = 61.44 
subtracted from fitness for each comparator in the k smallest levels 
as described above. It should be noted that despite the appearance of 
figure 4, the range of outcomes for this parameter in terms of 
average best-of-run values span a range of less than one bit-list out 
of 1024. 650 runs per parameter value were used in calculating each 
goodness value in figure 4. 

3.2 Redundant Comparator Penalty 
This heuristic penalizes networks for the possession of redundant 
comparators. A redundant comparator is one whose removal does 
not affect the performance of the network. This is easily determined 
by counting the number of times a comparator performs an 
exchange operation while the network is attempting to sort all 1024 
bit-lists. Comparators for which this total is 0 are redundant. 
Networks containing redundant comparators are penalized in 
proportion to the number of such comparators present. 

While the argument for penalizing redundant comparators is 
obvious, it is conceivable that rewarding redundant comparators 
might also be beneficial, in that one can imagine that such a scheme 
might force the remaining non-redundant comparators to be as 
useful as possible. For this reason we experimented with negative 
values of this parameter as well as positive, calculating the goodness 
measure using 400 runs for each of 15 values of the penalty 
parameter between -0.1 and 0.1. Counterintuitively, however, the 
testing results obtained seem to indicate that this heuristic is 
harmful, both as a penalty and as a reward. 

3.3 Extreme Value Penalty 
This heuristic penalizes networks for all instances in which extreme 
values at the inputs do not end up at the correct outputs. In the case 
of 10-input networks, this is determined by examining the outcome 
from attempts to sort 20 specific bit-lists, those containing nine 0’s 
and a 1, and those containing nine 1’s and a 0. The rationale behind 
this heuristic is that in the general case where a network is sorting 
inputs of arbitrary numerical values instead of being restricted to 
bits, these extreme value bit-lists correspond to a tenth of all inputs 
in the general case, but only a 1024th of all inputs in when using bit-
lists. This heuristic is meant to place added value upon these bit-
lists, but like the redundant comparator penalty it too was found to 
be harmful. 300 runs went into the calculation of each goodness 
measure for this heuristic’s parameter. 

3.4 Full Level Enforcement 
Many of the sorting networks given in [7] possess initial levels 
which contain the maximum number of comparators, specifically N / 
2 disjoint comparators where N is the number of network inputs. 
This seems to suggest an obvious heuristic, which is to modify 
network representation and manipulation such that initial levels are 
guaranteed at all times to be ‘full’ (possessing N / 2 disjoint 
comparators). This is achieved via appropriate modifications to 
crossover and mutation operators.  

Mutation within one of these full levels (point-mutation in this 
implementation) is followed by a repair operation. Similarly, 
crossover operators which disrupt a full level are followed by the 
same repair operation. This heuristic adds to the number of 
crossover and mutation operators as well. Crossover is now split 
into two operations, the first a crossover of initial full network levels 

– either uniform crossover of entire levels, or single-point crossover 
within levels, followed by a repair operation – and the second a 
crossover of the remaining comparators as described in section 
2.3.3. Mutation is similarly split into two operations, mutation of 
full network levels (either point mutation or comparator reordering) 
and mutation of the rest of the network as described in section 2.3.4.  

New parameters corresponding to these new mutation and crossover 
operators were also subject to optimization, but like the redundant 
comparator penalty and the extreme value penalty, this heuristic too 
was found to be harmful. 400 runs per goodness calculation were 
used for this heuristic. 

4. SCALING UP 
The GA tuning began with arbitrary settings for its parameters, and 
with none of the heuristics from section 3 (see table 1). Its initial 
performance, as measured by average best-of-run network score, 
was between 1013.50 and 1013.91 (a 95% confidence interval) with 
a standard deviation of 4.04. Its outcome distribution is shown in 
figure 5. 
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Figure 5. Best-of-run bin distribution for initial GA settings 

Upon completion of tuning, GA performance was between 1018.58 
and 1018.90 (95% confidence interval) with a standard deviation of 
3.02. Its outcome distribution is shown in figure 6, and the 
corresponding optimized parameters are shown in table 1. Figures 5 
and 6 display the same set of bins for easy comparison. 
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Figure 6. Best-of-run bin distribution after tuning 
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Table 1. GA parameters before and after tuning 

 before after 

Population size, 
Generations 

500, 200 500, 200 

Crossover rate 20% 10% 

Crossover operators 50% uniform, 
50% single-point 

30%, 70% 

Per Network 
Mutation rate 

10% 40% 

Mutation operators 33%, 33%, 33% 100%, 0%, 0% 

Tournament size 4 8 

Tournament 
probability 

80% 100% 

Elitism priorities Score. Depth 
breaks ties 

Score. Depth breaks 
ties 

Depth penalty 0.0  0.06 (61.44 out of 
1024) 

The distribution of outcomes clearly shows the superior 
performance of the GA after tuning, indicating that the tuning 
process was responsible for a substantial performance boost.  We 
can also see this by looking at the rate at which networks which 
perfectly sorted all bit-lists were found. The success rate for the GA 
before tuning was 0 out of 1450 runs, and after tuning it was 31 out 
of 1400 runs. 

4.1 10-Input Networks 
The results for 10-input networks are given above. During ‘tuning’ 
many dozens of optimal networks were produced, such as the one 
shown in figure 7, below. This is a 29-comparator, depth-8 network. 
It is actually better than the best network given in Knuth [7], and 
hence would have been a record-breaker back in 1998 (others have 
found equivalent networks in the last several years). 

 
Figure 7. One of many optimal 10-input sorting networks 

discovered by the GA 

4.2 12-Input Networks 
When scaling up to a more difficult instance of the problem there 
arises the question of exactly how to perform the scaling. In this 
experiment all but two GA parameters are held constant in the step 
up from 10-input to 12-input networks. The two parameters 
modified were population size and number of generations, each of 
which was doubled, quadrupling the number of network evaluations 
per run to reflect the fourfold increase in problem difficulty as 

measured by the number of bit-lists to sort. Whether or not this is an 
appropriate approach is certainly open to further experimentation. 
Note also that the network depth penalty (see section 3.1) is scaled 
up automatically. The chosen parameter value of 0.06, which had 
previously translated to a penalty of 61.44, now becomes 0.06 * 212 
= 245.76. 
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Figure 8. Best-of-run bin distribution for 12-input networks 

The outcome distribution for the 12-input problem is shown in 
figure 8, above. The average best-of-run outcome is between 
4065.73 and 4072.52 (95% confidence) with a standard deviation of 
15.3. A single success was achieved out of 78 independent runs, and 
the resulting optimal network is shown in figure 9. This is a 39-
comparator, depth-9 network, equivalent to the best network given 
in Knuth [7]. 

 
Figure 9. An optimal 12-input sorting network discovered by the 

GA 

4.3 14-Input Networks 
81 runs were collected for the 14-input problem, and population size 
and number of generations were doubled yet again to reflect the 
increased problem difficulty. In this case no success was achieved, 
although the outcome distribution shown in figure 10 seems to hint 
at the possibility that more runs may yield a success. The average 
best-of-run network score was between 16311.84 and 16330.21 
(95% confidence interval) with a standard deviation of 43.72. 
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Figure 10. Best-of-run bin distribution for 14-input networks 

5. CONCLUSION 
In this paper, we have done careful parameter tuning and statistical 
analysis of heuristics for evolving sorting networks. This has 
provided both positive and negative results with respect to the value 
of several natural heuristics. 
We found that, of the four heuristics tested, only depth penalty 
showed benefits. The three other heuristics, despite their intuitive 
plausibility, did not stand up to rigorous testing. This may be seen as 
an object lesson in the value of carefully testing plausible-seeming 
heuristics individually, instead of only testing the success of all 
heuristics in combination. 
We have also implemented an efficient system, which has matched 
several previous sorting network records while using only modest 
computational resources. 

Finally, the statistical analysis on best-of-run distributions is a useful 
tool for understanding how well heuristics work, and for predicting 
the average waiting time to achieve optimal results.  Calculating 
correlation coefficients of near-perfect run outcome values with 
optimal outcome values validated the use of near-perfect run 
outcomes as part of a candidate measurement of GA performance in 
determining optimal parameter values, especially in cases for which 
perfect outcomes are rare. 

There are several natural directions for future research. We believe 
that other heuristics may provide better outcomes, which will be a 
particularly important consideration for larger network sizes. To 
scale up to networks beyond about 16 inputs, new approaches will 
be needed - starting perhaps with “progressive sampling” schemes 
where a co-evolved testing set of bit-lists similar to that used in [5] 
is used in a first pass, and successively more bit-lists in later passes. 
Structural approaches [2, 3] as well are clearly important for 
reducing the search space. 

Sorting networks have been a fascinating computer science 
challenge for several decades. Since the early 1990's, evolutionary 
computing methods have managed to match several of the best-
known results for moderate network sizes. It will be interesting to 
see if evolutionary computing methods can be scaled up to break the 
records for large network sizes.  We would also suggest that this 
problem provides a good test-bed for comparing algorithm 
performance, and for carefully studying evolutionary heuristics. 
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