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ABSTRACT
This paper presents the Real-coded Genetic Algorithms for
high-dimensional ill-scaled structures, what is called, the k-
tablet structure. The k-tablet structure is the landscape
that the scale of the fitness function is different between a k-
dimensional subspace and the orthogonal (n−k)-dimensional
subspace. The search speed of traditional GAs degrades
when a high dimensional k-tablet structure is included in
the landscape of the fitness function.

In this structure, offspring generated by crossovers are
likely to spread wider region than the region where the
parental population covers and this causes the stagnation
of the search. To resolve this problem, we propose a new
crossover LUNDX-m using only m-dimensional latent vari-
ables. The effectiveness of the proposal method is tested
with several benchmark functions including k-tablet struc-
tures and we show that our proposed method performs bet-
ter than traditional crossovers especially when the dimen-
sionality n is higher than 100.

As an example of a k-tablet structure in real world appli-
cations, we show that the lens design problem has a kind of
k-tablet structures and that our proposed method also per-
forms better than conventional crossovers in this problem.

Categories and Subject Descriptors
F.2.1 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity numerical algorithms and prob-
lems

General Terms
Algorithms

Keywords
Genetic Algorithm, Optimization, landscape, k-tablet, Crossover,
Real coded, Real parameter, Latent variable
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1. INTRODUCTION
Function optimization in the continuous search space is

one of the most important problems because it often has
to be solved in real-world applications. In function opti-
mization, high-dimensionality, strong epistasis (dependency
between parameters) and numerous local optima make the
optimization difficult. Real-coded Genetic Algorithms (RC-
GAs) are expected to be a powerful optimizer that can solve
problems with these difficulties.

In this paper, we focus on ill-scaled and epistasis func-
tions. For crossovers invariant to the coordinate system, ill-
scaledness and epistasis can be treated equivalently, there-
fore, we generalize these properties as k-tablet structures. In
optimization of n dimensional functions, when the sensitiv-
ity to the cost is largely different between k directions and
the other orthogonal (n−k) directions, we call this structure
of the landscape a k-tablet structure.

k-tablet structures often arise in real world applications.
The lens design problem is known as a difficult optimiza-
tion problem with numerous local optima and complicated
constraints[4]. We show that this problem is a typical ex-
ample of a cost function with k-tablet structures. When
a function has a k-tablet structure, the convergence speed
seriously degrades. Although crossover UNDX-m[3] and
SPX[8] are known as crossovers which cannot be effected by
ill-scaledness, the convergence speed of RCGAs with these
crossovers become considerably slower as the dimensionality
of the function becomes higher in actual.

The purpose of this paper is to study about the reason of
inefficiency of conventional crossovers in high dimensional k-
tablet structures. Then, we propose a new scalable RCGA
to dimensionality. The performance of proposed method is
verified by experiments using artificial benchmark functions.
Then, we study about k-tablet structures in the lens design
problem. We show that our proposed method solves this
problem more efficiently than conventional RCGAs.

In section 2, k-tablet structures are defined. Section 3
clarifies problems of conventional methods in k-tablet struc-
tures. In section 4, a new RCGA for k-tablet structures is
proposed. Section 5 is experiments. In section 6, k-tablet
structures in lens design problems are analyzed and the pro-
posed method is applied. Section 7 concludes this paper.

2. K-TABLET STRUCTURES

2.1 Ill-scaledness and Epistasis
Ill-scaledness means that the scales between variables are
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largely different each other. From the viewpoint of the cost
function, this means that the sensitivity to the cost is differ-
ent dependent on the variable. Epistasis means dependency
between variables. In epistasis functions, the cost cannot be
improved when one of dependent variables is changed but
improved when all of dependent variables are appropriately
changed together. Especially in high dimensionality, the de-
pendency is likely to be complicated.

Ill-scaled functions and epistasis functions can be regarded
as equivalent structures when the coordinate system is taken
in local region properly. If the optimization algorithm works
independently on the given coordinate system, that is, the
algorithm is coordinate system invariant, then both func-
tions can be treated equivalently.

As a benchmark of epistasis functions, Rosenblock func-
tion is often used. In this function, the landscape is a gentle
descent in a direction and in the other n−1-dimensional di-
rections the landscape is a steep ascent. This kind of struc-
ture is called “ridge structure”[5]. Epistasis in Rosenblock
function cannot be resolved just by taking an appropriate
coordinate system because the shape of the ridge is a curve,
however, on a local region, it can be regarded as resolved
approximately by a linear transformation.

In high dimensional problems, the epistasis or ill-scaled
structures do not only mean ridge structures but more gener-
alized structures which have a gentle descent in k-dimensional
directions and in the other n− k-dimensional directions the
landscape is a steep ascent. The k-tablet structure is defined
as a generalized epistasis or ill-scaled structure.

2.2 Definition of k-tablet Structure
We consider minimizing a nonlinear cost function f(�)

that is a mapping from a search space S ⊂ �n to �, where
the variable is � ∈ �n. Suppose that f(�) is locally ap-
proximated as a quadratic form f(�) = (��)T�� = �T��

around �0, where � = �−�0, � is a full-rank matrix and �
is a symmetric and positive-definite Hessian matrix. When
we choose an arbitrary orthogonal matrix � , then f(�) is
written in the form f(�) = α1z

2
1 + ...+αnz2

n, where � = ��,
αi(i = 1, ..., n) are eigenvalues of � and eigenvalues is or-
dered as α1 ≥ α2 ≥ ... ≥ αn.

When k eigenvalues α1, ..., αk is much larger than the
other eigenvalues αk+1, ..., αn, then we call f(�) a k-tablet
structure around �0. Similarly, a Gaussian distribution with
the covariance matrix having the same property is called
a k-tablet Gaussian distribution. Data set G = {�i|�i ∈
�n, i = 1, ..., N} drawn from a k-tablet Gaussian distribu-
tion can be approximately represented by a linear combina-
tion of k(< n) large eigenvectors (�1, ...,�k) as follows:

�i =
k�

j=1

�iti,j + ε, (1)

where �i ∈ �k, ti,j is a j-th element of �i and ε is a n
dimensional random value following a Gaussian distribution
with a sufficiently small variance, that is, ε ∼ N(0, σ2	).
Then �i, ...,�k are called latent variables[7]. The data model
described as eq.( 1) is called a k-dimensional latent variable
model(k-LVM). The k-dimensional subspace that latent vari-
ables span is called k-tablet space. Fig. 1 shows a concep-
tual illustration of an example of 3 dimensional contours of
k-tablet structures and k-LVMs.

1-tablet structure

x1
x3

e1x2

1- LVM

x1
x3

e1
x2

2-LVM

e2
2-tablet structure

Figure 1: Conceptual illustrations of contours of k-
tablet structures and k-LVMs

2.3 Situations k-tablet Structures Arise
A typical situation where k-tablet structures arise is that

the cost function has variables which are insensitive to the
cost. In this situation, the gradient is quite small or zero in
the direction of insensitive variables. Therefore, cost func-
tion forms a k-tablet structure. Redundancy or symmetric
property also induces k-tablet structures. For example, in
the weight optimization of neural networks, equivalent neu-
ral networks can be obtained even if the weight variables
have different values because of the redundancy. These situ-
ations can be avoided if the cost function is deigned carefully
but when the dimensionality is extremely high, removing
these insensitivity or redundancy is difficult.

The difference of physical dimensions also induces k-tablet
structures. When the variables have the same physical di-
mension but the scale is different (for example, meter and
millimeter), a linear transformation of the domain resolves
the ill-scaledness. However, when the physical dimensions
are different, transformations to resolve the ill-scaledness are
not known. Moreover, when there exist complicated inter-
dependencies between them, finding an appropriate trans-
formation that resolves the epistasis is difficult.

3. PROBLEMS OF CONVENTIONAL
METHODS

3.1 Guideline of Designing Crossovers
Given the assumption that the population size is suffi-

ciently large, Kita et al. have proposed a hypothesis on the
behavior of the population of a GA as follows[3]: information
gathered by the GA run is represented by this population,
and it suggests that the region where the population resides
is a promising region for further search.

Then, as a guideline for sampling new points in the search
space, it has been suggested that offspring generated by a
crossover should be approximately distributed over the sim-
ilar region where the current population covers. If the off-
spring generated by a crossover distribute narrower than
the parents, it may let the optimum escape. On the con-
trary, if the offspring generated by a crossover distribute
wider, it wastes computation time in searching hopeless re-
gion. Hence, sampling new points in the region where the
parents reside will be an appropriate choice.

In order to satisfy the condition described above, the
preservation of the statistics, such as the mean vector or
the covariance matrix, has been proposed. Please notice
that the preservation of the covariance matrix is important
from the viewpoint of optimization of epistasis functions.
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Figure 2: UNDX-m and SPX

If the cost function has epistasis and the parental popula-
tion reflects the correlated valley well, the distribution of
the population is expected to have the correlation. In order
to give the same correlation to offspring, crossovers must
preserve not only the mean vector but also the covariance
matrix.

3.2 Hopeful Crossovers in k-tablet Structures
In this section, we discuss about a hopeful sampling strat-

egy for a crossover on k-tablet structures. When the cost
function has a k-tablet structure, the parental population
hopefully forms k-LVM reflecting the k-tablet structure. There-
fore, intensive sampling in the k-tablet space of the parental
population is expected to contribute to effective search. On
the other hand, if the crossover generates offspring in the
region far form the parental population, the computation
time is wasted on the search in the unhopeful region. Hence,
when the parental population forms an appropriate k-LVM,
it is desired that the offspring generated by a crossover also
should form the same k-LVM. In this paper, we call this
property the preservation of k-LVM.

In next section, we analyze the efficiency of conventional
crossovers which preserve the covariance of the population
and show that they do not necessarily perform better in
k-tablet structures.

3.3 UNDX-m in k-tablet Structures
Multiple-parental extension of Unimodal Normal Distri-

bution Crossover (UNDX-m)[3] generates offspring following
the normal distribution spanned by m+2 parents x1, ..., xm+2.
Let the center of parental vectors �1, ...,�m+1 be 
, the
difference vector of �i and 
 be �i = �i − 
. Let D be
the length of the component of �m+2 = �m+2 − 
. Let
�1, ...,�n−m be an orthogonal bases of the subspace orthog-
onal to the subspace spanned by �1, ...,�m. Then, offspring
vector �c is generated as follows:

�
c = 
 +

m�
i=1

wi�
i +

n−m�
i=1

viD�
i (2)

, where wi, vi is a random number following a normal dis-
tribution N(0, σ2

ξ), N(0, σ2
η) respectively. σξ = α/

√
m, ση =

1√
n−m

√
m+1√
m+2

3
2
β, α = 1, β = 0.35 is recommended in terms

of the preservation of statistics in [3]. Fig. 2 shows the
distribution of offspring generated by UNDX-m.

In eq. (2), the second and third term of RHS are called
primary search directions(PSDs) and secondary search di-
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Figure 3: Left: Parental population on 20-
dimensional 19-tablet structures, center: offspring
generated by UNDX-20, right: offspring generated
by UNDX-3. The vectors are projected on to x1−x20
space (top) and x1 − x2 space (bottom).

rections(SSDs) respectively. PSDs satisfy the preservation
of statistics but SSDs do not. Therefore, the preservation of
k-LVM is not completely satisfied by UNDX-m.

Fig. 3 shows offspring generated by UNDX-3 and UNDX-
20 when the parental population is a 20-dimensional 19-
tablet normal distribution. The figure suggests that off-
spring generated by UNDX-20 preserves the parental k-LVM
but UNDX-3 does not. Figure 4 shows another numerical ex-
amples. Let G be a parental population that is drawn from
5-tablet and 15-tablet normal distribution, where the mean
vectors are at the origin (0, ..., 0), the covariance matrices

are diag(

k� �� �
100, ..., 100,

n−k� �� �
1, ..., 1) and the dimension n = 20. Let

O be offspring generated by UNDX-m, where the parental
vectors are chosen randomly from G.

The form of the parental population or offspring can be es-
timated by applying primary component analysis (PCA) to
the vectors and comparing eigenvalues obtained as a result
of the PCA. When k eigenvalues are much larger than the
other n − k eigenvalues, then the population forms k-LVM.

Figure 4 shows the eigenvalues of each component of G
and O which are obtained by PCA and ordered by the size.
In 5-tablet case, the eigenvalues of O are similar to those
of G at m ≥ k(m = 5, 10, 19), but the eigenvalues of O are
biased to be much larger than those of G at m < k(m = 1, 3).
Similarly, in 15-tablet case, eigenvalues of O are biased to be
larger than those of G at m < k(m = 1, ..., 10). These results
suggest that UNDX-m does not preserve k-LVM when the
k of k-tablet is larger than the number of parents m.

Figure 5 explains why the eigenvalues of offspring gen-
erated by UNDX-m are biased using a 3-dimensional 2-
LVM. Let the parental population be G =

�2
j=1 �iti,j + ε

as described in eq. 1. The variance ε is sufficiently small,
then PSDs are expected to be a linear combination of 2-
dimensional latent variables �i. When offspring is gener-
ated by UNDX-2(m ≥ k), two PSCs are used to span 2-
tablet space and the length D of SSC is correctly computed.
Therefore, the generated offspring forms a 2-LVM similar
to the parental population. To the contrary, when UNDX-
1 is used(m < k), only one PSC is used and D is com-
puted much larger than ε. Then, the generated offspring
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Figure 4: Eigenvalues of the covariance matrix of
parental population and its offspring generated by
crossovers. Parental population is 20-dimensional
5-tablet(left) and 15-tablet(right) LVM. UNDX-
1, 3, 5, 10, 19 were used for each LVMs.

distributes isotropically not reflecting the 2-LVM parental
population.

When the dimension is very high and m < k, offspring
does not reflect the k-LVM of the parental population, that
is, the sampling of UNDX-m does not concentrate on the
hopeful region. From above, it can be concluded that the
number of parent m should be set at maximum, n− 1, from
the viewpoint of the preservation of arbitrary k-LVMs.

3.4 SPX in k-tablet Structures
Simplex Crossover (SPX)[8] generates offspring following

the uniform distribution within an n-dimensional simplex
defined by n+1 parents, where the simplex is larger γ times
than the parental simplex. Fig. 2 shows the distribution of
offspring generated by SPX. SPX fully preserves the covari-
ance, hence, the preservation of arbitrary k-tablet structures
is satisfied. However, mainly because of the following two
reasons, RCGA using SPX converges considerably slow or
fails to reach optimum, especially in high-dimension prob-
lems.

One is that the parental population easily shrinks to the
dimension less than n. Once this happens, SPX cannot re-
cover the lost dimension and this causes premature conver-
gence. The other is that the parental population tends to
converge in the region far from the optimum (premature
convergence) because of the interpolative sampling bias of
the crossover[6].

Although shrinking of population and the premature con-
vergence can be avoided if the number of population is set at
more than 50n for SPX, the time to convergence becomes
quite large in high dimensional functions (see section 5 in
detail). UNDX-m with n + 2 parents which satisfies the
preservation of statistics also faces with the same problem.
Considering the preservation of statistics, UNDX-n or SPX
should be used, however, these crossovers are not preferable
in terms of the convergence speed. The discussion about
the premature convergence is shown in experimental section
again. In next section, we propose a scalable RCGA to the
dimensionality which can preserve k-LVM with small num-
ber of parents and population.

4. CROSSOVER ON LATENT VARIABLES

4.1 Our Proposal
To use UNDX-m on k-tablet structures, m must be set

at the value larger than k for satisfying the preservation of
statistics, however, it is normally impossible to predict k
of cost functions in advance. Although SPX or UNDX-n
fully preserves k-LVM, numerous number of population is
required to avoid the premature convergence and the popu-
lation shrinking. Therefore, following two conditions should
be satisfied for efficient search in k-tablet structures : (1)
Preservation of k-LVM at small m, (2) Avoiding premature
convergence and population shrinking.

We separately use the PSDs from the SSDs and treat
them as two crossovers. Although the distribution of off-
spring generated by PSDs fully preserves the statistics, the
distribution shrinks in m-dimensional subspace, therefore,
the parental distribution also tends to shrink and eventually
the search of RCGA stagnates. To avoid this, we further use
SSDs as another crossover to resist to the shrinkage. We call
the former LUNDX-m (UNDX using m-latent variables) and
the latter EDX (Extrapolation-Directed Crossover). EDX
has been proposed in [6] and performs as a mutation of
RCGAs. The offspring of LUNDX-m �L and EDX �E is
written in the form:

�
L = 
+

m�
i=1

wi�
i, �

E = �
1 +

n−1�
i=1

viD�i, (3)

where the parents �1, ...,�m are used in LUNDX-m and 3
parents �1,�2,�3 are used in EDX. In both crossovers, par-
ents are chosen randomly form the population. By removing
the SSDs from eq. 2, we obtain �L . �E corresponds to the
SSDs of UNDX-1.

Next, we describe the procedure of RCGA using two crossovers.
The procedure of RCGA is designed as a variants of MGG
(Minimal Generation Gap) model [4]. MGG is superior in
maintaining the diversity of the population and is applied
widely to both combinatorial optimization and function op-
timization problems. In [1], it is reported that generation
alternation model GGG, which adopts tournament selection,
performs better in single peak functions in terms of conver-
gence speed, however, we use MGG considering the global
search performance.

[MGG using LUNDX-m and EDX]

1. Create an initial population that is composed of p random
vector drawn from a uniform distribution in a defined search
region.

2. Choose m + 2 vectors from the current population with
probability pL and jump to step 3. Otherwise, choose 3
vector and jump to step 5.

3. Generate a family by applying LUNDX nLUNDX times
and choose two offspring from the family that includes the
parents. One has the lowest cost and the other is chosen
by roulette selection.

4. Exchange the parents �1 and �
2 for the selected two off-

spring and jump to step 8.

5. If f(�1) > f(�2), then exchange �1 for �2. Set t = 0.

6. Generate one offspring by EDX. If the fitness of the off-
spring is lower than that of �1, then exchange �1 for the
offspring and set t = t + 1.

7. If t > nEDX , then jump to 8. Else jump to step 5.
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Figure 5: Generation of offspring where the parental population is 3-dimensional 2-LVM and the crossovers
are UNDX-1 and UNDX-2. When m = 1, k-LVM is not preserved because k > m.

8. If the stop condition is satisfied, then stop. Else, jump to
step 2.

EDX generates offspring in the region orthogonal to the
latent variable space that the parents span. LUNDX-m gen-
erates offspring almost in the latent variable space. On the
contrary, the selection of EDX is carried out in a manner of
deterministic local search to prevent the population from
sprawling widely out of the latent variable space. Con-
versely, in LUNDX-m, the parents are exchanged for the
offspring having the best fitness and the offspring chosen by
roulette selection for maintaining the diversity on the latent
variable space.

Preservation of k-LVM by LUNDX-m: Since PSDs
used in LUNDX-m are regarded as a linear combination of
latent variables, offspring generated from LUNDX-m shrinks
in the m-dimensional latent variable space. However, it is
theoretically proved that the entire offspring generated by
the iteration of LUNDX-m preserves k-LVM after the itera-
tion of LUNDX-m (proof is easily derived from the proof in
[3]). The time complexity of SPX and UNDX-n are O(n2),
while the complexity of LUNDX-m is O(mn).
Generation alternation model with two crossovers:
In LUNDX-m which conducts its search in the latent vari-
able space, the best and a roulette-selected vector are ex-
changed for the parents. This selection strategy aims at the
maintenance of diversity in the latent variable space. To
the contrary, EDX generates vectors orthogonal to the la-
tent variable space. The improvement probability of EDX is
low because the offspring is generated outside of the latent
variable space, so if the roulette selection is used as well as
LUNDX-m, the convergence speed becomes very slow and
waste computation time. Therefore, the parent is exchanged
only when the cost is improved. By switching these two
election strategies, the diversity on latent variable space is
maintained while the shrinking of the population is avoided.

5. EXPERIMENTS

5.1 Setting
In this section, we perform three experiments to verify the

performance of the proposed method. Conventionally, the
dimensionality n of benchmark functions is set at around 20
to 30. In this paper, we use n = 20, 40, ..., 320 to study the
performance on high dimensional functions. In experiment
1, the dimensionality is n = 20, 40, 60, 80, 100. We perform

a parameter survey of the population size and record the
optimal convergence speed. In experiment 2, using k-tablet
functions whose dimensionality n is more than 100, we com-
pare the scalability to the dimensionality. In experiment 3,
the global search performance is examined.

Definition of benchmark function is shown in table 1. f1
is a k-tablet function which is obtained by a linear trans-
formation of sphere function. f2 is a 1-tablet (ridge) func-
tion whose ridge forms a parabola. f3 and f4 are multiple-
peak functions which have numerous number of local op-
tima. Initial population is generated randomly from uniform
distribution in [−5.12, 5.12]n(f1, f3), [−2.048, 2.048](f2 and
[−512, 512]n(f4).

Four crossovers, SPX, UNDX-m with EDX(U+E), SPX
with EDX(S+E) and LUNDX-m with EDX(L+E) are com-
pared. SPX fully satisfies the preservation of k-LVM but
requires a large number of population. U+E are reported
to reduce the sampling bias and perform well in 1-tablet
functions but the performance in k-tablet functions is not
known. S+E and L+E are expected to preserve k-LVM well
with a small number of population. We do not compare
UNDX-m and U+E because it has been reported that U+E
performs better than UNDX-m in high dimensional ridge
functions[6].

The minimum number of population p to avoid prema-
ture convergence is different by the tested functions and
crossovers. For U+E, p is recommended to be set at n/4 in
[6]. By preliminary parameter survey, we use the minimum
number of the population as p = n/4 for L+E, p = 30n for
SPX in n/4-tablet function, p = 20n for S+E in 3n/4-tablet
function and p = 2n for S+E. With the number less than
these, we confirmed that premature convergence appears.
The number of parents is set at m = min{25, 3p/4} in U+E
and L+E. For SPX, m is fixed as n + 1. The probability
applying EDX is pEDX = 0.5 for U+E, S+E and L+E. The
number of generated offspring is 100 for UNDX-m, SPX and
LUNDX-m and 50 for EDX.

The procedure is terminated when one of the following
conditions is satisfied: (1) the margin between the best cost
of the population and the optimal cost reaches less than
10−8 (optimal convergence); (2) the margin between the best
cost of the population and the average cost over the whole
population reaches less than 10−10 (premature convergence);
(3) the number of function evaluation reaches 6.0×108 (time
expired).

1351



Table 1: Definition and characters of benchmark functions. SP and MP mean single peak and multiple peaks
respectively. Corner and Center means that the optimum locates at the corner and the center of the domain
respectively.

Function Character Domain Optimum

1. k-tablet f1(x) =
�k

i=1 x2
i +
�n

i=k+1(100xi)
2 SP, k-tablet (−∞,∞) xi = 0

2. Rosenblock f2(x) =
�n−1

i=1 (100(x2
i − xi+1)2 SP, Corner

+(xi − 1)2) bent 1-tablet (−∞,∞) xi = 1.0
3. Rastrigin f3(x) = 10n +

�n
i=1[x2

i − 10 cos(2πxi)] MP, Center (−∞,∞) xi = 0.0

4. Schwefel f4(x) = An +
�n

i=1 xi sin
�|xi|, xi =

A=418.9828873 MP, Corner [−512, 512]n −420.9688476

Table 2: Experiment 1: The number of function evaluation (×106) until optimal convergence in k-tablet
functions(k = n/4, n/2, 3n/4) when the population size and the dimensionality is changed (the experiment
is terminated by condition (1), the result is an averaged value over 20 iterations). “pc” means that the
experiment is terminated by condition (2), (3) (premature convergence).

f1, k = n/4
crossover LUNDX-m+EDX UNDX-m+EDX SPX SPX+EDX
dim. p=n/4 p=n/2 p=n p=n/4 p=n/2 p=n p=30n p=40n p=50n p=2n p=3n p=4n
n = 40 2.75 2.30 7.14 2.98 2.04 7.24 6.97 8.88 10.9 8.50 17.3 22.1
n = 60 6.28 4.41 15.2 6.08 4.53 16.5 13.8 16.7 20.7 15.7 37.7 45.8
n = 80 11.9 7.36 32.1 13.1 8.4 31.0 25.5 25.7 31.3 26.9 64.1 72.0
n = 100 23.8 12.7 46.9 27.0 17.7 46.7 pc pc 43.9 39.9 92.6 99.4

f1, k = 3n/4
crossover LUNDX-m+EDX UNDX-m+EDX SPX SPX+EDX
dim. p=n/4 p=n/2 p=n p=n/4 p=n/2 p=n p=20n p=25n p=30n p=2n p=3n p=4n
n = 40 1.68 3.80 7.70 1.83 3.91 7.60 3.82 4.72 5.76 14.4 22.1 30.5
n = 60 3.49 7.57 17.2 3.46 7.61 16.6 7.19 8.73 10.5 31.8 50.4 68.8
n = 80 5.91 11.4 27.3 6.09 11.7 26.9 11.7 13.5 16.1 52.7 85.5 118
n = 100 8.85 16.6 56.1 9.21 16.5 36.6 pc 19.3 22.5 78.1 125 178

5.2 Experiment 1: Low Dimensionality
In experiment 1, the optimal convergence speed of U+E,

SPX, S+E and L+E are compared in k-tablet function. The
population size of each setting is determined considering the
minimum number of population in previous section. In ta-
ble 2, the number of function evaluation (×106) until opti-
mal convergence is shown. In this experiment, all trials are
terminated by condition 1(optimal convergence) or no trial
reaches to the optimum (premature convergence), therefore,
the number of optimal convergence is not written.

The table shows that U+E and L+E converges 2 to 10
times faster than SPX and S+E. L+E is slightly faster than
U+E in most of the setting but the difference is small.
In L+E and U+E, the minimum population size p = n/4
shows the best performance in 3n/4-tablet functions, how-
ever, p = n/2 is better in n/4-tablet functions. Considering
the optimization of arbitrary k-tablet functions, we adopt
p = n/2 in the latter experiments because the smaller k is,
the slower the convergence speed generally is.

5.3 Experiment 2: High Dimensionality
In this experiment, optimal convergence speed when n is

varied from 80 to 320 in function f1 and f2. From exper-
iment 1, it is clarified that L+E and U+E performs better
than SPX and S+E in k-tablet functions, so only L+E and
U+E is evaluated here. The population size is p = n/2 and
k = n/4, n/2, 3n/4. The other conditions are the same in
experiment 1. Fig 6 shows the average of required number of
function evaluation to the optimal convergence. The result
is an average of 10 trials in n < 200 and 5 trials in n ≥ 200.

In f1 of k = 3n/4 and f2, L+E performs better than
U+E but the difference is not large. On the other hand,
in f1 of small k, L+E is 2 to 5 times faster than U+E at
n ≤ 200. Although experiments of U+E are terminated by
the condition (3) in n ≥ 200, it is expected that L+E is
faster than U+E 10 to 100 times. We compare L+E and
U+E in ellipsoid function and different power function[2],
which have k-tablet like landscape and confirmed that L+E
converges 15% to 20 % faster than U+E.

In this experiment, the number of parent m = {25, 3p/4}
is used. This means that m is limited even if k is larger than
25. In this setting, when n is larger than 100, the preserva-
tion of k-LVM is not satisfied in U+E regardless of k and
n because m < k. The volume of k-tablet space with small
k relatively decreases exponentially to n, therefore, the con-
vergence speed of crossovers which do not satisfy the preser-
vation of k-LVM is considerably slow. Repeatedly, when
large m is used, k-LVM is preserved but U+E with large m
also requires large population and the convergence speed is
slow same as shown in the result of SPX in experiment 1.
Therefore, it is clear that L+E, which preserves arbitrary
k-LVM with small m works effectively. From these results,
we can conclude that that the proposed method performs
better than conventional methods in k-tablet functions.

5.4 Experiment3: Global SearchPerformance
on Multiple-peak Function

In this experiment, we compare the global search per-
formance by using multiple-peak functions f3 and f4. The
dimensionality is n = 20 in f3 and n = 10 in f4. The popu-
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Figure 6: Experiments 2: The number of function evaluation until optimal convergence in f1(k-tablet function,
k = n/4, n/2, 3n/4) and f2(Rosenblockfunction) for different dimensionality. The result is an averaged value over
10 iterations when n < 200 and 5 iteration when n > 200. The error bar shows the standard deviation.

lation size p = 300 and the number of the parent is m = 10
for UNDX-m and LUNDX-m. In f3, U+E and L+E found
the global optimum in 30 and 29 times over 30 trials respec-
tively. In f4, U+E and L+E found the global optimum in
25 and 23 times over 30 trials respectively. The convergence
speed of L+E is slightly faster than U+E. The global search
performance of U+E is slightly better than L+E but the
difference is small. L+E tends to lose the diversity because
the sampling of LUNDX-m is limited on k-tablet space, how-
ever, EDX contributes to the maintenance of diversity and
the global search performance does not degrade largely.

6. K-TABLET STRUCTURE ON LENS DE-
SIGN PROBLEMS

6.1 Landscape Analysis Using PCA
The lens design problem is known as a difficult problem

because of high dimensionality, non-separability and numer-
ous number of local optima. We focus on k-tablet structures
in this problem and show that proposed GA also performs
well in this problem. The lens design problem is described
as follows. We consider to search the curvature of lens sur-
faces ci and thickness between two surfaces di to obtain a
lens that has good image forming capabilities (see Figure
7). A focal length f , an F/number F and a field size 2w is
given as a specification. Because the curvature of the last
surface and the distance of it to the image surface are mod-
ified to meet a required focal length f , an N-element lens
design problem can be considered as a function optimization
problem with 4N − 2 parameters [4].

We use two criteria, the distortion D and the resolution
R. Both R and D are evaluated using spot diagram by
performing ray tracing. The distortion D is defined as the
distance between the image point of a principal ray and the

ideal image point. The resolution R is the size of the blur
of rays surrounding a principal ray. See [4] in detail.

Most of individuals in a population in the middle of the
search are considered to have similar cost value. Therefore,
the actual shape of the contour around this cost is expected
to be estimated by investigating the form of the population.
Using this property, we can know whether the contour sur-
face forms k-tablet structure or not by applying PCA to the
population and comparing the eigenvalues of each compo-
nent.

We analyze the landscape of the 4-element lens design
problem. The specifications are f = 50mm, F/2.0, 2w =
46.0. The population is collected by the iteration of RCGA
(UNDX-5+EDX, MGG, p = 50, c = 100) 130 times and
save all individuals. Then, we classify them into 3 clus-
ters S1, S2, S3 such that the cost of individual belonging
to S1, S2, S3 is in [1.00, 2.00), [0.50, 1.00), [0.25, 0.50), respec-
tively.

Figure 8 (above right) shows the projection of S2 onto
c3 − c5 plane. As shown in this figure, the population is
composed of several clusters. Each cluster corresponds to a
specific type of a lens. Two typical lenses and clusters corre-
sponding to these lenses are shown. This suggests that there
exist several global peaks on the landscape and each peak
corresponds to a specific type of lens. PCA is valid only
when the data distribution is isolated as a cluster. There-
fore, we apply k-means algorithms (k=6) and divide the set
into 6 clusters. Figure 8 (bottom, left and right) show the
distribution of the eigenvalues of 2 clusters of 6. The results
indicate that the largest eigenvalue is almost 104 ∼ 105 times
as large as the smallest one. We confirm that each cluster
forms a kind of k-tablet distribution that is, each peak forms
a k-tablet like structure.
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cluster A and B(above left); Projection of S2 onto
c3−c5 plane(above right); Distribution of eigenvalues
of cluster A and B obtained by PCA(below)

6.2 Application to Lens Design Problems
It is expected that LUNDX-m performs better than other

crossovers because of k-tablet like structures. We compare
the performance of RCGA using U+E and L+E in 4-element
problems. For both RCGAs, the population size p = 200 and
the number of the parent m = 5. To see the performance
in different lens type, we prepare two regions to initialize
the population. The population is generated as follows: (1)
�A,�B ∈ [−1000, 1000]n is generated randomly; (2) the ini-
tial population is generated uniform randomly in SA = [xi

A−
500, xi

A + 500]n and SB = [xi
B − 500, xi

B + 500]n(initializing
region). 5 trials are conducted in each initializing region.
The convergence curve of L+E and U+E is shown in fig. 9.
The RCGA was terminated after 3.0 × 106 evaluations.

The figure shows L+E performs better in terms of both
search speed and the quality of the obtained lens in compar-
ison with U+E. These results fit well with results in section
5.

7. CONCLUSION
In this paper, we paid particular attention to the fact that

the traditional RCGA degrades in k-tablet structures. Thus,
we proposed a new RCGA using two crossovers LUNDX-
m and EDX, where PSDs and SSDs are separately used.
Experimental results show that our proposal performs ro-
bustly with a small population size and converges to op-
timum quickly on k-tablet functions. Moreover, we apply
our method to lens design problems and achieve good per-
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Figure 9: Convergence curve on lens design prob-
lems on two different type of lenses(results of 5 trials
are shown respectively)

formance in terms of the search speed and the quality of
obtained lens. As dimensionality n grows, it is expected
that this tendency will become remarkable. Applying our
method to larger lens systems is our future work.
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