
Preservation of Genetic Redundancy in The Existence
of Developmental Error and Fitness Assignment Error

Ayse Selen Yilmaz
School of Computer Science
University of Central Florida

Orlando, FL 32816, USA

selen@cs.ucf.edu

Annie S. Wu
School of Computer Science
University of Central Florida

Orlando, FL 32816, USA

aswu@cs.ucf.edu

ABSTRACT
Conservation of functionally identical copies of the same
gene throughout the generations is not an easy task. In
this study, based on the biological evidence that suggests
the existence of the developmental error as one of the ways
to preserve redundancy, our goal is to investigate the impact
of developmental error on a simple problem using a genetic
algorithm(GA). Developmental errors exist during the bio-
logical development of an individual. The biological models
with developmental errors have demonstrated that it is pos-
sible to maintain redundant copies in the existence of proper
mutation rates and developmental error rates. Our prelimi-
nary results with a simple problem demonstrates that using
developmental error helps preserving the redundant copies
and maintaining a better solution quality for the redundant
copies of a gene. Besides the developmental error, we pro-
pose a new error type that comes into play during the fitness
assignment and enhances the quality of the solutions when
used together with developmental error.

Categories and Subject Descriptors: G.1.6 [Numerical
Analyses]: Optimization[global optimization]; I.2.8 [Artifi-
cial Intelligence]:Problem Solving and Search; J.3 [Life and
Medical Scinces]:Biology and genetics

General Terms: Algorithms, design, experimentation, re-
liability.

Keywords: Genetic algorithms, redundancy, developmen-
tal error, evolutionary stability, ontogeny.

1. INTRODUCTION
Redundancy means having more information than what

is needed in a usual case. We can see redundant informa-
tion everywhere in real life as well as in artificial life. An
example from our everyday life that we encounter most is
human language. By the help of the redundancy that ex-
ists in the structure of the language, the texts with typos

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

can still be read and understood. Data compression is an-
other field where the existence of redundancy in data helps
in obtaining high compression rates.
We can define genetic redundancy as the existence of mul-

tiple genes performing the same function. Biologists have a
more detailed classification for different types of redundancy
[4]. The inactivation of one of the redundant genes does not
affect the fitness, i.e the resulting phenotype, in true redun-
dancy, while it slightly reduces the fitness in almost redun-
dancy. In generic redundancy, the inactivation of one of the
redundant genes occasionally results in a fitness decrease,
for example in case of developmental error or environmental
change. In this paper, we focus on a type of generic re-
dundancy, where developmental failure occasionally causes
defects that are not inherited to the next generations, but
only affects the fitness during ontogeny; i.e. developmental
process.
Recent biological studies explore why genetic redundancy

is common and how it remains evolutionarily stable [4, 3].
Krakauer and Nowak [3] consider preserving functionally

redundant genes as a challenge due to the following reasons:

• Redundant genes are subject to neutral mutations.
• Redundant genes may evolve into new genes.
• Due to deleterious mutations, imperfect copies of re-
dundant genes might be formed.

They present some of the existing techniques that address
these challenging issues. The existence of developmental er-
ror during developmental process is among these techniques.
Tautz also [7] states that the information transmission

from an egg to an adult organism is subject to errors at ev-
ery stage of development. Developmental error is an error
probability that indicates the probability that a gene will
be defected during the developmental process. It is impor-
tant to point out that developmental error does not have an
effect at the genomic level as the mutation does. Unlike mu-
tational errors, developmental errors are not inherited, but
rather happen during the developmental process. Krakauer
and Nowak [3] show that there is a correlation between the
mutation rate and the developmental error rate in order to
maintain redundant genes during evolution. Each gene must
mutate less frequently than its duplicate experiences a de-
velopmental error.
As selection pressure and the accumulation of deleterious

mutations on redundant genes tend to counteract the main-

1317

tenance of the redundancy during evolution, Nowak et. al.
[4] has developed a model to explain why redundant genes
are common in biological environments. In three out of four
cases described in this model, they find that it is possible to
maintain redundancy and keep it evolutionarily stable. One
of these three cases involves the existence of developmental
error. In order to keep the redundancy evolutionarily stable,
their mathematical models also indicate that developmental
error rates should be larger than the mutation rates used.
To the best of our knowledge, studying the impact of de-

velopmental error has not attracted many researchers in EC
community. A very recent study by Rieffel and Pollack [5]
investigates the effects of developmental error for an evo-
lutionary design task that is based on Artificial Ontogeny.
An error during the development process complicates the
design task, causing a genotype to map to multiple pheno-
types with different fitness values. They find that with the
help of ontogenic mechanisms that emerge during develop-
mental process, it’s possible to adapt to the existence of the
error and produce fit phenotypes. Another aspect of incor-
porating error into evolutionary process is introducing error
to the fully developed phenotype without considering any
developmental process [2, 6].
Maintaining the redundant copies of a gene has been an

interesting problem in evolutionary algorithms. Incorporat-
ing redundancy into evolutionary algorithms not only plays
an important role in adaptation to the changes in the envi-
ronment [1], but it also improves the evolvability of the solu-
tions and escapes from local optima by the help of diversity
it introduces [8]. We would like to analyze the effect of a de-
velopmental error, E on keeping redundant copies of a gene
during the evolution and investigate how solution quality is
affected by varying mutation rates, M . Although biological
studies consider different mutation rates and developmental
rates for each redundant copy of a gene, we assume that all
redundant genes have the same developmental error or mu-
tation rate to keep things simple and easy for initial analysis.
In addition to developmental error, we propose a new error
type whose goal is to introduce a form of diversity into the
solutions to increase the survival probability of less fit solu-
tions. This new error assigns the fitness of an individual to
a lower value than it is supposed to take with a predefined
probability, which we call the fitness assignment error, E2.

2. ERROR IN GENETIC ALGORITHM
Based on the biological theories on the link between re-

dundancy and developmental error we would like to investi-
gate if similar relationships apply to a simple problem using
a genetic algorithm. We examine the impact of three types
of error on GA performance: Developmental error (E), fit-
ness assignment error (E2) and selection error (K).
We begin with the simple onemax problem encoded as bit

strings where the goal is to maximize the number of ones
in the solution. We modify the problem so that we embed
a form of redundancy in the solution. We break down each
solution of certain length, L into two parts of length L/2.
Each half is then considered to be a gene. The goal of our
GA is to preserve the redundant copies of the string of all
ones with length, L/2.
Each gene is evaluated separately by simply counting the

number of ones. The fitness of the individual is assigned
to the fitness of the better half. While the optimal fitness
is the length of the individual(L), for a traditional onemax

problem, the optimal fitness of an individual with length L
is L/2 for our modified onemax problem. So, our fitness
function without considering any type of error is:

findv = MAX(fgene1, fgene2), (1)

where findv , fgene1, fgene2 denote; fitness of the individ-
ual, fitness of the left half and fitness of the right half re-
spectively. fgene1, fgene2 are:

fgene1 =

L/2X

i=1

R(i), (2)

fgene2 =

LX

i=L/2+1

R(i), (3)

where R(i) is the value of each bit i.
In this type of setup, it is not an easy task to obtain strings

of all ones with length L, as the fitness of an individual
is only based on the fitness of one half. Once half of an
individual consists of all ones, the lack of selection pressure
on the other half is likely to make it difficult to obtain all
ones on the other half. The modified onemax problem is a
very simple and effective way to understand the effect of
different types of errors on keeping redundant genes in a
solution.
The first source of error we study in our GA is the inclu-

sion of a developmental error, E. In contrast to mutation,
which occurs at the genotype level and is inherited by the
new generation, developmental error occurs in the pheno-
type level and is not heritable. In our modified onemax prob-
lem, we can model developmental error as misinterpretation
of bits, ones as zeros and zeros as ones. Misinterpretation
only causes a change in the fitness of the corresponding in-
stance but not a heritable change in the genotype. Each bit
has a probability of being misinterpreted, i.e. developmental
error rate, E. Given that R(i) equals the genetic value of
bit i, the value of the misinterpreted bit will be considered
as 1− R(i) during the fitness evaluation. Misinterpretation
occurs in all individuals including both optimum and less fit
individuals. As a result, we track both the raw fitness values
which are based on the genotypic information and the real
fitness values which incorporate misinterpretation. As the
biological evidence suggests, we set the developmental er-
ror rates higher than the mutation rate in order to preserve
redundancy.
In addition to the developmental error described above,

we also examine the effects of a second type of error, error
in assigning the fitness of the individual. We investigate
the effect of noise in fitness assignment process. Instead
of always taking the fitness of the better gene of a pair of
redundant genes, noise in the fitness assignment results in
a non-zero probability of occasionally taking the fitness of
the inferior gene. Equation 1 gives the fitness calculation for
an individual that is free from any assignment error. With
fitness assignment error, each individual has E2 probability
of being assigned to the fitness of the inferior gene instead
of the better one. Then with a probability of E2, our fitness
function is:

findv = MIN(fgene1, fgene2), (4)

1318

A third source of error that we examine is the error in
selection process, where tournament selection will select the
second best individual instead of the best one with proba-
bility K.

3. EXPERIMENTS
Our experimental setup is designed to investigate not only

the effect of developmental error but also the effect of ad-
ditional error types, one of which we propose in this study,
fitness assignment error.
Our goal is to understand whether different types of errors

we introduce have any positive impact on preserving a good
solution quality for both genes throughout the evolution.
We assume that the redundant genes that we would like to
preserve are the genes of all ones with a length of L/2.
The basic types of scenarios that we look into are the

experimental designs with :

1. No error of any type but mutation

2. Developmental error

3. Fitness assignment error

4. Selection error

For all the scenarios, we keep track of the best individu-
als in each generation. The fitness of the better and worse
performing genes are denoted as Best Fitness and Second
Best Fitness respectively. As we mentioned before, we also
keep track of the raw fitness values, counting the number
of ones with no misinterpretation, of both genes to see how
the existence of developmental error affect the raw fitness
of the evolved individuals. The raw fitness of the better
and worse performing genes are denoted as Best Raw Fit-
ness and Second Raw Best Fitness respectively. When the
developmental error rate is 0, fitness values are same as the
raw fitness values. Raw fitness values are indirectly affected
by misinterpretation Although raw fitness values of a given
generation are not affected by by the developmental error at
that generation, the individuals that are selected from the
previous generation to form the given generation are based
on the fitness values that undergo developmental error in
the previous generation.

3.1 Parameter Settings
The basic parameter settings chosen are based on the best

performance obtained after a performance tuning.
We use one-point crossover and each bit has the same

probability of being chosen as the crossover point. The prob-
ability that a pair of parents will crossover is 1. The mu-
tation used is simple bit flipping. Different mutation rates
have been used all being lower than the developmental error
rate and fitness assignment error rate.
The length of the individuals, L, is 64 and the maximum

fitness value is 32. The population size and the maximum
number of generations are set to 5000 and 400 respectively
unless otherwise is stated.
We give the details of mutation rate, M, developmental

error rate, E and fitnes assignment error rate, E2 in each
individual scenario as we use varying ranges of values to
investigate their effect.
We set the error rate in tournament selection, k, to 0 for

all the scenarios but fourth one where we test the effect of
error in selection.

For all scenarios but third one, we do not have any error
in assigning the fitness of the individual to the fitness of the
better performing gene.
All of the results that we present are averaged over 50

runs. As the better performing gene might be either on
the right or the left switch in each run, we first average
the fitness values of both sides for the last 100 generations
in each run to find the better performing side. Then the
fitnesses of the better performing genes and the fitnesses of
the other side, i.e. worse performing genes, are averaged
separately. The same process is done also for the raw fitness
values of best and second best(i.e. worse) performing genes.

3.2 Experiments without Error
In order to understand the impact of different types of

errors we introduce, we need to first observe the quality of
the solutions without any type of error.
Without any error, the best fitness values for each gen-

eration we obtain for varying mutation rates are shown in
Figure 1. Our goal is to obtain a good solution quality for
both genes, which are close to the optimum value 32 on the
average. As there is no developmental error, there is no
difference between fitness values and the raw fitness values.
The mutation rate indicates the probability that a bit will

be mutated. We begin with a conventional mutation rate
of 1 per individual, which in turn results in mutation rate
of M=0.016 per bit, since we have individuals of length,
L=64. Figure 1(c) shows the results with M=0.016. We
observe that although it is possible to obtain a maximum
fitness of 32 for one of the genes, it is not possible to keep
the fitness value of the other gene even close to the maxi-
mum. The second best fitness levels off at around 16, which
is approximately half of the value of the maximum fitness
and suggests that random selection occurs on the redundant
gene. As expected, with no selection pressure on the redun-
dant gene, we can only evolve one good copy of our gene
and are unable to maintain multiple redundant copies.
Using lower mutation rates decreases the gap between the

fitness values of the genes without compromising the best
fitness. The second best fitness increases to approximately
25 for M=0.0001 in Figure 1(a) and approximately to 26
for M=0.001 in Figure 1(b). Without any type of error, the
highest fitness we can obtain for the second best fitness is
around 26, when M=0.001. In order to achieve the goal of
preserving redundant genes, we need to find a way that helps
us to keep genes of all ones at both sides of the individual.
As the best fitness plots shown are average of 50 runs,

the standard deviation plots corresponding to each plot are
also given in Figure 1. The average best fitness has a stan-
dard deviation of 0, showing no deviation from the average,
while the average of the second best fitness shows a standard
deviation of less than 5 for all mutation rates.

3.3 Experiments with Developmental Error
We are interested in understanding the forces that favor

the evolution of redundancy. Each individual consists of two
genes and each gene has a length of L/2 = 32. Only one of
the genes contributes to fitness, the one that has higher fit-
ness. In the onemax problem, fitness is given by the number
of ones. Typically, we assume that all genotypic information
is interpreted perfectly. In a real world situation, however,
misinterpretations can occur and there is a chance that the
information can become corrupted during the translation.

1319

 20

 22

 24

 26

 28

 30

 32

 34

 0 50 100 150 200 250 300 350 400

F
i
t
n
e
s
s

Generations

L=64 E=0 E2=0 N=5000 M=0.0001

Best Fitness
Second Best Fitness

 20

 22

 24

 26

 28

 30

 32

 34

 0 50 100 150 200 250 300 350 400

F
i
t
n
e
s
s

Generations

L=64 E=0 E2=0 N=5000 M=0.001

Best Fitness
Second Best Fitness

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300 350 400

F
i
t
n
e
s
s

Generations

L=64 E=0 E2=0 N=5000 M=0.016

Best Fitness
Second Best Fitness

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300 350 400

St
an
da
rd
 D
ev
ia
ti
on

Generations

L=64 E=0 E2=0 N=5000 M=0.0001

Best Fitness Std Dev
Sec Best Fitness Std Dev

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300 350 400

St
an
da
rd
 D
ev
ia
ti
on

Generations

L=64 E=0 E2=0 N=5000 M=0.001

Best Fitness Std Dev
Sec Best Fitness Std Dev

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300 350 400

St
an
da
rd
 D
ev
ia
ti
on

Generations

L=64 E=0 E2=0 N=5000 M=0.016

Best Fitness Std Dev
Sec Best Fitness Std Dev

(a) (b) (c)

Figure 1: Fitness(above)/Standard deviation(below). No developmental (E=0), selection (k=0) or fitness
assignment error (E2=0). (a)Mutation rate, M=0.0001 (b)M=0.001 (c)M=0.016

Making an analogy to the developmental error that the or-
ganisms face during their life cycle, we define a probability
of each bit being misinterpreted. Misinterpretation causes
the fitness value to experience noise. As a result, we also
track the raw fitnesses that reflect the noise-free fitness val-
ues. We use same error rate for both genes.
Based on the biological theory by Krakauer and Nowak

[3], we focus on developmental error rates that are larger
than the corresponding mutation rates. Figure 2 - 4 show
the fitness values and the corresponding standard deviation
values below each fitness plot for developmental error rates
of 0.03, 0.06 and 0.09, respectively.
In Figure 2, with the help of the developmental error,

E=0.03, we are able to obtain higher fitness values for second
best raw fitness as compared to the same scenario without
developmental error shown in Figure 1. With this configu-
ration, the best raw fitness value does reach the optimum
value of 32, indicating that we can preserve a gene of all
ones on one side. The second best raw fitness values are
close but not equal to the optimum value of 32 on the av-
erage. Figure 2(a) and Figure 2(b) show the results with
different mutation rates of M=0.0001, and M=0.001, re-
spectively. For error rate E=0.03, increasing the mutation
rate from M=0.0001 to M=0.001 causes a significant de-
crease in the second best raw fitness values. For this error
rate, the performance of a GA highly depends on the muta-
tion rate changes.
We next increase the error rate to E=0.06. As shown

in Figure 3, with both mutation rates of M=0.0001 and
M=0.001, evolving a gene of all ones on both sides is pos-
sible, as the average second best raw fitness values climb
up to 32. Higher mutation rate enables a slightly earlier
convergence to the optimal values for both best and second
best raw fitness values. The standard deviation levels for
the higher mutation rate are quite low, leveling off at 0 for
both the best raw fitness and the second best raw fitness.
Thus, for some mutation/developmental error rate combi-
nations we are able to evolve redundant genes on both sides
of our individual most of the time.
Further increase in the developmental error rate, E, does

result in a better performance as the results for E=0.09, in
Figure 4, show. The solution quality for the best raw fit-
ness remains same, around 32, but the raw fitness of the
second gene climbs up to 32 more quickly compared to the
results with lower error rate, E=0.06. Increasing the mu-
tation rate from M=0.0001 to M=0.001, allows a little bit
earlier convergence to the optimal value for both average
best and second best raw fitnesses. An increase in mutation
rate also helps us to achieve standard deviation values of
zero for the raw fitness values.
These findings indicate that the impact of developmental

error on performance is highly dependent on adjusting the
rate correctly, as is the case of many other GA parameters.

3.4 Experiments with Fitness Assignment Er-
ror and Developmental Error

Having achieved promising results in keeping the redun-
dant copies of two genes of all ones with the help of develop-
mental error, our goal is to improve these findings and find
a method to make them more robust and less susceptible to
changes in parametric configuration.
The fitness assignment error, E2, comes into play during

the fitness assignment process. The fitness of each individ-
ual is determined by one of the redundant genes. Our test
function is made up of two genes. Each gene is evaluated
seperately and the fitness of the better gene is assigned to
the fitness of the individual when there is no error in fitness
assignment. Fitness assignment error results in assigning
the fitness of the worse gene as the fitness of the individual
with a predefined error probability, E2. Our goal in doing
this is to increase diversity in the population and prevent
premature convergence to a local optima before finding the
redundant genes of all ones.
We include error in fitness assignment process for the two

of the experiments we have conducted using developmental
error in section 3.3. For the test set with developmental
error rate of 0.06 and mutation rate of 0.001, we investi-
gate the effect of two different fitness assignment error rates,
E2=0.12 and E2=0.18. Both error rates result in an im-
proved performance compared to the result shown in Figure

1320

 20

 22

 24

 26

 28

 30

 32

 34

 0 50 100 150 200 250 300 350 400

F
i
t
n
e
s
s

Generations

L=64 E=0.03 E2=0 N=5000 M=0.0001

Best Fitness
Second Best Fitness

Best Raw Fitness
Second Best Raw Fitness

 20

 22

 24

 26

 28

 30

 32

 34

 0 50 100 150 200 250 300 350 400

F
i
t
n
e
s
s

Generations

L=64 E=0.03 E2=0 N=5000 M=0.001

Best Fitness
Second Best Fitness

Best Raw Fitness
Second Best Raw Fitness

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300 350 400

St
an

da
rd

 D
ev

ia
ti

on

Generations

L=64 E=0.03 E2=0 N=5000 M=0.0001

Best Fitness Std Dev
Sec Best Fitness Std Dev
Best Raw Fitness Std Dev

Sec Best Raw Fitness Std Dev

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300 350 400

St
an

da
rd

 D
ev

ia
ti

on
Generations

L=64 E=0.03 E2=0 N=5000 M=0.001

Best Fitness Std Dev
Sec Best Fitness Std Dev
Best Raw Fitness Std Dev

Sec Best Raw Fitness Std Dev

(a) (b)

Figure 2: Fitness(above)/Standard deviation(below) versus generation. Developmental error rate, E=0.03,
no selection(k=0) or fitness assignment error(E2=0). (a) Mutation rate, M=0.0001 (b)M=0.001

 20

 22

 24

 26

 28

 30

 32

 34

 0 50 100 150 200 250 300 350 400

F
i
t
n
e
s
s

Generations

L=64 E=0.06 E2=0 N=5000 M=0.0001

Best Fitness
Second Best Fitness

Best Raw Fitness
Second Best Raw Fitness

 20

 22

 24

 26

 28

 30

 32

 34

 0 50 100 150 200 250 300 350 400

F
i
t
n
e
s
s

Generations

L=64 E=0.06 E2=0 N=5000 M=0.001

Best Fitness
Second Best Fitness

Best Raw Fitness
Second Best Raw Fitness

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300 350 400

St
an
da
rd
 D
ev
ia
ti
on

Generations

L=64 E=0.06 E2=0 N=5000 M=0.0001

Best Fitness Std Dev
Sec Best Fitness Std Dev
Best Raw Fitness Std Dev

Sec Best Raw Fitness Std Dev

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300 350 400

St
an
da
rd
 D
ev
ia
ti
on

Generations

L=64 E=0.06 E2=0 N=5000 M=0.001

Best Fitness Std Dev
Sec Best Fitness Std Dev
Best Raw Fitness Std Dev

Sec Best Raw Fitness Std Dev

(a) (b)

Figure 3: Fitness(above)/Standard deviation(below) versus generation. Developmental error rate, E=0.06,
no selection(k=0) or fitness assignment error(E2=0). (a) Mutation rate, M=0.0001 (b)M=0.001

1321

 20

 22

 24

 26

 28

 30

 32

 34

 0 50 100 150 200 250 300 350 400

F
i
t
n
e
s
s

Generations

L=64 E=0.09 E2=0 N=5000 M=0.0001

Best Fitness
Second Best Fitness

Best Raw Fitness
Second Best Raw Fitness

 20

 22

 24

 26

 28

 30

 32

 34

 0 50 100 150 200 250 300 350 400

F
i
t
n
e
s
s

Generations

L=64 E=0.09 E2=0 N=5000 M=0.001

Best Fitness
Second Best Fitness

Best Raw Fitness
Second Best Raw Fitness

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300 350 400

St
an
da
rd
 D
ev
ia
ti
on

Generations

L=64 E=0.09 E2=0 N=5000 M=0.0001

Best Fitness Std Dev
Sec Best Fitness Std Dev
Best Raw Fitness Std Dev

Sec Best Raw Fitness Std Dev

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300 350 400

St
an
da
rd
 D
ev
ia
ti
on

Generations

L=64 E=0.09 E2=0 N=5000 M=0.001

Best Fitness Std Dev
Sec Best Fitness Std Dev
Best Raw Fitness Std Dev

Sec Best Raw Fitness Std Dev

(a) (b)

Figure 4: Fitness(above)/Standard deviation(below) versus generation. Developmental error rate, E=0.09,
no selection (k=0) or fitness assignment error(E2=0). (a) Mutation rate, M=0.0001 (b)M=0.001

3(b) obtained without fitness assignment error. Both Figure
5(a) and Figure 5(b) show that the second best raw fitness
level increases to the optimal value of 32. With the optimal
fitness value achieved for the best raw fitness level, we are
able to maintain the two redundant genes of all ones. The
corresponding standard deviation level decreases to zero for
both fitness assignment error rates.
Repeating the tests with a developmental error rate of

E=0.09 results in similar behavior. For both fitness assign-
ment error rates of E2=0.18 and E2=0.27, both the best
raw fitness and the second best raw fitness show a little
improvement as shown in Figure 6(a) and Figure 6(b) as
compared to the test cases with no fitness assignment error.
The standard deviation levels decrease slightly with the us-
age of fitness assignment error. These results suggest that,
we achieve a better performance in obtaining the redundant
genes of all ones on the average. The drops in standard de-
viation levels also suggest that, the solutions that we obtain
by the inclusion of fitness assignment error are robust and
evolutionarily stable.

3.5 Experiments with Selection Error and De-
velopmental Error

We also would like to consider whether an error in the
selection along with the developmental error will improve
our results. We use tournament selection. When there is no
error in the selection, the best individual out of a tourna-
ment is always selected to be a parent in the next generation.
When we introduce an error in the selection, the second best
individual is selected with a certain predefined probability
(K), from among the tournament candidates.
We introduce an error with a probability of K=0.2. When

the tournament size, T=2, K=0.2 indicates the probability
of selecting the worse parent out of every two parent candi-
dates. Figure 7, shows the results with K=0.2 and E=0.06.

Compared to the result without any selection error shown
in Figure 3(b), we are able to obtain a slightly better per-
formance in terms of second best raw fitness. Similarly, as
shown in Figure 8(a), introducing an error in selection with
the development error rate of 0.09 enable a similar solution
quality for both the best raw fitness and the second best
raw fitness. Increasing the selection pressure by selecting a
higher tournament size of 5 in Figure 8(b) causes the fitness
levels to drop. We conclude that error in selection results
in either similar or a slightly improved performance in our
results.

4. CONCLUSIONS
Given the biological evidence we have on the effect of

developmental error in preserving functionally redundant
genes during evolution, we explore how these effects apply
to a simple problem using a genetic algorithm and how we
can benefit from the results we obtain. We modify the one-
max problem in order to obtain a form of redundancy and
perform our tests on this modified onemax problem. We con-
struct a variety of scenarios to test different types of errors
including developmental error, fitness assignment error and
selection error. Our goal is to see if we are able to obtain
identical copies of two genes in a solution and preserve it
throughout evolution. Compared to the scenarios without
developmental error, the results we obtain using develop-
mental error are successful in maintaining a better solution
quality for redundant genes and keeping it stable. The addi-
tion of a fitness assignment error causes noise which enables
us to further improve the results obtained using develop-
mental error.
The results we obtain are preliminary but promising and

need to be tested on additional types of problems. We have
considered only two redundant genes performing same func-
tion. This work can be extended to examine increased num-

1322

 20

 22

 24

 26

 28

 30

 32

 34

 0 50 100 150 200 250 300 350 400

F
i
t
n
e
s
s

Generations

L=64 E=0.06 E2=0.12 N=5000 M=0.001

Best Fitness
Second Best Fitness

Best Raw Fitness
Second Best Raw Fitness

 20

 22

 24

 26

 28

 30

 32

 34

 0 50 100 150 200 250 300 350 400

F
i
t
n
e
s
s

Generations

L=64 E=0.06 E2=0.18 N=5000 M=0.001

Best Fitness
Second Best Fitness

Best Raw Fitness
Second Best Raw Fitness

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300 350 400

St
an

da
rd

 D
ev

ia
ti

on

Generations

L=64 E=0.06 E2=0.12 N=5000 M=0.001

Best Fitness Std Dev
Sec Best Fitness Std Dev
Best Raw Fitness Std Dev

Sec Best Raw Fitness Std Dev

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300 350 400

St
an

da
rd

 D
ev

ia
ti

on
Generations

L=64 E=0.06 E2=0.18 N=5000 M=0.001

Best Fitness Std Dev
Sec Best Fitness Std Dev
Best Raw Fitness Std Dev

Sec Best Raw Fitness Std Dev

(a) (b)

Figure 5: Fitness(above)/Standard deviation(below) versus generation. Developmental error rate, E=0.06,
no selection error, (k=0), (a) Fitness assignment error rate, E2=0.12 (b)E2=0.18

 20

 22

 24

 26

 28

 30

 32

 34

 0 50 100 150 200 250 300 350 400

F
i
t
n
e
s
s

Generations

L=64 E=0.09 E2=0.18 N=5000 M=0.001

Best Fitness
Second Best Fitness

Best Raw Fitness
Second Best Raw Fitness

 20

 22

 24

 26

 28

 30

 32

 34

 0 50 100 150 200 250 300 350 400

F
i
t
n
e
s
s

Generations

L=64 E=0.09 E2=0.27 N=5000 M=0.001

Best Fitness
Second Best Fitness

Best Raw Fitness
Second Best Raw Fitness

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300 350 400

St
an

da
rd

 D
ev

ia
ti

on

Generations

L=64 E=0.09 E2=0.18 N=5000 M=0.001

Best Fitness Std Dev
Sec Best Fitness Std Dev
Best Raw Fitness Std Dev

Sec Best Raw Fitness Std Dev

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300 350 400

St
an

da
rd

 D
ev

ia
ti

on

Generations

L=64 E=0.09 E2=0.27 N=5000 M=0.001

Best Fitness Std Dev
Sec Best Fitness Std Dev
Best Raw Fitness Std Dev

Sec Best Raw Fitness Std Dev

(a) (b)

Figure 6: Fitness(above)/Standard deviation(below) versus generation. Developmental error rate, E=0.09,
no selection error, (k=0), (a) Fitness assignment error rate, E2=0.18 (b)E2=0.27

1323

 20

 22

 24

 26

 28

 30

 32

 34

 0 50 100 150 200 250 300 350 400

F
i
t
n
e
s
s

Generations

L=64 E=0.09 E2=0 N=5000 M=0.001 T=2 K=0.2

Best Fitness
Second Best Fitness

Best Raw Fitness
Second Best Raw Fitness

 20

 22

 24

 26

 28

 30

 32

 34

 0 50 100 150 200 250 300 350 400

F
i
t
n
e
s
s

Generations

L=64 E=0.09 E2=0 N=5000 M=0.001 T=5 K=0.2

Best Fitness
Second Best Fitness

Best Raw Fitness
Second Best Raw Fitness

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300 350 400

St
an

da
rd

 D
ev

ia
ti

on

Generations

L=64 E=0.09 E2=0 N=5000 M=0.001 T=2 K=0.2

Best Fitness Std Dev
Sec Best Fitness Std Dev
Best Raw Fitness Std Dev

Sec Best Raw Fitness Std Dev

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300 350 400

St
an

da
rd

 D
ev

ia
ti

on

Generations

L=64 E=0.09 E2=0 N=5000 M=0.001 T=5 K=0.2

Best Fitness Std Dev
Sec Best Fitness Std Dev
Best Raw Fitness Std Dev

Sec Best Raw Fitness Std Dev

(a) (b)

Figure 8: Fitness(above)/Standard deviation(below) versus generation. Developmental error rate, E=0.09,
Selection error, k=0.2, no fitness assignment error(E2=0) (a)Tournament size, T=2 (b)T=5

 20

 22

 24

 26

 28

 30

 32

 34

 0 50 100 150 200 250 300 350 400

F
i
t
n
e
s
s

Generations

L=64 E=0.06 E2=0 N=5000 M=0.001 T=2 K=0.2

Best Fitness
Second Best Fitness

Best Raw Fitness
Second Best Raw Fitness

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300 350 400

St
an

da
rd

 D
ev

ia
ti

on

Generations

L=64 E=0.09 E2=0 N=5000 M=0.001 T=2 K=0.2

Best Fitness Std Dev
Sec Best Fitness Std Dev
Best Raw Fitness Std Dev

Sec Best Raw Fitness Std Dev

Figure 7: Fitness/Standard deviation versus gener-
ation. Developmental error rate, E=0.06, Selection
error, k=0.2, no fitness assignment error(E2=0)

ber of genes and greater redundancy. We leave investigating
the number of redundant genes that can coexist based on the
developmental error as a future work.

5. REFERENCES
[1] M. A. Huynen, P. F. Standler, and W. Fontana. Smoothness

with ruggedness: The role of neutrality in adaptation. In Proc.
of National Academy of Science, pages 397–401, 1996.

[2] N. Jakobi, P. Husbands, and I. Harvey. Noise and the reality
gap: The use of simulation in evolutionary robotics. In Proc.
of the Third European Conference on Artificial Life
(ECAL’95), pages 704–720, 1995.

[3] D. C. Krakauer and M. A. Nowak. Evolutionary preservation
of redundanct duplicated genes. Cell and Developmental
Biology, 10(0337):555–559, 1999.

[4] M. A. Nowak, M. C. Boerlijst, J. Cooke, and J. M. Smith.
Evolution of genetic redundancy. Nature,
388(scdb.1999.0337):167–171, July 1997.

[5] J. Rieffel and J. Pollack. The emergence of ontogenic
scaffolding in a stochastic development environment. In
GECCO’04, Genetic and Evolutionary Computation
Conference Proceedings, June 2004.

[6] K. Sims. Evolving virtual creatures. In Proceedings of the 21st
annual conference on Computer Graphics and interactive
techniques, pages 15–22, 1994.

[7] D. Tautz. Redundancies, development and the flow of
information. BioEssays, 14:1263–266, July 1997.

[8] M. Toussaint and C. Igel. Neutrality: a necessity for
self-adaptation. In Proc. of 2002 Congress on Evol. Comput.
(CEC), pages 1354–1359, 2002.

1324

