
Statistical Analysis of Heuristics for Evolving Sorting
Networks

 Lee Graham Hassan Masum Franz Oppacher
Carleton University

1125 Colonel By Drive
Ottawa, Ontario, K1S 5B6

Contact: {lee@stellaralchemy.com, hmasum.com, oppacher@scs.carleton.ca}

ABSTRACT
Designing efficient sorting networks has been a challenging
combinatorial optimization problem since the early 1960’s. The
application of evolutionary computing to this problem has yielded
human-competitive results in recent years. We build on previous
work by presenting a genetic algorithm whose parameters and
heuristics are tuned on a small instance of the problem, and then
scaled up to larger instances. Also presented are positive and
negative results regarding the efficacy of several domain-specific
heuristics.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning – parameter learning; I.2.8
[Artificial Intelligence]: Problem Solving, Control Methods, and
Search - heuristic methods, graph, and tree search strategies; F.1.1
[Computation by Abstract Devices]: Models of Computation –
unbounded-action devices; F.2.2 [Analysis of Algorithms and
Problem Complexity]: Nonnumerical Algorithms and Problems –
sorting and searching, computations on discrete structures; G.2.1
[Discrete Mathematics]: Combinatorics – combinatorial
algorithms, permutations and combinations;

General Terms
Algorithms, Performance, Experimentation, Design, Theory,
Measurement

Keywords
Sorting Networks, Genetic Algorithms, Parameter Tuning.

1. INTRODUCTION
Sorting is a fundamental operation in computer science, with
algorithms ranging from straightforward to highly complex. The
challenge is to devise an algorithm that is guaranteed to arrange an
input set of data items according to some given ordering function,
while minimizing quantities like total time or (for large data sets)
space used.

Sorting networks are a particular instantiation of sorting algorithms
that are particularly suited for implementation in hardware. The
basic element of a sorting network is the "comparator". Each
comparator has two input lines and two output lines. Two items
enter the input lines in arbitrary order; the comparator then orders
the pair of items, and outputs the lesser one on the first output line
and the greater one on the second output line.

By chaining together sets of comparators into a sorting network, any
set of items can be sorted. The Zero-One Principle guarantees that if
a sorting network can sort all possible binary input vectors (or "bit-
lists") then it can also sort any arbitrary input vector. Thus, a "brute-
force" method of checking the validity of a sorting network with N
input lines is to try it on all 2N bit-lists of size N, and ensure that the
output is correctly sorted in all cases. (Note that imperfect sorting
networks can be ranked by the number of bit-lists which they
correctly sort – herein referred to as the network “score”)

Knuth’s classic volume [7] discusses sorting networks in some
detail, and in particular records lower and upper bounds for the best
known sorting networks. There are two natural metrics for judging
sorting networks. First, the number of comparators used. Second,
the "depth" of the network – this is the number of time steps the
network takes to complete its computation, if an arbitrary number of
comparators operating on disjoint elements are allowed to compute
in parallel at each time step. Each such group of disjoint
comparators executing in parallel may be referred to as a “level” in
the network.

Since the problem of designing sorting networks is theoretically
challenging, of practical interest, and of some long-lasting notoriety
in algorithm design circles, it makes a good test problem for
evolutionary computation. [5] is an early paper which used co-
evolutionary methods to evolve both sorting networks and bit-lists
which were particularly good discriminators for the quality of those
networks. Co-evolutionary methods were more recently used to
evolve fault-tolerant sorting networks [4]; theoretical approaches
have also yielded interesting strategies for making a sorting network
robust, such as adding a fault-fixing layer after the main network
[9]. There have been several other papers using a variety of
evolutionary strategies [1, 2, 3, 6, 8].

In this paper, we make several new contributions to this area. First,
we discuss the methodology, network representation, and the
parameters of the GA. We use statistical methods to get confidence
intervals on the value of parameter settings and heuristic choices.
Second, we design several heuristics specialized for the problem of
evolving sorting networks, and evaluate these heuristics to learn
which ones improve solution quality. Third, we show that the GA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
GECCO’05, June 25-29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006…$5.00.

1265

performance improves significantly with tuning, and we apply the
tuned parameters to larger instances of the problem.

All of our contributions are validated through testing on networks of
various sizes, from 10 to 14 elements. Some of our results match
other records for best known sorting network results (some of which
were found through human ingenuity, others through computational
search). A noteworthy feature is that our heuristics are effective
enough that all of our computations could be carried out on ordinary
PCs, unlike several previous evolutionary computation results which
used large clusters of workstations.

2. THE GENETIC ALGORITHM
This section explains the approach taken by the authors in terms of a
breakdown of the important aspects, parameters, and genetic
operators within the GA. Also explained is the manner in which the
various parameter values were settled upon during a tuning phase
for the GA, and then scaled up to larger instances of the problem.

2.1 Methodology
The approach taken in this experiment is to run a tuning phase for
the GA on a small problem instance – in this case 10-input sorting
networks – and thereafter scale up to 12-, and 14-input networks.

The tuning phase consists of two steps. The first step is to optimize
the GA parameters such as crossover rate, mutation, etc. Even given
a coarse-grained discretization of those parameters whose ranges can
be thought of as continuous – specifically probabilities ranging from
0.0 to 1.0 – the number of possible settings is too large for an
exhaustive search of parameter space. The authors decided to tackle
the optimization problem one parameter at a time beginning from an
arbitrary starting point. The criterion used when optimizing a given
parameter is to choose that value for which the average best
individual after 200 generations, over multiple runs, is highest. In all
cases a minimum of 50 runs per parameter value are performed,
more if the corresponding confidence intervals are too wide for a
reasonably near-optimal setting to be distinguished. Once a
parameter is optimized in this way its value becomes fixed and the
process moves on to the next as yet untuned parameter.

The second step in the tuning phase is to introduce each of four
additional domain-specific heuristics which modify the sorting
network representation and/or the fitness function. Along with each
heuristic come one or more additional parameters which are tuned in
a manner similar to that described in step 1.

Since perfect networks (networks sorting all 1024 bit-lists) become
more common once the GA is tuned, we abandon average best-of-
run as a measure of goodness and focused instead on success rate.
The following calculation is performed as a measure of goodness,
G:

G = (N1015 + N1016 + ... + N1022 + N1023) / 9

Where Ni is the number of runs attaining a network score greater
than i. This is a linear weighting whereby each run attaining a score
of 1016 contributes equally to G, runs attaining a score of 1017
contribute twice as much, 1018’s thrice as much, and so on. The
rationale behind this equation stems from the intuition that the rate
of attainment of near-perfect scores should act as a useful predictor
of achievement of perfect scores. In order to validate this intuition
empirically, the authors collected data from 149 different parameters
settings of the GA during tuning, each represented by at least 50

independent runs, and for scores, i, from 1002 to 1023, calculated r
– the coefficient of correlation with success rate.

-0.3

-0.2

-0.1
0

0.1

0.2

0.3

0.4
0.5

0.6

0.7

10
23

10
22

10
21

10
20

10
19

10
18

10
17

10
16

10
15

10
14

10
13

10
12

10
11

10
10

10
09

10
08

10
07

10
06

10
05

10
04

10
03

10
02

score (i)

co
rr

el
at

io
n

co
ef

fic
ie

nt
 (r

)

Figure 1. Correlation coefficient of score rates with success rate

based on 149 different GA parameter settings
A graph of i vs. r (see figure 1) shows the relationship to be close to
linear over the range used to compute G, above. This result lends
support to the use of G as a measure of goodness for GA parameter
settings when raw success rate itself is low.

Once GA parameters and heuristics have been optimized, the
problem size is scaled up from 10-input networks to 12-, and 14-
input networks, with corresponding increases in population size and
number of generations.

2.2 Representation
Networks are stored as fixed-length arrays of comparators. Each
comparator is specified by two integers indicating which lines of the
network partake in the corresponding comparison-exchange
operation. For example, the 7-input network in figure 2 may be
represented as [[0,1], [2,3], [4,5], [6,7], [1,3], [5,7], [2,4], [0,6],
[1,2], [3,4], [5,6]]. Inputs (a sequence of integer values, one for
each horizontal line) arrive at the left and travel through the network
to the right, undergoing sorting operations along the way. Each
sorting operation examines two inputs and outputs them in sorted
order (a potential swap).

Figure 2. A sorting network

Most of the sorting networks given in Knuth [7] display a symmetry
in their structure in which many comparators, especially those in the
initial levels of the networks, are paired with their mirror image (the
same comparator, but with network input lines renumbered in
reverse order). Assuming that this reflects a tendency for such
symmetric networks to be superior to asymmetric networks – an
assumption tested empirically and shown to be correct via a clear
distribution-lensing effect in figure 3, based on over 4,000,000
samples – the population is initialized with networks for which

1266

every comparator is paired with its mirror image (provided the
comparator is not its own mirror image in which case a second copy
is redundant).

Figure 3: Score distributions for random asymmetric and

symmetric networks
This symmetry is enforced only in the initial population, but not in
subsequent generations. Note also that due to a conflict between this
symmetric network initialization for networks with odd numbers of
inputs, and a particular heuristic, to be described in section 3.4, the
authors have restricted the experiments described here to networks
with even numbers of inputs.

2.3 Parameters
The parameters described below are those that pertain to the
functioning of the GA. Many of these, such as population size,
mutation rate, and tournament size, are common to most genetic
algorithms, while others are specific to this implementation.

2.3.1 Population Size and Halting Condition
For runs on 10-input sorting networks, population size and number
of generations are fixed at 500 and 200, respectively. Once a
network with perfect score is attained, there still remains the
possibility for improvement – by finding a network of lesser depth –
and hence a fixed number of generations is left as the only halting
condition.

2.3.2 Fitness, Elitism and Selection
Network fitness is computed by counting the number of bit-lists (out
of 2N possible, where N is the number of inputs) which are sorted
after a pass through the network. In the second phase of tuning, in
which a handful of heuristics are introduced, the fitness calculation
is modified by subtracting various penalties from this initially-
computed network score.

The GA implements elitism by maintaining, from one generation to
the next, not the highest fitness individual but the highest scoring
individual. For most runs network fitness and network score are
synonymous. It is only in those runs using the heuristics described
in section 3 that fitness can differ from network score. While fitness
guides selection, we decided that elitism should maintain the highest
scoring network regardless of its fitness value. Ties are broken using
network depth, with lower depth networks being superior.

The selection method chosen is tournament selection with both
tournament size and tournament probability as parameters to be
optimized. The best individual in a tournament is determined by
fitness, as described above.

Network duplicates are filtered out when producing a new
generation. This is done via a hash function since this is much faster
than computing network score.

2.3.3 Crossover
Two crossover operators are made available to the GA, uniform
crossover at the level of individual comparators, and single-point
crossover. This accounts for two GA parameters. The first is the
usual crossover probability parameter; the second determines the
proportion of uniform vs. single-point crossover.

2.3.4 Mutation
Three mutation operators are provided. The first, called ‘indirect
replacement’, chooses a comparator to delete from the network, and
then chooses an insertion point at which to place a new random
comparator keeping the total count fixed. The second chooses two
comparators at random and swaps them. The third performs point
mutation on up to three consecutive comparators. These operators
necessitate the usual mutation rate parameter, plus additional
parameters determining the probabilities for each mutation operator.
Interestingly, the best results were obtained when mutation was
restricted exclusively to indirect replacement.

3. HEURISTICS
The following subsections describe 4 intuitively useful heuristics for
guiding the GA evolution and constraining its search space. The
results obtained during testing indicate that, despite their intuitive
plausibility, only one of the four heuristics appears to be useful in
practice.

3.1 Target Depth and Depth Penalty
This heuristic established a target network depth, specifically the
depth of comparison-optimal (having minimal comparator count)
networks as given in Knuth [7]. Networks are penalized for
exceeding this depth by an amount which is proportional to the total
number of comparators in the k smallest levels where k is the
difference between network depth and target network depth. The
purpose of this heuristic is to steer GA evolution toward a desired
network depth, and to do so in a manner that rewards intermediate
steps between a network of depth d, and a network of depth d-1.

73.00%

73.50%

74.00%

74.50%

75.00%

75.50%

76.00%

76.50%

77.00%

77.50%

78.00%

78.50%

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

network depth penalty

go
od

ne
ss

 m
ea

su
re

 (G
)

Figure 4. Network depth penalty vs. goodness (G) for depth

penalty heuristic

1267

In figure 4, a graph of network depth penalty vs. goodness (see
section 2.1) leads the authors to choose a value of 0.06 for this
parameter, which translates to a penalty of 0.06 * 210 = 61.44
subtracted from fitness for each comparator in the k smallest levels
as described above. It should be noted that despite the appearance of
figure 4, the range of outcomes for this parameter in terms of
average best-of-run values span a range of less than one bit-list out
of 1024. 650 runs per parameter value were used in calculating each
goodness value in figure 4.

3.2 Redundant Comparator Penalty
This heuristic penalizes networks for the possession of redundant
comparators. A redundant comparator is one whose removal does
not affect the performance of the network. This is easily determined
by counting the number of times a comparator performs an
exchange operation while the network is attempting to sort all 1024
bit-lists. Comparators for which this total is 0 are redundant.
Networks containing redundant comparators are penalized in
proportion to the number of such comparators present.

While the argument for penalizing redundant comparators is
obvious, it is conceivable that rewarding redundant comparators
might also be beneficial, in that one can imagine that such a scheme
might force the remaining non-redundant comparators to be as
useful as possible. For this reason we experimented with negative
values of this parameter as well as positive, calculating the goodness
measure using 400 runs for each of 15 values of the penalty
parameter between -0.1 and 0.1. Counterintuitively, however, the
testing results obtained seem to indicate that this heuristic is
harmful, both as a penalty and as a reward.

3.3 Extreme Value Penalty
This heuristic penalizes networks for all instances in which extreme
values at the inputs do not end up at the correct outputs. In the case
of 10-input networks, this is determined by examining the outcome
from attempts to sort 20 specific bit-lists, those containing nine 0’s
and a 1, and those containing nine 1’s and a 0. The rationale behind
this heuristic is that in the general case where a network is sorting
inputs of arbitrary numerical values instead of being restricted to
bits, these extreme value bit-lists correspond to a tenth of all inputs
in the general case, but only a 1024th of all inputs in when using bit-
lists. This heuristic is meant to place added value upon these bit-
lists, but like the redundant comparator penalty it too was found to
be harmful. 300 runs went into the calculation of each goodness
measure for this heuristic’s parameter.

3.4 Full Level Enforcement
Many of the sorting networks given in [7] possess initial levels
which contain the maximum number of comparators, specifically N /
2 disjoint comparators where N is the number of network inputs.
This seems to suggest an obvious heuristic, which is to modify
network representation and manipulation such that initial levels are
guaranteed at all times to be ‘full’ (possessing N / 2 disjoint
comparators). This is achieved via appropriate modifications to
crossover and mutation operators.

Mutation within one of these full levels (point-mutation in this
implementation) is followed by a repair operation. Similarly,
crossover operators which disrupt a full level are followed by the
same repair operation. This heuristic adds to the number of
crossover and mutation operators as well. Crossover is now split
into two operations, the first a crossover of initial full network levels

– either uniform crossover of entire levels, or single-point crossover
within levels, followed by a repair operation – and the second a
crossover of the remaining comparators as described in section
2.3.3. Mutation is similarly split into two operations, mutation of
full network levels (either point mutation or comparator reordering)
and mutation of the rest of the network as described in section 2.3.4.

New parameters corresponding to these new mutation and crossover
operators were also subject to optimization, but like the redundant
comparator penalty and the extreme value penalty, this heuristic too
was found to be harmful. 400 runs per goodness calculation were
used for this heuristic.

4. SCALING UP
The GA tuning began with arbitrary settings for its parameters, and
with none of the heuristics from section 3 (see table 1). Its initial
performance, as measured by average best-of-run network score,
was between 1013.50 and 1013.91 (a 95% confidence interval) with
a standard deviation of 4.04. Its outcome distribution is shown in
figure 5.

0

50

100

150

200

250

300

350

99
6

99
8

10
00

10
02

10
04

10
06

10
08

10
10

10
12

10
14

10
16

10
18

10
20

10
22

10
24

bin

fr
eq

ue
nc

y

Figure 5. Best-of-run bin distribution for initial GA settings

Upon completion of tuning, GA performance was between 1018.58
and 1018.90 (95% confidence interval) with a standard deviation of
3.02. Its outcome distribution is shown in figure 6, and the
corresponding optimized parameters are shown in table 1. Figures 5
and 6 display the same set of bins for easy comparison.

0

100

200

300

400

500

600

99
6

99
8

10
00

10
02

10
04

10
06

10
08

10
10

10
12

10
14

10
16

10
18

10
20

10
22

10
24

bin

fre
qu

en
cy

Figure 6. Best-of-run bin distribution after tuning

1268

Table 1. GA parameters before and after tuning

 before after

Population size,
Generations

500, 200 500, 200

Crossover rate 20% 10%

Crossover operators 50% uniform,
50% single-point

30%, 70%

Per Network
Mutation rate

10% 40%

Mutation operators 33%, 33%, 33% 100%, 0%, 0%

Tournament size 4 8

Tournament
probability

80% 100%

Elitism priorities Score. Depth
breaks ties

Score. Depth breaks
ties

Depth penalty 0.0 0.06 (61.44 out of
1024)

The distribution of outcomes clearly shows the superior
performance of the GA after tuning, indicating that the tuning
process was responsible for a substantial performance boost. We
can also see this by looking at the rate at which networks which
perfectly sorted all bit-lists were found. The success rate for the GA
before tuning was 0 out of 1450 runs, and after tuning it was 31 out
of 1400 runs.

4.1 10-Input Networks
The results for 10-input networks are given above. During ‘tuning’
many dozens of optimal networks were produced, such as the one
shown in figure 7, below. This is a 29-comparator, depth-8 network.
It is actually better than the best network given in Knuth [7], and
hence would have been a record-breaker back in 1998 (others have
found equivalent networks in the last several years).

Figure 7. One of many optimal 10-input sorting networks

discovered by the GA

4.2 12-Input Networks
When scaling up to a more difficult instance of the problem there
arises the question of exactly how to perform the scaling. In this
experiment all but two GA parameters are held constant in the step
up from 10-input to 12-input networks. The two parameters
modified were population size and number of generations, each of
which was doubled, quadrupling the number of network evaluations
per run to reflect the fourfold increase in problem difficulty as

measured by the number of bit-lists to sort. Whether or not this is an
appropriate approach is certainly open to further experimentation.
Note also that the network depth penalty (see section 3.1) is scaled
up automatically. The chosen parameter value of 0.06, which had
previously translated to a penalty of 61.44, now becomes 0.06 * 212
= 245.76.

0

2

4

6

8

10

12

14

40
32

40
36

40
40

40
44

40
48

40
52

40
56

40
60

40
64

40
68

40
72

40
76

40
80

40
84

40
88

40
92

40
96

bin

fre
qu

en
cy

Figure 8. Best-of-run bin distribution for 12-input networks

The outcome distribution for the 12-input problem is shown in
figure 8, above. The average best-of-run outcome is between
4065.73 and 4072.52 (95% confidence) with a standard deviation of
15.3. A single success was achieved out of 78 independent runs, and
the resulting optimal network is shown in figure 9. This is a 39-
comparator, depth-9 network, equivalent to the best network given
in Knuth [7].

Figure 9. An optimal 12-input sorting network discovered by the

GA

4.3 14-Input Networks
81 runs were collected for the 14-input problem, and population size
and number of generations were doubled yet again to reflect the
increased problem difficulty. In this case no success was achieved,
although the outcome distribution shown in figure 10 seems to hint
at the possibility that more runs may yield a success. The average
best-of-run network score was between 16311.84 and 16330.21
(95% confidence interval) with a standard deviation of 43.72.

1269

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

16
12

8
16

14
4

16
16

0
16

17
6

16
19

2
16

20
8

16
22

4
16

24
0

16
25

6
16

27
2

16
28

8
16

30
4

16
32

0
16

33
6

16
35

2
16

36
8

16
38

4

bin

fre
qu

en
cy

Figure 10. Best-of-run bin distribution for 14-input networks

5. CONCLUSION
In this paper, we have done careful parameter tuning and statistical
analysis of heuristics for evolving sorting networks. This has
provided both positive and negative results with respect to the value
of several natural heuristics.
We found that, of the four heuristics tested, only depth penalty
showed benefits. The three other heuristics, despite their intuitive
plausibility, did not stand up to rigorous testing. This may be seen as
an object lesson in the value of carefully testing plausible-seeming
heuristics individually, instead of only testing the success of all
heuristics in combination.
We have also implemented an efficient system, which has matched
several previous sorting network records while using only modest
computational resources.

Finally, the statistical analysis on best-of-run distributions is a useful
tool for understanding how well heuristics work, and for predicting
the average waiting time to achieve optimal results. Calculating
correlation coefficients of near-perfect run outcome values with
optimal outcome values validated the use of near-perfect run
outcomes as part of a candidate measurement of GA performance in
determining optimal parameter values, especially in cases for which
perfect outcomes are rare.

There are several natural directions for future research. We believe
that other heuristics may provide better outcomes, which will be a
particularly important consideration for larger network sizes. To
scale up to networks beyond about 16 inputs, new approaches will
be needed - starting perhaps with “progressive sampling” schemes
where a co-evolved testing set of bit-lists similar to that used in [5]
is used in a first pass, and successively more bit-lists in later passes.
Structural approaches [2, 3] as well are clearly important for
reducing the search space.

Sorting networks have been a fascinating computer science
challenge for several decades. Since the early 1990's, evolutionary
computing methods have managed to match several of the best-
known results for moderate network sizes. It will be interesting to
see if evolutionary computing methods can be scaled up to break the
records for large network sizes. We would also suggest that this
problem provides a good test-bed for comparing algorithm
performance, and for carefully studying evolutionary heuristics.

6. ACKNOWLEDGMENTS
We would like to thank Steffen Christensen for several helpful
suggestions.

7. REFERENCES
[1] Sung-Soon Choi and Byung-Ro Moon. A New Approach to the

Sorting Network Problem Evolving Parallel Layers. In
Proceedings of GECCO-2001. Morgan Kaufmann, 2001, pp.
258-265.

[2] Sung-Soon Choi and Byung-Ro Moon. Isomorphism,
Normalization and a Genetic Algorithm for Sorting Networks.
In Proceedings of GECCO-2002. Morgan Kaufmann, 2002,
pp. 327-334.

[3] Sung-Soon Choi and Byung-Ro Moon. More Effective Genetic
Search for the Sorting Network Problem. In Proceedings of
GECCO-2002. Morgan Kaufmann, 2002, pp. 335-342.

[4] Harrison, M. L., and Foster, J. A. Co-evolving Faults to
Improve the Fault Tolerance of Sorting Networks. In
Proceedings of EuroGP 2004. Springer-Verlag, 2004.

[5] Danny Hillis. Co-evolving Parasites Improve Simulated
Evolution as an Optimization Procedure. In Proceedings of
Artificial Life II (1990). Westview Press, 1991.

[6] Hugues Juillé. Evolution of Non-deterministic Incremental
Algorithms as a New Approach for Search in State Spaces. In
Proceedings of ICGA-95. Morgan Kaufmann, 1995, pp. 351-
358.

[7] Donald Knuth. The Art of Computer Programming, Volume 3:
Sorting and Searching (2nd edition). Addison Wesley, 1998.

[8] Sekanina Lukás. Evolving Constructors for Infinitely Growing
Sorting Networks and Medians. In SOFSEM: Theory and
Practice of Computer Science. Springer, 2004, pp. 314-323.

[9] Marek Piotrów. Depth Optimal Sorting Networks Resistant to k
Passive Faults. SIAM Journal on Computing, Volume 33,
Number 6 (2004), pp. 1484-1512.

1270

