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ABSTRACT
Using artificial evolution successfully to design behaviours
of multiple robot systems has been reported in recent years.
Most of such reports are focused on the design of low level
controllers. Design of high level team coordination strategies
is rarely covered perhaps because the design of an appropri-
ate chromosome representation for a complex multi-agent
system is not an easy task. In this paper we propose that
by treating the action decisions of every team member as a
supervised ranking problem, the chromosome design prob-
lem can be solved systematically.

We have tested this approach by dynamically solving the
problems in the Solomon’s benchmark of Vehicle Routing
Problem with Time Windows [1]. Experiments show that
our approach can create some simple behaviours which, whilst
not optimal, are robust and above average in quality.

Categories and Subject Descriptors
I.2.6 [Learning]: Knowledge Acquisition; I.2.11 [Distributed
Artificial Intelligence]: Coherence and Coordination

General Terms
Design, Algorithms

Keywords
Chromosome representation, free market-based architectural
approach, supervised ranking, team coordination strategy

1. INTRODUCTION
The benefits of using a team of multiple, simple, robots

instead of a single, complicated robot to accomplish a task
have been well discussed in the literature [2]. Recently, many
researchers focused on the design of robotic team coordina-
tion strategies. For a multiple robot system, either homoge-
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neous or heterogeneous robots work cooperatively to achieve
a common goal. The behaviours of each robot interact with
one another until the required goal is accomplished. How to
learn these behaviours and how to define the effectiveness
of some behaviours to achieve a collective goal are central
topics of Distributed Artificial Intelligence (DAI) [3].

One popular approach is the free market-based architec-
tural approach [4]. It first defines cost / revenue functions
for executing a specific task. Then it further sub-divides
the collective task into sub-tasks for individual robots to
perform. By using a bid and negotiate mechanism, cooper-
ation or competition materialises and theoretically, the op-
timal result can be accomplished by all participants max-
imising their own profits. However, this approach has a
prerequisite: accurate revenue and cost functions. These
are difficult to determine if the specific task involves many
different types of participants whose roles are interlocked.
Taking the RoboCup Rescue Problem [5] as an example: A
big city is ruinned by an earthquake, many buildings have
collapsed or are burning, civillians are buried and roads are
blocked. There are three types of rescuers: police cars, fire
engines and ambulances. The police cars’ role is to clear
blocked roads, whereas the fire engines’ and the ambulance
platoons’ are to extinguish burning buildings and save civil-
ians, respectively. The collective goal is to minimise the
number of casualities as well as to put out as many burn-
ing buildings as possible. Here, the actions of rescuers are
interdependent: roads have to be cleared otherwise the fire
engines cannot reach the fire sites, ambulances cannot en-
ter a burning building before the fire has been extinguished.
How to maximise an individual’s profit which in turn can
realise an optimal collective goal is not straight forward. In
short, the cost and revenue of the same action will vary in
different scenarios.

Using figures 1 and 2 as an example: The cost of clearing
blockage 1 or 2 are the same because the police car is in the
middle between the two blockages. In fig. 1, site 2 is with a
higher risk of spreading than site 1 because there are more
buildings near the fire. Assuming the bid provided by a fire
engine going to a fire site with a higher risk of spreading
is higher than that of going to a lower risk site, will the
police car make decisions based on the total sum of bids,
or on the highest bid only? If it is the total sum, in fig.
1 it will clear blockage 1 first because the sum of two fire
engines’ bids are higher than the single engine’s. This will
be a wrong choice because site 2 is more urgent. On the
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Figure 1: The police car has to decide clearing which
blockage, 1 or 2, first. Clearing blockage 2 first is
better because site 2 has a higher risk of spreading.

Figure 2: Clearing blockage 1 first is better because
there are two fire engines.

contrary, if it is the highest bid, in fig. 2, it is a tied case
because only one engine’s bid (both sites are with the same
risk) are considered. However, it is obvious that blockage
1 is a better choice since site 1 can be put out within a
shorter period (two engines work faster than a single engine).
This example demonstrates that no single bidding scheme
can satisfy both cases. It illustrates how the dynamic and
volatile natures of these cost and revenue functions make
this market-based architecture difficult to implement.

Another popular approach to design behaviours of multi-
ple robot systems is the utilization of artificial evolution to
evolve individual behaviours [6] [7] [8]. Recently, a number
of researchers have reported promising results in the field
of evolutionary robotics. However, most of the approaches
taken are focused on the design of low level controllers or
subsumption behaviours. The area of high level coordina-
tion strategies for robotic teams is rarely touched. This
is due to the paradox of the chromosome design problem:
On one hand, the evolutionary computing (EC) approach
is preferred to other design methods because it has been
proven to be capable of solving problems whose nature is
complex and not fully understood. On the other hand, EC
requires an appropriate chromosome representation which
maps a probable solution to a data structure. The success
or failure of an application of EC is highly dependent on the
relevance of this representation. If the problem nature is ill-
comprehended, how can a good chromosome representation
be found?

In this paper we propose a method which, through the
conversion of the next actions determination problem into
a supervised ranking problem (SRP), can effectively link up
short and long-term effects and accordingly use EC to per-
form the task of team coordination strategy design.

This paper consists of four other sections. Section 2 ex-
plains what the supervised ranking problem is and what
a suitable chromosome representation to evolve a SRP is.
Section 3 narrates how to apply the SRP to design a team
coordination strategy. Section 4 is about the results of an
experiment: applying this method to dynamically solve the
Vehicle Routing Problem with Time Windows (VRPTW).
Section 5 is the discussion and conclusions.

2. THE SUPERVISED RANKING PROBLEM

2.1 The Ranking Problem
Basically, the ranking problem is a multi-criteria (MC)

decision making problem [9]. Given a finite number, N, of
instances I1, .., IN , each of which is represented by n merit
attributes, i.e. I = {a1, a2, .., an}. Each merit attribute
is either numeric, ordinal or interval. Consequently, each
instance can be represented by a n-ordered vector: Ii =
{ai1, ai2, .., ain}. Comparison with a binary relation: better
than (>) can be made on any single merit attribute. The
ranking problem is to determine whether Ii > Ij based on
the relations between aik and ajk, for k={1..n}. Normally,
the dominance rule always applies. It means that if one
merit attribute is better than, and all the other attributes
are equivalent to or better than, then this instance is better.

if ∃k, aik > ajk, and

aim ≥ ajm ∀m 6= k; then
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Ii > Ij

The ranking problem is complicated only if this domi-
nance rule cannot apply. The next two subsections are about
applying EC to determine if Ii > Ij when not all aim ≥ ajm.

2.2 The Supervised Ranking
The supervised ranking problem is about how to use ma-

chine learning methodology to induce a multi-criteria pref-
erence function from pairwisely presented training sample
instances: Given N(N-1)/2 pairs comparison results of the
N instances, a MC preference function, which can predict
future comparison results correctly, is devised. This MC
preference function compares and discriminates between dif-
ferent attributes (fig. 3).

Figure 3: MC preference function discriminates be-
tween different attributes.

The MC preference function is an evaluation program
which either draws the final conclusion based on some at-
tributive comparisons, i.e. in a form of decision tree (fig. 4);
or, gives each result of an attributive comparison a score,
and then transforms this set of scores into an ultimate score
for making final decision, i.e. as a set of parametric weights.

The format of parametric weights forms the ultimate score
by a linear weighed combination of the attributive compar-
isons.

In the next subsection we will explain that the decision
tree representation is more compact for GA chromosome
encoding.

2.3 The Chromosome Representation to Evolve
the Preference Function of a SRP

The common evolutionary computational methods choose
the structure of parametric weights, and encode the weights
as the genes of the chromosome. This approach has some
shortcomings:

• Since the relations among the attributes are unknown
beforehand, the appropriate ranges of the weights are
unknown also. Lacking this information may waste the
searching effort on some unfruitful areas.

• Different attributes will have different types of values.
A weighted sum of different data type may not cor-
rectly characterise different significance of attributes.

• The attributes may not be independent to each other

• The relations among the attributes cannot be repre-
sented effectively by a linear weighted sum.

Figure 4: The preference function in a form of deci-
sion tree.

Therefore, we propose another chromosome format which
can evolve a decision tree effectively.

The chromosome is composed of two portions, the first
portion defines the order of significance and the second por-
tion defines the margin of distinction.

Suppose there are n attributes, the first portion will con-
sist of (n-1) genes and the second portion n genes, respec-
tively.

For the first portion, the 1st, 2nd, 3rd, ... (n-1)th gene will
have values within the range of {1..n}, {1..(n-1)}, {1..(n-2)},
... {2}, respectively. This portion represents n! combina-
tions of comparsion sequences of the n attributes.

For example, let n = 6. The first portion will consist of
n-1, i.e. 5 genes. The value of the first gene is in the range
of {1..6}, and the fifth is {1..2}, etc.

Let the six attributes are named as A, B, C, D, E, F. The
value of the first gene defines the place of the most important
attribute in this list. According, the value of second gene will
be the place of the most important one in the list excluded
the first one.

Let the values of the genes be: 5 1 3 2 1
The most important attribute is the fifth, i.e. E. Then E

is remove from the list.

init: A B C D E F —-(5::E removed)
left: A B C D F ——-(1::A removed)
left: B C D F ———-(3::D removed)
left: B C F ————-(2::C removed)
left: B F —————-(1::B removed)
left: F

Therefore, the genes of values 5 1 3 2 1 defines the signif-
icance order of E A D C B F.
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Basically, this is a form of Ordinal Representation of Grefen-
stette which has been reported [10] that is not very effective
in solving Travelling Salesman Problem (TSP). It is because
of a major drawback: front parts before the cutoff point
are preserved, but back parts of the offsprings of a classical
crossover operation are disrupted in a random way. From
our observation, influences of the attributes with lower sig-
nificance orders seem dropping steeply. Accordingly, this
representation works satisfactorily for our applications.

The second portion defines the margin of distinction. When
two attributes are compared, if the difference is less than or
equal to that gene’s value, the attributive comparison result
is considered to be equal.

By using this form of chromosome, two instances are com-
pared by following the order of the first portion, and using
the second portion to determine if the comparisons of at-
tributes are enough to draw a conclusion. If the result of
the more significant attribute comparison is equal, the next
attribute will be compared until a distinction can be make.
If all differences are within the ranges defined by the second
portion, then the two instances will be treated as equals.

Using the Olympics Game ranking method as an example:
The number of gold medals earned by a country determines
the ranking. The number of silvers is considered next and
then the number of bronzes. If the preference function is rep-
resented by a weighted sum format, then the chromosome
will have three genes whose ranges depend on the number
of events. Say, there are a total of 300 events, then one gold
is equal to 300+1 silvers, and one silver is equal to 300+1
bronzes, which implies one gold is equal to 300 * 300 + 1
bronzes. The three genes’ ranges will be 300*300=90,000.
On the other hand, first portion of our chromosome repre-
sentation will be two genes in ranges 3 and 2, respectively;
whereas the second portion will be three genes, each with
a range of 300. This is much shorter compared with the
parametric format.

3. APPLICATION OF SRP TO DESIGN TEAM
COORDINATION STRATEGIES

For any member of a team, at any time, there should be
a list of advantageous action sequences. The term advanta-
geous means that if any one of these sequences is performed,
at least certain part of the collective goal is fulfilled. Again,
taking fig. 1 as an example: the actions available for the po-
lice car are clearing blockage 1 or clearing blockage 2. The
actions available for the single fire engine AFTER blockage
2 is cleared are putting out the fire at site 2 or following the
police car, waiting to put out the fire at site 1.

After an action sequence is performed, some immediate,
measurable results can be reckoned: For the police car, if
clearing blockage 2, a fire engine is accessible to a higher
risk site. If clearing blockage 1, two fire engines are accessi-
ble to a lower risk site. For the fire engine after blockage 2
is cleared, if putting out site 2, site 2 is extinguished after a
period of ta. If following the police car, site 1 is extinquished
after a period of tb, tb 6= ta.

The immediate results caused by different action sequences
can be reckoned easily. However, what makes the team coor-
dination problems difficult is the intricacy of their long-term
effects. Their collective long-term effects (the total num-
ber of saved civilians and total number of buildings not de-

stroyed by fire) will only be available after the whole episode
(300 seconds after the earthquake) is finished.

Behaviours of choosing one entry from a list of advan-
tageous action sequences can be modelled by a preference
function by treating the immediate, short-term results of an
action sequence as merit attributes of a SRP (fig. 5).

Figure 5: Short-term effects of an action are re-
garded as merit attributes.

For a normal SRP, ranking orders of the training dataset
are given as the N(N-1)/2 comparison results. Here, for
the design of coordination strategies, the ranking order is
obtained from the global collective result after running a
whole episode. The collective result is used as the fitness
value of a genetic algorithm (GA). Accordingly, the prefer-
ence function controls which action sequence to be taken,
and the action sequence contributes to determine the group
performance. Finally the group performance is used as the
fitness to evolve better preference functions (fig. 6).

Figure 6: The group performance is used as the fit-
ness to evolve better preference functions of every
robot.

Consequently, the task of team coordination strategy de-
sign is to:

• partition the episodic run into sub-sections based on
environmental states

• define, for each sub-section, and for each type of par-
ticipants, a list of advantageous action sequences

• define, for each action sequence, its short-term results
as merit attributes of a SRP

• encode merit attributes as described in previous sub-
section
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• let GA to evolve the best sets of preference functions

This concludes our proposed method. In next section, we
demonstrate its effectiveness.

4. EXPERIMENT
Since most of the researchers on team coordination strate-

gies work on their own problems, there is not a common,
popular benchmark to evaluate the performance of our pro-
posed method. Originally, the RoboCup Rescue Problem
was a good testing ground. However, certain modules of
the RoboCupRescue Simulation System like Fire Spreading,
Panicked Pedestrian Behaviours, etc. are still under devel-
opment and are evolving. It is difficult to get objective com-
parisons of experimental results in this environment. Con-
sequently, we use a typical vehicle routing problem and the
associated well-known benchmark problems to demonstrate
the performance of our method. This problem set is chosen
because:

• It is NP-hard.

• If it is solved statically, a great combinations of routes
have to be tried to obtain the optimal solution. How-
ever, if it is solved dynamically, a behavioural approach
which makes decisions based on environmental states
will be the preferrable method.

• It contains a variety of problem instances. Some algo-
rithms work very well on a subset of these instances
may deteriorate significantly on other instances.

• Either optimal solutions or heuristic best results of the
problem instances are published. Our method’s per-
formance can be quantitatively compared.

4.1 Vehicle Routing Problem with Time Win-
dows

A vehicle routing problem (VRP) requires a number, N,
of customers to be served by n, where N � n, vehicles. All
of these vehicles originate from a single depot, and these
N customers are scattered geographically. The problem is
to design routes which start and end at the depot, and in
addition, each customer can only be visited by exactly one
vehicle. The problem is to minimise the required vehicles,
i.e. n, as well as the total length of the routes taken by the
vehicles.

The Vehicle Routing Problem with Time Windows (VRPTW)
is a VRP with the added constraint that each customer can
only be served within a time window: If a vehicle arrives
too early, it has to wait until the time window is open. If it
arrives too late, that customer cannot be served.

4.2 Solomon’s Benchmark
Each of these problem instances contains 100 customers

[1]. The travel velocity of the vehicles is unity, i.e. travel
times are equal to their Euclidean distances. Each vehicle
has an equal amount of goods which will be spent on serving
the customers. The required capacity of goods varies from
customer to customer. There are three groups of problems:
R, C and RC. The locations of customers in R are randomly
placed, whereas those in C are clustered. The RC group is
a mixture of R and C, i.e. randomly scattered customers
mixed with customer clusters. Each group contains 8 to 12
problem instances, where the customers’ time windows vary
in length, starting time and ending time, etc.

4.3 Attributes and Behaviours
In our experiments, the VRPTW is solved dynamically. A

vehicle, either in the depot, or after serving a customer, has
to decide who is the customer to be served next. We assume
that there is enough communication bandwidth among the
vehicles such that each vehicle always knows:

• Whereabout of the other vehicles.

• The served customers as well as those waiting for ser-
vices.

• Other vehicles’ remaining goods.

Based on these pieces of information, for each vehicle -
waiting customer (not served) pair, we define a relation: ac-
cessibility. A vehicle is accessible to a waiting customer if the
vehicle can reach that customer before whose time window
is closed; and it has enough goods to serve that customer.
Consequently, each not served, i.e. waiting, customer has a
counter holding the total number of vehicles accessible to it,
i.e. the accessible count.

With respect to each accessible vehicle, a waiting cus-
tomer is represented by three merit attributes:

• Relative distance (route length).

• Waiting time for window opening.

• Goods left after serving it.

The behaviours of the vehicles are encoded as follows:

• If the accessible counts of certain waiting customers
drop below some threshold, a new vehicle will leave the
depot. A vehicle leaving the depot has to decide whom
to serve. It resolves by comparing route length, waiting
time and accessible counts of all waiting customers.

• While no new vehicle is required, i.e. the accessible
counts of ALL waiting customers are above the thresh-
old, the merit attributes described before will be com-
pared among vehicles accessible to a waiting customer.
The best accessible vehicle to a waiting customer, or,
the champion, is then defined.

• Each waiting customer will have one and only one
champion. However, a single vehicle may become the
champions of more than one waiting vehicles. There-
fore, a vehicle will have a champion count, which in-
dicates it is the champions of how many waiting cus-
tomers.

• Another comparison is used to decide which champion
gets its best waiting customer first. This comparison
is based on the merit attributes of accessible count,
champion count, route length, window open waiting
time and goods left.

• After decided who is the next customer, a champion
with the champion count more than one will release
the other customers for next assignments.

• This customer assignment process iterates until all cus-
tomers are served.
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These various comparisons are then coded as SRPs. For
example, after a vehicle has just served a customer, it has
to decide who is the next to be served. Firstly, based on
the precedence order encoded in a gene of the chromosome,
it compares the merit attributes like distance, waiting time
etc. of each waiting customers against all vehicles to get a
subset of customers regarding itself as the champion (fig.7
as an exampe). Secondly, it uses the decision tree encoded
in another gene to get the most beneficient customer in this
subset.

Figure 7: Since the order is 2-3-1, it compares capac-
ities first. As the difference 12 - 8 < 6, it continues
to compare waiting times and concludes customer1
is a better choice.

One of the problem instances of the Solomon’s benchmark,
i.e. C101 to C109, R101 to R112, RC101 to RC108; is ran-
domly chosen as the evolution environment. In our experi-
ment, R106 is used. A 100 individuals per generation, 40%
selection, 60% crossover, 1% mutation rates GA program
is coded. The total route length; actually, a constant mi-
nus the total route length because we want to minimise this
quantity; is used as the fitness. One elite is preserved from
each generation. The results are tabulated as in table 1.

4.4 Results
The column of worst distance in the table is the longest

route length: using 100 vehicles to serve 100 customers. The
performance percentage (optimal is 100%) is calculated by:

(Our Length - Best Length) / (Worst Length - Best Length)

It is shown that our results are not optimal and the aver-
age is only 87.1%, which is quite weak compared with those
results in the literature. However, our algorithm gets these
results responsively. It does not enumerate combinatorial

routes, and, it does not back-track. It gets its preference
functions from R106 only. On the contrary, the other ap-
proaches in the literature run GAs or other heuristics on
each problem instances independently. They are specialised
results to only one problem instance, whereas the results
presented here are general results to ALL problem instances.
Therefore, it is more robust. In case of sudden changes like
vehicle breakdown or new customer requests, our approach
can still handle and can provide a satisfactory service level.

5. DISCUSSION AND CONCLUSIONS
In this paper we propose a method which uses the long

delayed collective reward as a ranking result to evolve pref-
erence functions. Actually this method is inspired from the
market-based architectural approach. We find the bid and
negotiate mechanism requires the conversion of different re-
sults of an action into a common unit. This conversion will
be very difficult, if not impossible, for complex, inter-related
multiple agent systems (MAS). Accordingly, we propose to
use an EC approach to fill up this gap. To a certain extent,
we may claim that this method is a partial integration of
the market-based architectural and EC approaches.

The central idea of our method is using GAs to select
one among conflicting actions, which can induce the best
long-term results. Comparing to the other popular Pareto
evolutionary algorithms [11], which are wellsuited for opti-
mization problems involving several conflicting objectives,
our method is much simpler. One salient feature of Pareto
approaches is they can search multiple solutions concur-
rently in a single run. However, the long-term results of
an agent’s action in a MAS are only loosely related to the
short-term merits. Consequently, we believe that making
decisions based on hierarchical preference functions instead
of Pareto front solutions are sufficient,but the save in pro-
cessing power is significant, for MAS applications.

The results presented in this paper can demonstrate our
approach’s strength, the generality of this approach is a
topic for further evaluations. Our next step is to apply it to
a search and rescue operation experiment. And presumbly,
real robots will be used to test its validity in the final phase.

Another major contribution of this paper is that it pro-
poses a method which can help researchers to logically de-
sign chromosomes of GAs for MAS. It bridges the gap of
chromosome design paradox: even though the problem na-
ture is not thoroughly known, GAs can be applied to evolve
short-term preferences which result in acquiring good long-
term performance.
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