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ABSTRACT 
In [15] we introduced the information landscape as a new concept 
of a landscape. We showed that for a landscape of a small size, 
information landscape theory can be used to predict the 
performance of a GA without running the algorithm. Based on 
this framework, here we develop a new theoretical model to study 
search algorithms in general. Particularly, we are able to infer 
important properties of a search algorithm without having 
knowledge about its specific operators. We give an example of 
this technique for a simple GA. 

Categories and Subject Descriptors 
F.2.0 [Theory of Computation]: Analysis of algorithms and 
problem complexity. 

General Terms: Algorithms, Performance, Theory. 

Keywords: Fitness landscape, Genetic Algorithm, Theory 

1. INTRODUCTION 
During the last 20 years many algorithms (metaheuristics) have 
been proposed in order to explore black-box problems [1]. 
Usually a search algorithm tries to infer the position of good new 
solutions in the search space based on previously sampled 
solutions.  
Many metaheuristics have been applied successfully to an ever 
increasing number of hard combinatorial optimization problems 
such as TSP, vehicle routing, job shop scheduling, and bin 
packing. However, in many cases, their remarkable empirical 
success is not associated to corresponding robust theoretical 
foundations.  
Fundamentally, the reason for this is that the intrinsic complexity 
of modern metaheuristics makes it difficult to explore their 
dynamics theoretically. Most of them combine more than one 
search operator. Since it is difficult to analyze the effect of even a 
single operator, clearly, the interaction between multiple operators 
makes the analysis even more difficult. 
The analysis of a search algorithm usually follows one of the 
following approaches. A first one tries, despite the difficulties 
mentioned above, to give a probabilistic analysis which accounts 

for the effect of all the operators in the algorithm. A second 
focuses on specific operators. A third approach tries to infer 
properties which might make a problem either difficult or easy for 
the algorithm to search. 
In any case, it is usually easier to construct a theory for restricted 
scenarios, e.g. for problems with specific properties. Therefore, an 
exact analysis is often given only for specific artificial problems. 
We exemplify this, focusing, for the sake of brevity, on the 
Genetic Algorithm (GA). Since this is one of the most popular 
metaheuristics we think this is an interesting case-study. 
The main tools that have frequently been used in the literature to 
study search algorithms are either very easy landscapes or very 
difficult ones. 
Easy landscapes provide an intuition as for the scenarios in which 
the algorithm performs well. Usually, it is easier to construct a 
theory restricted to those scenarios and validate it with empirical 
results. The royal road function is an example [2] of this approach 
although the attempt to create easy landscapes failed. The 
extensive investigation of problems like the onemax [3] is 
another. Difficult landscapes provide similar intuition for 
situations where an algorithm fails. 
The use of easy and difficult problems is widespread. However, 
the definition of “easy” or “difficult” is problematic. A landscape 
can be easy or difficult only w.r.t a particular reference. When 
considering a new algorithm reference performances are not 
available. They need to be discovered through an extensive 
theoretical and empirical investigation.  
Furthermore, the definition of difficult problems is fuzzy. The 
needle-in-a-haystack is a well studied difficult problem [4]. 
However, it is quite clear that it is difficult in a different way 
from, for example, a fully deceptive problem [5]. Even though, 
intuitively, the difference between the two is obvious, there is no 
explicit definition to distinguish between them. 
The simple GA uses a finite population. Its main operators are 
crossover and mutation. It can be applied to problems with 
different representations (neighborhood structures). Given the 
difficulty of analyzing the combined effect of all its operators and 
the different possible neighborhood structures, many researchers 
study the different operators separately.  
In [6][7] some interesting results are obtained for a mutational-
based GA. The properties of crossover are studied in [8], however 
only for the artificial problem, onemax. The convergence 
properties are studied under the influence of selection only (drift) 
in [9].  
The dynamical system approach [10] and schema theory [11] are 
attempts to study the combined effect of all the operators for a 
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simple GA. These are successful but the development of such 
models for new search operators and neighborhood structures 
takes a lot of time and effort. This is a problem especially when 
considering the constant emergence of new variants of the simple 
GA. Among them are the variable length GA [12], new 
biologically inspired algorithms [13], redundant representations 
[14] and many others. Theoretical approaches are not likely to 
keep up with all the new variants.  
In this paper we use the information landscape framework we 
introduced in [15] to study search algorithms. The first section 
gives a background on the framework. In section 3, a robust 
definition of easy and difficult problems is given and we show 
how the hardest and easiest problems for an algorithm can be 
constructed without using any knowledge of the algorithm. An 
example is given for a simple GA. Section 4 provides a way to 
assess the combined effect of the different search operators and 
the neighborhood structure. In section 5 we consider this 
explicitly for a local search algorithm. We conclude with a 
discussion and conclusions (section 6). 

2. Background 
In [15] we proposed a redefinition of the concept of landscape 
that makes the quantity and quality of the information available to 
guide a search algorithm explicit.  This is why the new landscape 
was called an information landscape. 
The performance of any search algorithm on any particular 
information landscape can be approximated. In order to do so, we 
introduced the notion of performance landscape, which was then 
used to predict the performance of a GA over landscapes of a very 
small size (all 3-bit problems).  
Since the work in [15] is the starting point for this paper, in the 
next sections we define the notions of information and 
performance landscape and discuss interpretations of the two 
concepts. 

2.1 Information Landscapes 
An information landscape is a triple (X, χ , t) including: 1) a set 
of configurations X, 2) a notion χ of neighborhood, nearness, 
distance or accessibility on X, and 3) a stochastic information 
function : [0,1]t X X× → . 

For every pair ( , )i jx x of elements in X, t gives the probability that 

ix is superior to jx . The value of the function t can be viewed as 

the outcome of a stochastic tournament selection with tournament 
size two. Naturally, the function t can be represented as an 
| | | |X X× information matrix M  with entries , ( , )i j i jm t x x= . 

Note that when X is implied we can use the term information 
landscape to denote M without ambiguity.  
The notion of information landscape does not require the 
availability of a fitness function. However, when a fitness function 
f is available, we should normally assume:  

 1 ( ) ( )
( , ) 0.5 ( ) ( )

0

i j

i j i j

if f x f x
t x x if f x f x

otherwise

>
= =



 (1) 

If the fitness function is noisy, t can take values other than 0, 0.5 
and 1. Given the information landscape we can construct the 
following rank-based fitness function: 
 

,( )rank k j
j

f k m=∑  (2) 

Note that not all information landscapes can be associated to a 
fitness function (the information matrix may not induce a partial 
order). We will call invalid those information landscapes that 
cannot be derived from a corresponding fitness landscape.  
Figure 1 gives an example of a fitness function, a landscape 
defined over a real neighborhood structure and the matrix which 
represents our information landscape for a bit-string 
configuration space.  

Gene Fitness Gene 000 001 010 011 100 101 110 111

000 6 000 1 1 1 1 1 1 0

001 5 001 0 0.5 1 1 1 1 0

010 5 010 0 0.5 1 1 1 1 0

011 3 011 0 0 0 1 1 1 0

100 2 100 0 0 0 0 1 0.5 0

101 1 101 0 0 0 0 0 0 0

110 2 110 0 0 0 0 0.5 1 0

111 7 111 1 1 1 1 1 1 1
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Figure 1. Three ways of representing the information given to 
a search algorithm: a) a fitness function (represented as a 
vector) b) a graph, representing topological properties (fitness 
landscape) and c) a matrix representing the outcome of all 
possible comparisons (information landscape).  
Since ( , ) 1 ( , )i j j it x x t x x= − the matrix (figure 1) presents 

symmetries with respect to the diagonal; the gray area marks the 
independent elements of the information landscape. Diagonal 
elements (omitted for clarity) are all 0.5. Moreover, we exclude 
the entries related to the optimum. We assume that we have a way 
to identify it, hence once it is found, the search is over.  
In order to account for all this in a simple way we use a vector to 
store the relevant entries in the matrix: 

              1 2 1,2 1,3 1,( , ,..., ) ( , ,..., )n X XV v v v m m m −= =  

where ( 1)( 2) / 2V n X X≡ = − − . 

This definition of a landscape allows us to easily define the 
distance between two landscapes. Let aV , bV  be two information 
landscapes, the distance between them is defined as: 
 1( , )

i ia b a bd V V v v
n

= −∑  (3) 

In addition we are in a position to quantify the amount of 
information present in a landscape. The degree d0.5 of the 
information landscape is the degree to which the information in 
the matrix available to an algorithm is different from 0.5. 
Formally, it is the distance between a landscape and the landscape 
where all matrix elements are 0.5 normalized to the range [0,1]:  
 0.5 2( ) 0.5id V v

n
= −∑  (4) 

(a)

(b)

(c)
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2.2 Performance Landscapes 
Let :P V → ℜ  be a performance measure over the landscape. 
For example, P could be the number of fitness evaluations 
required to find the global optimum. 
P is a complicated function of n variables for which we have no 
explicit formulation. However, this function can be estimated 
using machine learning techniques.1 As an approximation for P, in 
[15] we adopted an n-variate linear function of the form 

 0( ) ( 0.5)i iP V c c v≅ + −∑  (5) 

and we used multivariate linear regression to estimate the 
coefficients. We then defined the array ( )iC c=  as the 
performance landscape. 
In [15] we indicated how, for a given performance landscape C 
and a degree of information 0d , we should expect our algorithm to 
provide best performance on the following information landscape: 

 ( )0.5
max max 0arg max [ ( 0.5)] ( )

iv i iV c v d V d= − =  (6) 

2.3 Interpretation  
It is important to understand how an entry vi in the information 
landscape and the corresponding coefficient ci in the performance 
landscape are related to the performance of an algorithm. (See 
Fig. 2.) 
The assumption underlying most optimization algorithms is that 
applying the search operators to solutions with high fitness (as 
opposed to ones with low fitness) is more likely to yield solutions 
close to the optimum (we only consider optimizations problems). 
In [15], we termed the chance of finding the optimum by applying 
the search operators on a point as the effective distance of that 
point from the optimum. For example, in the case of a GA, given 
a particular population, the effective distance of a string from the 
optimum would be the probability that given that this string is 
selected into the mating pool, the optimum will be found during 
the run. The effective distance is only a function of the search 
operators and the neighborhood structure. 
The fitness of a solution is not related to the effective distance of 
the solution from the optimum. However, the algorithm uses the 
fitness of the solution as an indicator for such a distance. The 
performance of the algorithm depends on the correlation between 
the relative fitness (i.e. the information given by the fitness 
function) and the effective distance from the optimum 
An entry in the information landscape represents therefore the 
assumed relative effective closeness to the optimum (i.e. if mi,j=1 
solution “i” is closer to the optimum than solution “j”). Each 
element of the performance landscape, on the other hand, 
represents the degree to which the effective distance of one 
solution is closer to the optimum than another. In other words, the 
information landscape states which solution should be assumed to 
be better whereas the performance landscape states whether 
indeed and by how much a solution is better than another for the 
purpose of eventually solving a problem. 

                                                                 
1 The training set includes examples of the form (V,P), V being an 

information landscape and P being an estimate of P(V) obtained 
by running an algorithm on V and measuring performance. 

 

Gene 000 001 010 011 100 101 110 111

000 1 1 1 1 1 1 0

001 0.5 1 1 1 1 0

010 1 1 1 1 0

011 1 1 1 0

100 1 0.5 0

101 0 0

110 0

111 1 1 1 1 1 1 1

Gene 000 001 010 011 100 101 110 111

000 12 23 2 45 0 0 0

001 0 1 6 9 0 0

010 34 7 88 34 0

011 3 54 1 0

100 8 0.5 0

101 6 0

110 0

111 1 1 1 1 1 1 1

Information landscape

Performance landscape

 
Figure 2. Relation between the information landscape and the 
performance landscape. High values in the performance 
landscape indicate that the corresponding entries in the 
information landscape are important.  

2.4 The structure of the paper  
The objective of this paper is to show how the performance 
landscape can be used, directly and indirectly, in order to analyze 
new algorithms.  
There is no need for explicit knowledge about the algorithm.  As 
explained in the previous section, computing the performance 
landscape is a simple, 100% empirical procedure.  
Once the size of the landscape is chosen (due to the computational 
cost, it cannot be a big landscape) a sufficiently large set of pairs 
(V,P) can be used as a training set to estimate P. We use a 
multivariate linear regression for this purpose. Once the 
performance landscape is known, the methods suggested in this 
paper can be applied.  
Each method is first explained and then a concrete example using 
a GA is given. The results obtained for the GA are validated using 
schema analysis.  
In all the examples the performance landscape is constructed 
using two versions of a simple GA. In the first onepoint crossover 
is used. In the second, uniform crossover is used. The crossover is 
used with 100% probability. The takeover time (i.e. the time it 
takes to the entire population to converge to the target solution) is 
used as the performance measure. We use a population size of 12. 
The maximum number of generations is 400. The search on each 
landscape was repeated 100 times. The results are the average of 
those runs. The target solution (global optimum), which, without 
loss of generality, was the string “111”, is excluded from the first 
generation.  
We measured the mean takeover time for a sample of 100 valid 
landscapes of degree 1 (full information). In order to estimate the 
performance landscape (equation 5) we did regression on the 
results obtained from running the GA over all such landscapes. 
In section 3 we show how we can use the performance landscape 
indirectly in order to analyze an algorithm. In section 4 we show 
how to do it directly. 

3. Indirect measures to explore an algorithm  
In this section we show how the performance landscape can be 
used indirectly in order to facilitate the analysis of an algorithm. 
In particular, we show that this framework can be used in order to 
construct case-studies. We focus on the hardest problem and the 
easiest one. Rather than using them in order to analyze a GA, we 
show that both problems coincide with similar, well studied 
problems, in the literature (i.e. onemax and deceptive problem). 
The main idea is to demonstrate how beneficial case studies can 
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be constructed automatically, without using any explicit 
knowledge about the algorithm.  
In the next subsection we show how different case-studies can be 
constructed automatically. In the following one we give a robust 
definition to hardness. 

3.1 Automatic creation of case studies 
The performance landscape can be used in order to predict the 
expected performance of the algorithm for any information 
landscape. It represents the coefficients (equation 5) that are used 
in order to calculate the performance. Each element in the 
performance landscape relates to a specific element in the 
information landscape (figure 2). The coefficients ci can be either 
positive or negative. The corresponding value for (vi-0.5) in 
equation 5 can be either positive or negative as well.  
The information landscape on which the algorithm is expected to 
have the best performance is, therefore, the one which is 
completely aligned to the coefficients of the performance 
landscape. That is, negative entries in the performance landscape 
should correspond to entries with a value of 0 in the information 
landscape (similarly for ci>0, vi should be 1). This gives a positive 
contribution to the performance. See Vmax in equation 6. 
Following similar reasoning the worst (hardest) landscape can be 
constructed. Moreover problems with any degree of difficulty can 
easily be created using this framework. It can be done in two 
ways. The first is to explicitly use the performance landscape. The 
second is simply to construct any landscape which is a 
combination of the best landscape and a random one. 
In section 3.1.1, we demonstrate the creation of a landscape which 
gives an optimal performance. In section 3.1.2 we create a 
landscape which gives the worst performance. We show using a 
static schema analysis that these coincide with the classic 
unimodal and fully deceptive problems. The only difference is 
that our landscapes were constructed in an automated way without 
having any knowledge about the GA.  

3.1.1 The optimal landscape 
We used equation 6 in order to construct the optimal information 
landscapes for the algorithms. Using equation 2 we constructed a 
corresponding ranked based fitness functions2.  

Table 1. Static schema analysis of the optimal landscape as 
predicted by the performance landscape for a simple GA with 
one point crossover. 

String Fitness Order 3 2 1 0 

000 0 Schema 111 11* 1*1 *11 **1 *1* 1** *** 

010 1 Fitness 7 6.5 5.5 6 4.75 4.75 4.75 3.5 

100 2 Schema  01* 0*1 *01 **0 *0* 0**  

001 3 Fitness  3 4 3.5 2.25 2.25 2.25  

101 4 Schema  10* 1*0 *10     

011 5 Fitness  3 4 3.5     

110 6 Schema  00* 0*0 *00     

111 7 

 

Fitness  1.5 0.5 1     

 

                                                                 
2 This is only one of many possible fitness landscapes. However, 

since we explicitly consider tournament selection, we don’t 
need to consider all other equivalent landscapes. 

Table 1 gives a static schema analysis for the best predicted 
landscape for one point crossover. Schema analysis is known to 
be the right tool to analyze the search conducted by the crossover 
operator. According to the building blocks hypothesis, an easy 
problem would be such that any schema that contains the 
optimum (in our case, the string 111) has higher fitness than its 
“competitors”.  The table reveals that this is indeed the case. 
Thus, without having knowledge about the algorithm, the 
prediction made using the performance landscape coincides with 
that of the schema theorem [16].  
The landscape which was predicted for uniform crossover was not 
a valid landscape. Therefore, we were not able to do a schema 
analysis for it.  
These two examples considered a landscape with complete 
information (a degree of information equals to 1). However, in 
reality this is not always the case. Therefore we constructed the 
optimal landscape for a smaller degree of information. In 
particular, we wanted to check whether the optimal landscape as 
predicted by our model coincides with other known GA-easy 
landscapes. The onemax problem is probably the most studied 
problem of such a kind. We chose, therefore, to find the optimal 
landscape for the degree 15/21 (the degree of onemax). The same 
results were obtained for both the one point crossover 
performance landscape and the uniform crossover one. The 
predicted optimal landscape was indeed onemax.  

3.1.2 The worst landscape 
Using dual of equation 6 we constructed the worst landscapes as 
well. Table 2 gives a static schema analysis for the worst predicted 
landscape for one point crossover. The fitness of each string was 
calculated according to its rank (equation 2). The table reveals 
that the average fitness of each schema that contains the global 
optimum (111) is smaller than anyone of its competitors. Thus, it 
actually describes a fully deceptive landscape. 

Table 2. Static schema analysis of the most difficult landscape 
as predicted by the performance landscape for a simple GA 
with one point crossover. 

String Fitness Order 3 2 1 0 

000 0 Schema 111 11* 1*1 *11 **1 *1* 1** *** 

010 1 Fitness 7 3.5 4.5 4 3.25 3.25 3.25 3.5 

100 2 Schema  01* 0*1 *01 **0 *0* 0**  

001 3 Fitness  3 2 2.5 3.75 3.75 3.75  

101 4 Schema  10* 1*0 *10     

011 5 Fitness  3 2 2.5     

110 6 Schema  00* 0*0 *00     

111 7 Fitness  4.5 5.5 5     

 

3.2 Assessing hardness 
As stated in the introduction the definition of easy or difficult 
problems is not simple. Particularly in the EC field it is not clear 
what an easy problem is and what a difficult one is.  
In this section we provide a robust definition of difficulty of 
problems w.r.t any algorithm. We do so by giving three reference 
points: the easiest, the hardest and a random problem. The 
performance on any other problem can be assessed based on 
these. 
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The construction of the easiest and the most difficult landscapes 
was explained in the previous section. In this one we focus on the 
definition of a random search. It might seem trivial but as we will 
explain, it is not.  
There are three possible scenarios: 

1. The algorithm searches explicitly in a random way 
(random search). 

2. The algorithm does not search in a random way, but 
there is no information in the landscape to guide the 
search.  

3. The algorithm does not search in a random way but the 
information given by the landscape is random.  

With respect to our framework the three ways are equivalent to: 1) 
a performance landscape with all entries equal to zero (the 
expected performance on any possible problem, in the case of 
optimization, is the same) 2) an information landscapes with all 
entries equal to 0.5 (degree of information equals to zero) and 3) 
an information landscape with no correlation with the 
performance landscape (see equation 5). 
Randomness is usually a property of a difficult problem, but the 
three different types of randomness describe in practice three 
different degrees of difficulty.  
The first algorithm, random search, does not assume anything 
about the structure of the landscape and hence its performance 
depends only on the size of the landscape (only optimization 
problems are considered). 
In the second case, i.e. when there is no information in the 
landscape, one might think that the performance of an algorithm 
should be equivalent to that of random search. This is not the 
case. The search operators of the algorithm induce a bias on the 
search. This bias usually makes the algorithm less efficient than a 
random search [17].  
Generally, based on equation 6, a random landscape and a 
landscape with no information should give the same performance. 
The difference between these two landscapes is that for the first 
the outcome of every tournament (an entry in the information 
landscape) is randomly fixed, whereas for the second it is random. 
The extent to which the performance measured on these two 
landscapes differs gives an indication of the non-linearities in the 
performance measure P.   
It is worth noting that these three scenarios and their 
corresponding performances can be used in order to characterize 
the algorithm. E.g. the extent to which random search performs 
better on a random landscape than the algorithm might be an 
interesting measure of the sensitivity of the algorithm to noise.  
Since in this paper we focus on assessing difficulty of problems 
for a given algorithm, we will select the performance of the 
algorithm on a random landscape as our reference (threshold) to 
divide easy from hard problems.  

4. Direct measures to explore an algorithm   
In the previous section we were able to demonstrate how the 
performance landscape can be used in order to construct different 
case studies. These can be used to indirectly infer the properties of 
the algorithm. We showed, using schema analysis, that the easiest 
and most difficult landscapes coincide with a unimodal landscape 

and a fully deceptive problem. Moreover, we suggested using the 
performance on random landscapes as a reference point to the 
performance for the algorithm. 
In this section we demonstrate how to infer properties of the 
fitness landscape. This can be done by exploring the performance 
landscape. In section 4.1 we explain how the performance 
landscape can be interpreted. In section 4.2, we show how this can 
be done in practice. We conclude (section 4.3) with a partial 
validation of the results obtained in the examples given in sections 
4.1 & 4.2. 

4.1 Understanding the performance 
landscape 
Since the analysis suggested in this paper is mainly dependent on 
the performance landscape, we give, in this section, additional 
explanations of its components.  
We start with an example. Consider a (bit-flip) hill climber on a 
unimodal landscape. Let us assume that tournament selection is 
used in order to pick the initial starting point of the search. In the 
case of a binary representation the closer the initial search point to 
the optimum (w.r.t the neighborhood structure) is, the better the 
performance of the algorithm will be. Let 111 be the optimum. 
The optimal information landscape can tell us that the string 011 
is a better candidate than 001, and that 011 is better than 000 as 
well. However, the extent to which 011 is closer (in the bit-flip 
sense) to the optimum when compared with 000 is higher than for 
001. Therefore, the magnitude of element 

011,000c  in the 

performance landscape is expected to be bigger than
011,001c . 

In general, given the choice between two alternative solutions as 
the basis for the next step of the search, ideally, the algorithm 
should choose the one that will maximize the probability to find 
the optimum and minimize the number of the required steps. Each 
entry in the performance landscape can be interpreted, therefore, 
as an indicator of the difference in the effective distance (or the 
conditional probability of the algorithm to find the optimum) 
given that either of the two points is selected. That is: 

 
, arg arg

( ( | ) ( | ))
i j t et i j t et j i

c p X X X p X X Xα ∧ ¬ − ∧ ¬≅  (7) 

where
arg

( | )
t et i j

p X X X∧ ¬ is the probability that the algorithm 

will find the target solution given that 
i

X is chosen in the 

tournament between 
i

X  and 
j

X and α is a constant. 

 
Figure 3. A gray-scale image representing the relative values 
of the performance landscape. On the left is the performance 
landscape of one point crossover, on the right is the 
performance landscape of uniform crossover. 
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Figure 3 shows (as grey scale images) the two performance 
landscapes that were introduced in section 3.1. A dark color 
represents a relevant entry (a coefficient with high absolute value) 
and a light color an insignificant one.  
A quick look in the table shows us, for example, that for the two 
landscapes, the difference between the string 100 and 001 is not 
important. However, the difference between 000 and 110 is. 
Furthermore, it is easy to notice that the two landscapes 
(algorithms) differ in their sensitivity to the comparison between 
011 and 010. 

4.2 Analyzing a search algorithm 
The performance landscape gives us the difference between the 
effective distance of any two solutions. This depends on the 
search operators used by the algorithm. A careful examination of 
these values can help assess explicitly the effects of the interaction 
of the search operators.  
The coefficients represented by the performance landscape are not 
precise. They are based on empirical results and therefore they can 
be noisy. In order to account for the noise in these values, we 
need to use a clustering algorithm.  The clusters give us a robust 
way to infer the properties of the algorithm. The original values 
can be used for a finer analysis of the search operators.  
In order to demonstrate how this can be done, we used the k-
means algorithm to cluster the entries of each of the two 
performance landscapes described in section 4.1.  
Figure 4 gives us the result of the clustering. The tables present 
the optimal clusters and the value of each entry in the 
performance landscape. The entries are sorted in ascending order. 
The curly brackets next to the tables show alternative, sub optimal 
clusters.  

Value     Entry
0.06 010 100
0.21 011 101
0.46 001 100
0.77 011 110
0.82 101 110
0.84 001 010
5.23 000 100
5.49 000 001
5.53 000 010
10.1 011 100
10.5 001 110
10.7 010 101
12 001 011

12.3 100 101
12.5 100 110
12.7 010 011
12.7 010 110
12.7 001 101
15 000 110

15.6 000 011
16.1 000 101

Uniform Crossover
Value     Entry
0.09 011 110
0.24 001 100
2.7 001 010
2.8 101 110
2.9 010 100

2.95 011 101
3.83 000 010
6.79 000 100
7.46 000 001
9.26 011 100
9.38 001 110
9.63 100 101
9.86 001 101
11.8 010 101
12 100 110

12.8 001 011
13.1 000 101
17.9 000 011
18.1 000 110
19.1 010 011
19.4 010 110

One point Crossover

 
Figure 4. The clusters obtained with the k-means algorithm for 
the performance landscape of GAs using one-point and 
uniform crossover. The curly brackets represent alternative 
clusters. 
The tables in figure 4 can be used in order to calculate the relative 
distance of the solutions from one another. Figure 5 plots the 
relative effective distance of each point from the optimum. For 
simplicity we do it on a one dimensional graph. Some of the 
information in the tables is lost. However, in this way we can 
show the main properties in a clear way.  

011
110 111101100

001010000

111
100
010
001

011
101
110

000

(b) One-point crossover

(a) Uniform crossover

 
Figure 5. Effective distances for uniform crossover (a) and one 
point crossover (b). 
Figure 5.a gives the results for uniform crossover. It is clear that 
the effective distance in this scenario is equivalent to the distance 
defined by the neighborhood structure. Indeed uniform crossover 
is not biased w.r.t the position of the bits in the string. The 
distance from the optimum is a good indicator of the probability 
of producing the optimum by the uniform crossover operator. 
A careful examination of the corresponding table in Figure 4 
reveals an even more interesting picture. The entries c001,110, 
c010,101, and c100,011 have lower values than the other entries in the 
third cluster. This cannot be explained by the neighborhood 
structure. A possible explanation is the fact that these entries 
represent a competition (tournament) between complementary 
(w.r.t the target solution) strings. Since the population is finite 
and one of the two complementary strings was not chosen to go 
into the mating pool, the probability that the crossover operator 
creates the optimum decreases.  
Figure 5.b gives the results for one-point crossover. This operator 
is biased w.r.t bit position. In particular, the strings 010 and 101 
cannot create the optimum. This is the reason for the slight 
difference of the positions for these strings. 
The corresponding table in Figure 4 reveals some additional 
interesting properties in this case as well. Firstly, a smaller 
effective distance between complementary strings exists here as 
well. Moreover, notice that the value of c010,110 ,for example, is 
higher than c000,110. It means that a landscape for which the string 
110 wins on 000 but looses to 010 is more difficult than the 
opposite case (110 looses to 000 but wins on 010). This is 
completely counter-intuitive. However, the string “010” is a 
possible future competitor of the string “001” (the complementary 
of “110”). Therefore, when considering more than one generation, 
this reduces the probability to produce the optimum. 
The values of our performance landscape could be further 
analyzed. However the objective of this paper is to exemplify the 
way this framework can be used, rather than have a through 
analysis of any particular algorithm. It is important to emphasize 
that our technique (i.e. computing the performance landscape and 
then clustering it) does not assume anything about the algorithm.  

4.3 Validation of the results 
In order to validate the results obtained for the performance 
landscape we used a simplified version of equation 7 

 
, arg arg

( ( | ) ( | ))
i j t et i t et j

c p X X p X Xα −≅  (8) 

where we consider only the absolute probability of finding the 
optimum given a particular string.  
In our case, the probability of the algorithm finding the optimum 
given a particular string can be approximated as the probability to 
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produce the optimum string (111) using the crossover operator. 
This is true only for one generation. Furthermore, we assume that 
the probability to select any of the other strings is equal. 

 0 0(111| ) ( ) ( , )s i c ip x p x p x x=∑  (9) 

where 0(111| )p x  is the probability to produce the optimal 

string given that 0x is chosen in a tournament,  ( )s ip x is the 

probability to select ix  (for the sake of simplicity, we assume that 

it equals
1
N

) and 0( , )c ip x x is the probability that the crossover 

operator will produce the string 111.  
Table 3 gives us this probability for each point in the search 
space. In the case of uniform crossover, this probability was 
calculated for one generation. For one point crossover, it was 
calculated for two generations. Following equation 8 we can now 
estimate the importance of each entry in the performance 
landscape. Entries which belong to the same cluster should have 
similar importance.  

Table 3. The probabilities of the GA finding the target solution 
using each of the possible points in the space. 

One point crossover String Uniform 
Crossover First 

Generation 
Second Generation 

000 0.015625 0 0.046875 

001 0.046875 0.0625 0.09375 

010 0.046875 0 0.078125 

011 0.109375 0.1875 0.15625 

100 0.046875 0.0625 0.09375 

101 0.109375 0.125 0.140625 

110 0.109375 0.1875 0.15625 

 
This is indeed the case for uniform crossover. The clusters 
obtained by the k-means algorithm indeed matched the clusters 
obtained by applying equation 8. 
Since this model is very simplified, for the case of the one point 
crossover the clusters obtained do not show a perfect match. 
However, the correlation between those values and the values of 
the entries in the performance landscape (0.95) reveals that most 
of the clusters can be explained.  
In any case, these probabilities account more for general 
properties rather than for fine ones (see previous section). 

4.4 Emergence of neighborhood structure 
In the previous section we were able to find the properties of a 
search algorithm using a simple analysis of the performance 
landscape. Obviously this in turn depends on the neighborhood 
structure as well. Indeed, the clusters obtained for uniform 
crossover could give us an idea of the connectivity of the search 
space (e.g. the distance between 110 and 000 is maximal).  
The performance landscape summarizes the contribution of the 
different components of the algorithm (i.e. operators, 
neighborhood structure). The objective of this section is to 

illustrate this, particularly for the neighborhood structure. We 
show explicitly that for local search, the results are straight 
forward. Since in local search some points in the search space 
cannot be reached from others, certain entries in the performance 
landscape will be zero (having no relevance to the search).  
In order to show this, we found the performance landscapes of a 
simple local search, with two different neighborhood structures: 
one based on a one bit flip as a local improvement and one based 
on a natural representation. We used a simple hill-climber. The 
performance measure was the number of times the algorithm 
found the solution in 5000 fitness evaluations. Each time the 
algorithm reached a local optimum, the algorithm restarted from a 
different random position. The size of the landscape was 8. 
Figure 6 shows how the connectivity of the search space can be 
predicted by the performance landscape. In order to visualize the 
landscape structure more easily, we present this time the 
symmetric part of the performance landscape as well. 

 
Figure 6. Image representation of two performance landscapes 
for a hill-climber. The neighborhood structure of the left 
image was one for natural numbers, that of the right one was 
hamming neighborhood. The stars illustrate that the 
neighborhood structure can be reconstructed from the 
performance landscape 

5. Discussion 
Developing a theoretical framework for the analysis of a new 
algorithm is difficult. The constant production of new 
metaheuristics makes the gap between theory and practice hard to 
bridge. 
In this paper we suggest to use the performance landscape as a 
tool to help the theoretical analysis of new algorithms. It is a 
general tool. It can be applied in the same way to any algorithm. 
It can be used without the need of going through the process of 
analyzing the specific properties of the algorithm.  
The performance landscape analysis provides test problems of 
any degree of difficulty. It gives a framework on which the 
difficulty of other (real world) problems can be assessed in a 
robust way. Furthermore, it gives information about the combined 
effect of the neighborhood structure and the search operators.  
Naturally, it is not possible to completely avoid considering the 
details of the algorithm. In fact, having this knowledge as a 
starting point makes the analysis much more efficient.  
The GA is perhaps one of the most studied metaheuristics. In 
order to validate our performance landscape analysis framework, 
we gave an example illustrating how it can be applied to the study 
of GA. We constructed easy and difficult landscapes. Using a 
static schema analysis we proved that the predicted optimal and 
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worst landscapes coincide with those predicted by traditional GA 
theory. 
The performance landscape gave us information that otherwise 
could be derived only by applying a complex theory (schema 
analysis). Furthermore, it gave us this information without having 
any knowledge whatsoever about the algorithm. 
It is not possible to compute performance landscapes of big size. 
Naturally, the larger the landscape is the more likely it is to unfold 
more of the complexity of the algorithm. The empirical results of 
this paper were obtained by analyzing a landscape of size 8. Still 
the results gave many insights about the GA in an automatic way.  
We believe that some of our results can be generalized. In 
particular, the properties of best and worst landscapes of small 
size could be analyzed and then best and worst landscapes can be 
constructed for bigger sizes.  
Studying the clusters of the performance landscape can produce 
different approaches for the study of realistic landscapes. 
Furthermore, the analysis of large landscapes could be performed 
by focusing only on particular areas on the performance 
landscape. This can be done by leaving most of the entries 
constant and varying only the specific areas of interest.  

6. Conclusions 
The study of a new metaheuristic is a long, iterative process. It 
begins with a basic analysis of the algorithm which gives rise to 
hypotheses about its properties. This is then compared and 
contrasted with empirical evidence, which either supports or does 
not support the hypotheses. If it doesn’t, one must start all over 
again. 
Exact properties of the algorithm can be calculated in a 
probabilistic manner based directly on the search operators. 
However, this is very complicated, particularly for new and 
complex metaheuristics.  
In this paper we have introduced a powerful tool which can boost 
the theoretical analysis of new metaheuristics. In particular, it 
provides: 

1. Instances of true easy and difficult problems specific to 
an algorithm. 

2. Reference problems that can be used as indicators to the 
difficulty of other problems. 

3. A way to assess the properties of the combined effect of 
the neighborhood structure and the search operators.  

All this can be done in an automatic, simple way - without the 
need of a lengthy and complicated analysis of the search 
algorithm. We strongly believe that using this technique as the 
first step when analyzing a new algorithm can save valuable 
research time and effort. 
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