
Information Landscapes and the Analysis of Search
Algorithms

Borenstein Yossi
University of Essex

 yboren@essex.ac.uk

Riccardo Poli
University of Essex

rpoli@essex.ac.uk

ABSTRACT
In [15] we introduced the information landscape as a new concept
of a landscape. We showed that for a landscape of a small size,
information landscape theory can be used to predict the
performance of a GA without running the algorithm. Based on
this framework, here we develop a new theoretical model to study
search algorithms in general. Particularly, we are able to infer
important properties of a search algorithm without having
knowledge about its specific operators. We give an example of
this technique for a simple GA.

Categories and Subject Descriptors
F.2.0 [Theory of Computation]: Analysis of algorithms and
problem complexity.

General Terms: Algorithms, Performance, Theory.

Keywords: Fitness landscape, Genetic Algorithm, Theory

1. INTRODUCTION
During the last 20 years many algorithms (metaheuristics) have
been proposed in order to explore black-box problems [1].
Usually a search algorithm tries to infer the position of good new
solutions in the search space based on previously sampled
solutions.
Many metaheuristics have been applied successfully to an ever
increasing number of hard combinatorial optimization problems
such as TSP, vehicle routing, job shop scheduling, and bin
packing. However, in many cases, their remarkable empirical
success is not associated to corresponding robust theoretical
foundations.
Fundamentally, the reason for this is that the intrinsic complexity
of modern metaheuristics makes it difficult to explore their
dynamics theoretically. Most of them combine more than one
search operator. Since it is difficult to analyze the effect of even a
single operator, clearly, the interaction between multiple operators
makes the analysis even more difficult.
The analysis of a search algorithm usually follows one of the
following approaches. A first one tries, despite the difficulties
mentioned above, to give a probabilistic analysis which accounts

for the effect of all the operators in the algorithm. A second
focuses on specific operators. A third approach tries to infer
properties which might make a problem either difficult or easy for
the algorithm to search.
In any case, it is usually easier to construct a theory for restricted
scenarios, e.g. for problems with specific properties. Therefore, an
exact analysis is often given only for specific artificial problems.
We exemplify this, focusing, for the sake of brevity, on the
Genetic Algorithm (GA). Since this is one of the most popular
metaheuristics we think this is an interesting case-study.
The main tools that have frequently been used in the literature to
study search algorithms are either very easy landscapes or very
difficult ones.
Easy landscapes provide an intuition as for the scenarios in which
the algorithm performs well. Usually, it is easier to construct a
theory restricted to those scenarios and validate it with empirical
results. The royal road function is an example [2] of this approach
although the attempt to create easy landscapes failed. The
extensive investigation of problems like the onemax [3] is
another. Difficult landscapes provide similar intuition for
situations where an algorithm fails.
The use of easy and difficult problems is widespread. However,
the definition of “easy” or “difficult” is problematic. A landscape
can be easy or difficult only w.r.t a particular reference. When
considering a new algorithm reference performances are not
available. They need to be discovered through an extensive
theoretical and empirical investigation.
Furthermore, the definition of difficult problems is fuzzy. The
needle-in-a-haystack is a well studied difficult problem [4].
However, it is quite clear that it is difficult in a different way
from, for example, a fully deceptive problem [5]. Even though,
intuitively, the difference between the two is obvious, there is no
explicit definition to distinguish between them.
The simple GA uses a finite population. Its main operators are
crossover and mutation. It can be applied to problems with
different representations (neighborhood structures). Given the
difficulty of analyzing the combined effect of all its operators and
the different possible neighborhood structures, many researchers
study the different operators separately.
In [6][7] some interesting results are obtained for a mutational-
based GA. The properties of crossover are studied in [8], however
only for the artificial problem, onemax. The convergence
properties are studied under the influence of selection only (drift)
in [9].
The dynamical system approach [10] and schema theory [11] are
attempts to study the combined effect of all the operators for a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’05, June 25–29, 2005, Washingtom, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006…$5.00.

1287

simple GA. These are successful but the development of such
models for new search operators and neighborhood structures
takes a lot of time and effort. This is a problem especially when
considering the constant emergence of new variants of the simple
GA. Among them are the variable length GA [12], new
biologically inspired algorithms [13], redundant representations
[14] and many others. Theoretical approaches are not likely to
keep up with all the new variants.
In this paper we use the information landscape framework we
introduced in [15] to study search algorithms. The first section
gives a background on the framework. In section 3, a robust
definition of easy and difficult problems is given and we show
how the hardest and easiest problems for an algorithm can be
constructed without using any knowledge of the algorithm. An
example is given for a simple GA. Section 4 provides a way to
assess the combined effect of the different search operators and
the neighborhood structure. In section 5 we consider this
explicitly for a local search algorithm. We conclude with a
discussion and conclusions (section 6).

2. Background
In [15] we proposed a redefinition of the concept of landscape
that makes the quantity and quality of the information available to
guide a search algorithm explicit. This is why the new landscape
was called an information landscape.
The performance of any search algorithm on any particular
information landscape can be approximated. In order to do so, we
introduced the notion of performance landscape, which was then
used to predict the performance of a GA over landscapes of a very
small size (all 3-bit problems).
Since the work in [15] is the starting point for this paper, in the
next sections we define the notions of information and
performance landscape and discuss interpretations of the two
concepts.

2.1 Information Landscapes
An information landscape is a triple (X, χ , t) including: 1) a set
of configurations X, 2) a notion χ of neighborhood, nearness,
distance or accessibility on X, and 3) a stochastic information
function : [0,1]t X X× → .

For every pair (,)i jx x of elements in X, t gives the probability that

ix is superior to jx . The value of the function t can be viewed as

the outcome of a stochastic tournament selection with tournament
size two. Naturally, the function t can be represented as an
| | | |X X× information matrix M with entries , (,)i j i jm t x x= .

Note that when X is implied we can use the term information
landscape to denote M without ambiguity.
The notion of information landscape does not require the
availability of a fitness function. However, when a fitness function
f is available, we should normally assume:

 1 () ()
(,) 0.5 () ()

0

i j

i j i j

if f x f x
t x x if f x f x

otherwise

>
= =



 (1)

If the fitness function is noisy, t can take values other than 0, 0.5
and 1. Given the information landscape we can construct the
following rank-based fitness function:

,()rank k j
j

f k m=∑ (2)

Note that not all information landscapes can be associated to a
fitness function (the information matrix may not induce a partial
order). We will call invalid those information landscapes that
cannot be derived from a corresponding fitness landscape.
Figure 1 gives an example of a fitness function, a landscape
defined over a real neighborhood structure and the matrix which
represents our information landscape for a bit-string
configuration space.

Gene Fitness Gene 000 001 010 011 100 101 110 111

000 6 000 1 1 1 1 1 1 0

001 5 001 0 0.5 1 1 1 1 0

010 5 010 0 0.5 1 1 1 1 0

011 3 011 0 0 0 1 1 1 0

100 2 100 0 0 0 0 1 0.5 0

101 1 101 0 0 0 0 0 0 0

110 2 110 0 0 0 0 0.5 1 0

111 7 111 1 1 1 1 1 1 1

0

2

4

6

8

000 001 010 011 100 101 110 111

Gene

Fi
tn

es
s

Information
Landscape

Fitness
Function

Fitness
Landscape

Figure 1. Three ways of representing the information given to
a search algorithm: a) a fitness function (represented as a
vector) b) a graph, representing topological properties (fitness
landscape) and c) a matrix representing the outcome of all
possible comparisons (information landscape).
Since (,) 1 (,)i j j it x x t x x= − the matrix (figure 1) presents

symmetries with respect to the diagonal; the gray area marks the
independent elements of the information landscape. Diagonal
elements (omitted for clarity) are all 0.5. Moreover, we exclude
the entries related to the optimum. We assume that we have a way
to identify it, hence once it is found, the search is over.
In order to account for all this in a simple way we use a vector to
store the relevant entries in the matrix:

 1 2 1,2 1,3 1,(, ,...,) (, ,...,)n X XV v v v m m m −= =

where (1)(2) / 2V n X X≡ = − − .

This definition of a landscape allows us to easily define the
distance between two landscapes. Let aV , bV be two information
landscapes, the distance between them is defined as:
 1(,)

i ia b a bd V V v v
n

= −∑ (3)

In addition we are in a position to quantify the amount of
information present in a landscape. The degree d0.5 of the
information landscape is the degree to which the information in
the matrix available to an algorithm is different from 0.5.
Formally, it is the distance between a landscape and the landscape
where all matrix elements are 0.5 normalized to the range [0,1]:
 0.5 2() 0.5id V v

n
= −∑ (4)

(a)

(b)

(c)

1288

2.2 Performance Landscapes
Let :P V → ℜ be a performance measure over the landscape.
For example, P could be the number of fitness evaluations
required to find the global optimum.
P is a complicated function of n variables for which we have no
explicit formulation. However, this function can be estimated
using machine learning techniques.1 As an approximation for P, in
[15] we adopted an n-variate linear function of the form

 0() (0.5)i iP V c c v≅ + −∑ (5)

and we used multivariate linear regression to estimate the
coefficients. We then defined the array ()iC c= as the
performance landscape.
In [15] we indicated how, for a given performance landscape C
and a degree of information 0d , we should expect our algorithm to
provide best performance on the following information landscape:

 ()0.5
max max 0arg max [(0.5)] ()

iv i iV c v d V d= − = (6)

2.3 Interpretation
It is important to understand how an entry vi in the information
landscape and the corresponding coefficient ci in the performance
landscape are related to the performance of an algorithm. (See
Fig. 2.)
The assumption underlying most optimization algorithms is that
applying the search operators to solutions with high fitness (as
opposed to ones with low fitness) is more likely to yield solutions
close to the optimum (we only consider optimizations problems).
In [15], we termed the chance of finding the optimum by applying
the search operators on a point as the effective distance of that
point from the optimum. For example, in the case of a GA, given
a particular population, the effective distance of a string from the
optimum would be the probability that given that this string is
selected into the mating pool, the optimum will be found during
the run. The effective distance is only a function of the search
operators and the neighborhood structure.
The fitness of a solution is not related to the effective distance of
the solution from the optimum. However, the algorithm uses the
fitness of the solution as an indicator for such a distance. The
performance of the algorithm depends on the correlation between
the relative fitness (i.e. the information given by the fitness
function) and the effective distance from the optimum
An entry in the information landscape represents therefore the
assumed relative effective closeness to the optimum (i.e. if mi,j=1
solution “i” is closer to the optimum than solution “j”). Each
element of the performance landscape, on the other hand,
represents the degree to which the effective distance of one
solution is closer to the optimum than another. In other words, the
information landscape states which solution should be assumed to
be better whereas the performance landscape states whether
indeed and by how much a solution is better than another for the
purpose of eventually solving a problem.

1 The training set includes examples of the form (V,P), V being an

information landscape and P being an estimate of P(V) obtained
by running an algorithm on V and measuring performance.

Gene 000 001 010 011 100 101 110 111

000 1 1 1 1 1 1 0

001 0.5 1 1 1 1 0

010 1 1 1 1 0

011 1 1 1 0

100 1 0.5 0

101 0 0

110 0

111 1 1 1 1 1 1 1

Gene 000 001 010 011 100 101 110 111

000 12 23 2 45 0 0 0

001 0 1 6 9 0 0

010 34 7 88 34 0

011 3 54 1 0

100 8 0.5 0

101 6 0

110 0

111 1 1 1 1 1 1 1

Information landscape

Performance landscape

Figure 2. Relation between the information landscape and the
performance landscape. High values in the performance
landscape indicate that the corresponding entries in the
information landscape are important.

2.4 The structure of the paper
The objective of this paper is to show how the performance
landscape can be used, directly and indirectly, in order to analyze
new algorithms.
There is no need for explicit knowledge about the algorithm. As
explained in the previous section, computing the performance
landscape is a simple, 100% empirical procedure.
Once the size of the landscape is chosen (due to the computational
cost, it cannot be a big landscape) a sufficiently large set of pairs
(V,P) can be used as a training set to estimate P. We use a
multivariate linear regression for this purpose. Once the
performance landscape is known, the methods suggested in this
paper can be applied.
Each method is first explained and then a concrete example using
a GA is given. The results obtained for the GA are validated using
schema analysis.
In all the examples the performance landscape is constructed
using two versions of a simple GA. In the first onepoint crossover
is used. In the second, uniform crossover is used. The crossover is
used with 100% probability. The takeover time (i.e. the time it
takes to the entire population to converge to the target solution) is
used as the performance measure. We use a population size of 12.
The maximum number of generations is 400. The search on each
landscape was repeated 100 times. The results are the average of
those runs. The target solution (global optimum), which, without
loss of generality, was the string “111”, is excluded from the first
generation.
We measured the mean takeover time for a sample of 100 valid
landscapes of degree 1 (full information). In order to estimate the
performance landscape (equation 5) we did regression on the
results obtained from running the GA over all such landscapes.
In section 3 we show how we can use the performance landscape
indirectly in order to analyze an algorithm. In section 4 we show
how to do it directly.

3. Indirect measures to explore an algorithm
In this section we show how the performance landscape can be
used indirectly in order to facilitate the analysis of an algorithm.
In particular, we show that this framework can be used in order to
construct case-studies. We focus on the hardest problem and the
easiest one. Rather than using them in order to analyze a GA, we
show that both problems coincide with similar, well studied
problems, in the literature (i.e. onemax and deceptive problem).
The main idea is to demonstrate how beneficial case studies can

1289

be constructed automatically, without using any explicit
knowledge about the algorithm.
In the next subsection we show how different case-studies can be
constructed automatically. In the following one we give a robust
definition to hardness.

3.1 Automatic creation of case studies
The performance landscape can be used in order to predict the
expected performance of the algorithm for any information
landscape. It represents the coefficients (equation 5) that are used
in order to calculate the performance. Each element in the
performance landscape relates to a specific element in the
information landscape (figure 2). The coefficients ci can be either
positive or negative. The corresponding value for (vi-0.5) in
equation 5 can be either positive or negative as well.
The information landscape on which the algorithm is expected to
have the best performance is, therefore, the one which is
completely aligned to the coefficients of the performance
landscape. That is, negative entries in the performance landscape
should correspond to entries with a value of 0 in the information
landscape (similarly for ci>0, vi should be 1). This gives a positive
contribution to the performance. See Vmax in equation 6.
Following similar reasoning the worst (hardest) landscape can be
constructed. Moreover problems with any degree of difficulty can
easily be created using this framework. It can be done in two
ways. The first is to explicitly use the performance landscape. The
second is simply to construct any landscape which is a
combination of the best landscape and a random one.
In section 3.1.1, we demonstrate the creation of a landscape which
gives an optimal performance. In section 3.1.2 we create a
landscape which gives the worst performance. We show using a
static schema analysis that these coincide with the classic
unimodal and fully deceptive problems. The only difference is
that our landscapes were constructed in an automated way without
having any knowledge about the GA.

3.1.1 The optimal landscape
We used equation 6 in order to construct the optimal information
landscapes for the algorithms. Using equation 2 we constructed a
corresponding ranked based fitness functions2.

Table 1. Static schema analysis of the optimal landscape as
predicted by the performance landscape for a simple GA with
one point crossover.

String Fitness Order 3 2 1 0

000 0 Schema 111 11* 1*1 *11 **1 *1* 1** ***

010 1 Fitness 7 6.5 5.5 6 4.75 4.75 4.75 3.5

100 2 Schema 01* 0*1 *01 **0 *0* 0**

001 3 Fitness 3 4 3.5 2.25 2.25 2.25

101 4 Schema 10* 1*0 *10

011 5 Fitness 3 4 3.5

110 6 Schema 00* 0*0 *00

111 7

Fitness 1.5 0.5 1

2 This is only one of many possible fitness landscapes. However,

since we explicitly consider tournament selection, we don’t
need to consider all other equivalent landscapes.

Table 1 gives a static schema analysis for the best predicted
landscape for one point crossover. Schema analysis is known to
be the right tool to analyze the search conducted by the crossover
operator. According to the building blocks hypothesis, an easy
problem would be such that any schema that contains the
optimum (in our case, the string 111) has higher fitness than its
“competitors”. The table reveals that this is indeed the case.
Thus, without having knowledge about the algorithm, the
prediction made using the performance landscape coincides with
that of the schema theorem [16].
The landscape which was predicted for uniform crossover was not
a valid landscape. Therefore, we were not able to do a schema
analysis for it.
These two examples considered a landscape with complete
information (a degree of information equals to 1). However, in
reality this is not always the case. Therefore we constructed the
optimal landscape for a smaller degree of information. In
particular, we wanted to check whether the optimal landscape as
predicted by our model coincides with other known GA-easy
landscapes. The onemax problem is probably the most studied
problem of such a kind. We chose, therefore, to find the optimal
landscape for the degree 15/21 (the degree of onemax). The same
results were obtained for both the one point crossover
performance landscape and the uniform crossover one. The
predicted optimal landscape was indeed onemax.

3.1.2 The worst landscape
Using dual of equation 6 we constructed the worst landscapes as
well. Table 2 gives a static schema analysis for the worst predicted
landscape for one point crossover. The fitness of each string was
calculated according to its rank (equation 2). The table reveals
that the average fitness of each schema that contains the global
optimum (111) is smaller than anyone of its competitors. Thus, it
actually describes a fully deceptive landscape.

Table 2. Static schema analysis of the most difficult landscape
as predicted by the performance landscape for a simple GA
with one point crossover.

String Fitness Order 3 2 1 0

000 0 Schema 111 11* 1*1 *11 **1 *1* 1** ***

010 1 Fitness 7 3.5 4.5 4 3.25 3.25 3.25 3.5

100 2 Schema 01* 0*1 *01 **0 *0* 0**

001 3 Fitness 3 2 2.5 3.75 3.75 3.75

101 4 Schema 10* 1*0 *10

011 5 Fitness 3 2 2.5

110 6 Schema 00* 0*0 *00

111 7 Fitness 4.5 5.5 5

3.2 Assessing hardness
As stated in the introduction the definition of easy or difficult
problems is not simple. Particularly in the EC field it is not clear
what an easy problem is and what a difficult one is.
In this section we provide a robust definition of difficulty of
problems w.r.t any algorithm. We do so by giving three reference
points: the easiest, the hardest and a random problem. The
performance on any other problem can be assessed based on
these.

1290

The construction of the easiest and the most difficult landscapes
was explained in the previous section. In this one we focus on the
definition of a random search. It might seem trivial but as we will
explain, it is not.
There are three possible scenarios:

1. The algorithm searches explicitly in a random way
(random search).

2. The algorithm does not search in a random way, but
there is no information in the landscape to guide the
search.

3. The algorithm does not search in a random way but the
information given by the landscape is random.

With respect to our framework the three ways are equivalent to: 1)
a performance landscape with all entries equal to zero (the
expected performance on any possible problem, in the case of
optimization, is the same) 2) an information landscapes with all
entries equal to 0.5 (degree of information equals to zero) and 3)
an information landscape with no correlation with the
performance landscape (see equation 5).
Randomness is usually a property of a difficult problem, but the
three different types of randomness describe in practice three
different degrees of difficulty.
The first algorithm, random search, does not assume anything
about the structure of the landscape and hence its performance
depends only on the size of the landscape (only optimization
problems are considered).
In the second case, i.e. when there is no information in the
landscape, one might think that the performance of an algorithm
should be equivalent to that of random search. This is not the
case. The search operators of the algorithm induce a bias on the
search. This bias usually makes the algorithm less efficient than a
random search [17].
Generally, based on equation 6, a random landscape and a
landscape with no information should give the same performance.
The difference between these two landscapes is that for the first
the outcome of every tournament (an entry in the information
landscape) is randomly fixed, whereas for the second it is random.
The extent to which the performance measured on these two
landscapes differs gives an indication of the non-linearities in the
performance measure P.
It is worth noting that these three scenarios and their
corresponding performances can be used in order to characterize
the algorithm. E.g. the extent to which random search performs
better on a random landscape than the algorithm might be an
interesting measure of the sensitivity of the algorithm to noise.
Since in this paper we focus on assessing difficulty of problems
for a given algorithm, we will select the performance of the
algorithm on a random landscape as our reference (threshold) to
divide easy from hard problems.

4. Direct measures to explore an algorithm
In the previous section we were able to demonstrate how the
performance landscape can be used in order to construct different
case studies. These can be used to indirectly infer the properties of
the algorithm. We showed, using schema analysis, that the easiest
and most difficult landscapes coincide with a unimodal landscape

and a fully deceptive problem. Moreover, we suggested using the
performance on random landscapes as a reference point to the
performance for the algorithm.
In this section we demonstrate how to infer properties of the
fitness landscape. This can be done by exploring the performance
landscape. In section 4.1 we explain how the performance
landscape can be interpreted. In section 4.2, we show how this can
be done in practice. We conclude (section 4.3) with a partial
validation of the results obtained in the examples given in sections
4.1 & 4.2.

4.1 Understanding the performance
landscape
Since the analysis suggested in this paper is mainly dependent on
the performance landscape, we give, in this section, additional
explanations of its components.
We start with an example. Consider a (bit-flip) hill climber on a
unimodal landscape. Let us assume that tournament selection is
used in order to pick the initial starting point of the search. In the
case of a binary representation the closer the initial search point to
the optimum (w.r.t the neighborhood structure) is, the better the
performance of the algorithm will be. Let 111 be the optimum.
The optimal information landscape can tell us that the string 011
is a better candidate than 001, and that 011 is better than 000 as
well. However, the extent to which 011 is closer (in the bit-flip
sense) to the optimum when compared with 000 is higher than for
001. Therefore, the magnitude of element

011,000c in the

performance landscape is expected to be bigger than
011,001c .

In general, given the choice between two alternative solutions as
the basis for the next step of the search, ideally, the algorithm
should choose the one that will maximize the probability to find
the optimum and minimize the number of the required steps. Each
entry in the performance landscape can be interpreted, therefore,
as an indicator of the difference in the effective distance (or the
conditional probability of the algorithm to find the optimum)
given that either of the two points is selected. That is:

, arg arg

((|) (|))
i j t et i j t et j i

c p X X X p X X Xα ∧ ¬ − ∧ ¬≅ (7)

where
arg

(|)
t et i j

p X X X∧ ¬ is the probability that the algorithm

will find the target solution given that
i

X is chosen in the

tournament between
i

X and
j

X and α is a constant.

Figure 3. A gray-scale image representing the relative values
of the performance landscape. On the left is the performance
landscape of one point crossover, on the right is the
performance landscape of uniform crossover.

1291

Figure 3 shows (as grey scale images) the two performance
landscapes that were introduced in section 3.1. A dark color
represents a relevant entry (a coefficient with high absolute value)
and a light color an insignificant one.
A quick look in the table shows us, for example, that for the two
landscapes, the difference between the string 100 and 001 is not
important. However, the difference between 000 and 110 is.
Furthermore, it is easy to notice that the two landscapes
(algorithms) differ in their sensitivity to the comparison between
011 and 010.

4.2 Analyzing a search algorithm
The performance landscape gives us the difference between the
effective distance of any two solutions. This depends on the
search operators used by the algorithm. A careful examination of
these values can help assess explicitly the effects of the interaction
of the search operators.
The coefficients represented by the performance landscape are not
precise. They are based on empirical results and therefore they can
be noisy. In order to account for the noise in these values, we
need to use a clustering algorithm. The clusters give us a robust
way to infer the properties of the algorithm. The original values
can be used for a finer analysis of the search operators.
In order to demonstrate how this can be done, we used the k-
means algorithm to cluster the entries of each of the two
performance landscapes described in section 4.1.
Figure 4 gives us the result of the clustering. The tables present
the optimal clusters and the value of each entry in the
performance landscape. The entries are sorted in ascending order.
The curly brackets next to the tables show alternative, sub optimal
clusters.

Value Entry
0.06 010 100
0.21 011 101
0.46 001 100
0.77 011 110
0.82 101 110
0.84 001 010
5.23 000 100
5.49 000 001
5.53 000 010
10.1 011 100
10.5 001 110
10.7 010 101
12 001 011

12.3 100 101
12.5 100 110
12.7 010 011
12.7 010 110
12.7 001 101
15 000 110

15.6 000 011
16.1 000 101

Uniform Crossover
Value Entry
0.09 011 110
0.24 001 100
2.7 001 010
2.8 101 110
2.9 010 100

2.95 011 101
3.83 000 010
6.79 000 100
7.46 000 001
9.26 011 100
9.38 001 110
9.63 100 101
9.86 001 101
11.8 010 101
12 100 110

12.8 001 011
13.1 000 101
17.9 000 011
18.1 000 110
19.1 010 011
19.4 010 110

One point Crossover

Figure 4. The clusters obtained with the k-means algorithm for
the performance landscape of GAs using one-point and
uniform crossover. The curly brackets represent alternative
clusters.
The tables in figure 4 can be used in order to calculate the relative
distance of the solutions from one another. Figure 5 plots the
relative effective distance of each point from the optimum. For
simplicity we do it on a one dimensional graph. Some of the
information in the tables is lost. However, in this way we can
show the main properties in a clear way.

011
110 111101100

001010000

111
100
010
001

011
101
110

000

(b) One-point crossover

(a) Uniform crossover

Figure 5. Effective distances for uniform crossover (a) and one
point crossover (b).
Figure 5.a gives the results for uniform crossover. It is clear that
the effective distance in this scenario is equivalent to the distance
defined by the neighborhood structure. Indeed uniform crossover
is not biased w.r.t the position of the bits in the string. The
distance from the optimum is a good indicator of the probability
of producing the optimum by the uniform crossover operator.
A careful examination of the corresponding table in Figure 4
reveals an even more interesting picture. The entries c001,110,
c010,101, and c100,011 have lower values than the other entries in the
third cluster. This cannot be explained by the neighborhood
structure. A possible explanation is the fact that these entries
represent a competition (tournament) between complementary
(w.r.t the target solution) strings. Since the population is finite
and one of the two complementary strings was not chosen to go
into the mating pool, the probability that the crossover operator
creates the optimum decreases.
Figure 5.b gives the results for one-point crossover. This operator
is biased w.r.t bit position. In particular, the strings 010 and 101
cannot create the optimum. This is the reason for the slight
difference of the positions for these strings.
The corresponding table in Figure 4 reveals some additional
interesting properties in this case as well. Firstly, a smaller
effective distance between complementary strings exists here as
well. Moreover, notice that the value of c010,110 ,for example, is
higher than c000,110. It means that a landscape for which the string
110 wins on 000 but looses to 010 is more difficult than the
opposite case (110 looses to 000 but wins on 010). This is
completely counter-intuitive. However, the string “010” is a
possible future competitor of the string “001” (the complementary
of “110”). Therefore, when considering more than one generation,
this reduces the probability to produce the optimum.
The values of our performance landscape could be further
analyzed. However the objective of this paper is to exemplify the
way this framework can be used, rather than have a through
analysis of any particular algorithm. It is important to emphasize
that our technique (i.e. computing the performance landscape and
then clustering it) does not assume anything about the algorithm.

4.3 Validation of the results
In order to validate the results obtained for the performance
landscape we used a simplified version of equation 7

, arg arg

((|) (|))
i j t et i t et j

c p X X p X Xα −≅ (8)

where we consider only the absolute probability of finding the
optimum given a particular string.
In our case, the probability of the algorithm finding the optimum
given a particular string can be approximated as the probability to

1292

produce the optimum string (111) using the crossover operator.
This is true only for one generation. Furthermore, we assume that
the probability to select any of the other strings is equal.

 0 0(111|) () (,)s i c ip x p x p x x=∑ (9)

where 0(111|)p x is the probability to produce the optimal

string given that 0x is chosen in a tournament, ()s ip x is the

probability to select ix (for the sake of simplicity, we assume that

it equals
1
N

) and 0(,)c ip x x is the probability that the crossover

operator will produce the string 111.
Table 3 gives us this probability for each point in the search
space. In the case of uniform crossover, this probability was
calculated for one generation. For one point crossover, it was
calculated for two generations. Following equation 8 we can now
estimate the importance of each entry in the performance
landscape. Entries which belong to the same cluster should have
similar importance.

Table 3. The probabilities of the GA finding the target solution
using each of the possible points in the space.

One point crossover String Uniform
Crossover First

Generation
Second Generation

000 0.015625 0 0.046875

001 0.046875 0.0625 0.09375

010 0.046875 0 0.078125

011 0.109375 0.1875 0.15625

100 0.046875 0.0625 0.09375

101 0.109375 0.125 0.140625

110 0.109375 0.1875 0.15625

This is indeed the case for uniform crossover. The clusters
obtained by the k-means algorithm indeed matched the clusters
obtained by applying equation 8.
Since this model is very simplified, for the case of the one point
crossover the clusters obtained do not show a perfect match.
However, the correlation between those values and the values of
the entries in the performance landscape (0.95) reveals that most
of the clusters can be explained.
In any case, these probabilities account more for general
properties rather than for fine ones (see previous section).

4.4 Emergence of neighborhood structure
In the previous section we were able to find the properties of a
search algorithm using a simple analysis of the performance
landscape. Obviously this in turn depends on the neighborhood
structure as well. Indeed, the clusters obtained for uniform
crossover could give us an idea of the connectivity of the search
space (e.g. the distance between 110 and 000 is maximal).
The performance landscape summarizes the contribution of the
different components of the algorithm (i.e. operators,
neighborhood structure). The objective of this section is to

illustrate this, particularly for the neighborhood structure. We
show explicitly that for local search, the results are straight
forward. Since in local search some points in the search space
cannot be reached from others, certain entries in the performance
landscape will be zero (having no relevance to the search).
In order to show this, we found the performance landscapes of a
simple local search, with two different neighborhood structures:
one based on a one bit flip as a local improvement and one based
on a natural representation. We used a simple hill-climber. The
performance measure was the number of times the algorithm
found the solution in 5000 fitness evaluations. Each time the
algorithm reached a local optimum, the algorithm restarted from a
different random position. The size of the landscape was 8.
Figure 6 shows how the connectivity of the search space can be
predicted by the performance landscape. In order to visualize the
landscape structure more easily, we present this time the
symmetric part of the performance landscape as well.

Figure 6. Image representation of two performance landscapes
for a hill-climber. The neighborhood structure of the left
image was one for natural numbers, that of the right one was
hamming neighborhood. The stars illustrate that the
neighborhood structure can be reconstructed from the
performance landscape

5. Discussion
Developing a theoretical framework for the analysis of a new
algorithm is difficult. The constant production of new
metaheuristics makes the gap between theory and practice hard to
bridge.
In this paper we suggest to use the performance landscape as a
tool to help the theoretical analysis of new algorithms. It is a
general tool. It can be applied in the same way to any algorithm.
It can be used without the need of going through the process of
analyzing the specific properties of the algorithm.
The performance landscape analysis provides test problems of
any degree of difficulty. It gives a framework on which the
difficulty of other (real world) problems can be assessed in a
robust way. Furthermore, it gives information about the combined
effect of the neighborhood structure and the search operators.
Naturally, it is not possible to completely avoid considering the
details of the algorithm. In fact, having this knowledge as a
starting point makes the analysis much more efficient.
The GA is perhaps one of the most studied metaheuristics. In
order to validate our performance landscape analysis framework,
we gave an example illustrating how it can be applied to the study
of GA. We constructed easy and difficult landscapes. Using a
static schema analysis we proved that the predicted optimal and

1293

worst landscapes coincide with those predicted by traditional GA
theory.
The performance landscape gave us information that otherwise
could be derived only by applying a complex theory (schema
analysis). Furthermore, it gave us this information without having
any knowledge whatsoever about the algorithm.
It is not possible to compute performance landscapes of big size.
Naturally, the larger the landscape is the more likely it is to unfold
more of the complexity of the algorithm. The empirical results of
this paper were obtained by analyzing a landscape of size 8. Still
the results gave many insights about the GA in an automatic way.
We believe that some of our results can be generalized. In
particular, the properties of best and worst landscapes of small
size could be analyzed and then best and worst landscapes can be
constructed for bigger sizes.
Studying the clusters of the performance landscape can produce
different approaches for the study of realistic landscapes.
Furthermore, the analysis of large landscapes could be performed
by focusing only on particular areas on the performance
landscape. This can be done by leaving most of the entries
constant and varying only the specific areas of interest.

6. Conclusions
The study of a new metaheuristic is a long, iterative process. It
begins with a basic analysis of the algorithm which gives rise to
hypotheses about its properties. This is then compared and
contrasted with empirical evidence, which either supports or does
not support the hypotheses. If it doesn’t, one must start all over
again.
Exact properties of the algorithm can be calculated in a
probabilistic manner based directly on the search operators.
However, this is very complicated, particularly for new and
complex metaheuristics.
In this paper we have introduced a powerful tool which can boost
the theoretical analysis of new metaheuristics. In particular, it
provides:

1. Instances of true easy and difficult problems specific to
an algorithm.

2. Reference problems that can be used as indicators to the
difficulty of other problems.

3. A way to assess the properties of the combined effect of
the neighborhood structure and the search operators.

All this can be done in an automatic, simple way - without the
need of a lengthy and complicated analysis of the search
algorithm. We strongly believe that using this technique as the
first step when analyzing a new algorithm can save valuable
research time and effort.

7. Acknowledgment
This work was supported by the Anglo-Jewish-Association and
the Harold Hyam Wingate Foundation.

8. REFERENCES
[1] C. Blum and A.Roli. Metaheuristics in combinatorial

optimization: Overview and conceptual comparison.
ACM Comput. Surv. 35(3): 268-308, 2003.

[2] S.Forrest and M.Mitchell. Relative Building Block
Fitness and the Building Block Hypothesis. In D.
Whitley (ed.) Foundations of Genetic Algorithms 2.
Morgan Kaufmann, San Mateo, CA, 1992.

[3] Stefan Droste: Analysis of the (1+1) EA for a Noisy
OneMax. GECCO (1) 1088-1099, 2004.

[4] A.H.Right, J.E.Row, J.R.Neil. Analysis of the Simple
genetic Algorithm on the Single-peak and Double-peak
Landscapes. In Proceedings of the 2002 Congress on
Evolutionary Computation CEC 2002. Hawaii, USA,
pages 214-219, 2002.

[5] D. E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Morgan
Kaufmann, 1989.

[6] Stefan Droste, Thomas Jansen, Ingo Wegener: On the
analysis of the (1+1) evolutionary algorithm. Theor.
Comput. Sci. 276(1-2): 51-81, 2002.

[7] Thomas Jansen, Ingo Wegener: On the Choice of the
Mutation Probability for the (1+1) EA. PPSN 2000: 89-
98, 2002.

[8] C.Höhn and C.R.Reeves (1996) The crossover
landscape for the onemax problem. In J.Alander (Ed.)
Proceedings of the 2nd Nordic Workshop on Genetic
Algorithms and their Applications, University of Vaasa
Press, Vaasa, Finland, pages 27-43, 1996.

[9] H. Asoh and H. Muehlenbein. On the mean
convergence time of evolutionary algorithms without
selection and mutation. In PPSN III, volume 866 of
Lecture Notes in Computer Science, pages 88-97.
Springer-Verlag, 1994.

[10] Vose, M.D. The Simple Genetic Algorithm. MIT Press,
Cambridge, 1999

[11] Riccardo Poli, Christopher R. Stephens, Alden H.
Wright, and Jonathan E. Rowe, ``On the Search Biases
of Homologous Crossover in Linear Genetic
Programming and Variable-length Genetic Algorithms'',
GECCO, Morgan Kaufmann, 2002.

[12] C.-Y. Lee, E. K. Antonsson: Variable Length Genomes
for Evolutionary Algorithms. GECCO 2000: 806, 2000.

[13] Anabela Simões, Ernesto Costa: Parametric Study To
Enhance The Genetic Algorithm's Performance When
Using Transformation. GECCO 2002: 697, 2002.

[14] Franz Rothlauf. Representations for Genetic and
Evolutionary Algorithms. Springer 2002.

[15] Y.Borenstein and R.Poli. Information landscapes. In
Proceedings of GECCO, ACM, 2005.

[16] J.H. Holland. Adaptation in Natural and Artificial
Systems: An Introductory Analysis with Applications to
biology, control and artificial intelligence. MIT Press,
1998.

[17] Y.Borenstein and R.Poli. Fitness distribution and GA
hardness. In Proceedings of PPSN, Springer, 2004.

1294

