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ABSTRACT
Several researchers have used Price’s equation (from biology
theory literature) to analyze the various components of an
Evolutionary Algorithm (EA) while it is running, giving in-
sights into the components contributions and interactions.
While their results are interesting, they are also limited by
the fact that Price’s equation was designed to work with the
averages of population fitness. The EA practitioner, on the
other hand, is typically interested in the best individuals in
the population, not the average.

In this paper we introduce an approach to using Price’s
equation which instead calculates the upper tails of popu-
lation distributions. By applying Price’s equation to EAs
that use survival selection instead of parent selection, this
information is calculated automatically.

Categories and Subject Descriptors
G.1.6 [Optimization]: Global Optimization; I.2.m [Artificial

Intelligence]: Miscellaneous

General Terms
Theory

Keywords
Price’s equation

1. INTRODUCTION
Users of Evolutionary Algorithms (EAs) have a limited set

of tools and methodologies available with which to under-
stand the effects of their design decisions. Most researchers
today still rely on best-so-far curves and t-tests to compare
the results of using different components in the algorithm.
New tools are needed in order to provide a more principled
approach to making better design decisions.

One approach that some have explored is to use theory
from the evolutionary biology literature. In particular, some
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have used Price’s equation [10] as an inspiration for building
tools to analyze running EAs [1, 7, 9, 4].

Evolutionary biologists tend to be interested in the av-
erage values of various attributes in the population, such
as gene frequency. The EA community, on the other hand,
tends to be less interested in averages, and more interested
in the best individuals. Hence, the extensive use of best-so-
far curves. This makes biology theory limited in its value
when applied to EAs.

In order for these theories to be more applicable to EAs,
they need to provide ways to analyze the upper tails of
the the various probability distributions we deal with, such
as population fitness, instead of just the means. Some re-
searchers have tried to address this issue by modifying Price’s
equation to calculate higher cumulants, such as the standard
deviation [4]. While these results are interesting, they seem
limited to providing only a very subjective view of what is
happening in the upper tails of the distributions. In order to
make this approach useful, we need to achieve more objec-
tive results. In this paper, we present a method that takes
us one step closer to this goal.

In most previous work using Price’s equation, researchers
have applied the equation to algorithms assuming that selec-
tion always precedes the genetic operators. This is referred
to as parent selection, and is a commonly used approach
in EAs. We propose instead to apply Price’s equation to
EAs in which selection follows the genetic operator instead
of preceding them. This is typically called survival selection.
As it turns out, any EA can be considered to be using either
parent selection or survival selection just by changing one’s
“frame of reference”. This will be described in more detail
in the paper.

When we apply Price’s equation in this way, selection acts
as a filter which clears away many of the damaging effects
of the genetic operators from the calculations. As a result,
the terms in Price’s equation end up representing the upper
tails of the distributions instead of the means.

One reassuring aspect of this filtering effect is that it more
closely resembles the notion of fitness in biology. Specifi-
cally, an individual’s fitness is determined by the number of
descendants it gives rise to in future generations.

In the following sections we discuss similar work in the
field, followed by a description of our methodology. In sec-
tion 4 we present results of using our approach on some ex-
ample problems. And finally we conclude with a discussion
of future work.
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2. BACKGROUND

2.1 Price’s Equation
In his efforts to understand selection, Price developed the

well known equation that bears his name [10] . Ultimately
his goal was to create a general theory of selection that could
be applied across a variety of disciplines, including biology
and economics. To demonstrate the use of his equation, he
first applied it to evolutionary biology where it was used to
describe and predict the change in gene frequency from one
generation to another.

In particular, Price noticed that a covariance relationship
exists between the number of successful offspring that an in-
dividual produces (the biological notion of fitness) and the
frequency of any given gene in that individual. If this co-
variance value is high, then the existence of that gene is a
good predictor of selection.

The other important contribution that his equation offers
is that it separates the average effects of selection from the
average effects of the genetic operators. Price generally as-
sumed that the effects of the operators would be close to
zero, and so would drop this term from his equation. As we
will see though, this is often not a good assumption, at least
when dealing with an evolutionary algorithm.

The most common formulation of Price’s equation is

∆Q = Qt+1 − Qt =
Cov(z, q)

z
+

P

zi∆qi

Nz
, (1)

where ∆Q is the change from one generation to the next in
some measurable attribute q of a population, such as the
number of occurrences of a particular gene or combination
thereof, Qt and Qt+1 are the attribute means taken over
all members of the populations of parents and children re-
spectively, zi is the number of children produced by the ith
parent, z is the mean number of children produced, ∆qi is
the difference between the average q value of the children of
i and i’s own q value, and N is the size of the parent pop-
ulation. The covariance term in equation 1 represents the
portion of ∆Q attributable to selection, and the summa-
tion term represents the portion attributable to the genetic
operators.

2.2 Applications in EC
The most direct application of Price’s work in evolution-

ary computation involves situations in which the attribute
being measured is gene frequency. For example, Langdon
and Poli show how measuring gene frequencies is equiva-
lent to determining the frequency of use of the available
primitives in the solution trees being evolved with genetic
programming [7]. They were able to use this information to
diagnose the probable causes of poorer performing runs.

Altenberg applied Price’s equation to a Vose-style model
of an evolutionary algorithm [2, 14]. With this he was able
to re-derive Holland’s schema theorem [6], thus creating a
stronger theoretical connection between Vose’ and Holland’s
work. He also demonstrated that gene frequency is not the
only attribute of the individuals which can be measured.
He identified several different measurement functions which
could be useful, including mean fitness from both the biologi-
cal and evolutionary computation perspectives, frequency of
schemata, and evolvability.

Potter et al. used Price’s equation to visualize EA dy-
namics as they relate to the evolvability of a population [9].

Of particular interested was the balance between the explo-
ration and exploitation of the various genetic operators. The
second term in equation 1 measures the combined effects of
all the genetic operators. In order to make Price’s equation
more applicable to the visualization of an EA, the second
term was extended to separate the effects of each genetic
operator so they could be viewed independently. The result
is the following equation:

∆Q =
Cov(z, q)

z
+

k
X

j=1

P

zi∆qij

Nz
, (2)

where k is the number of genetic operators, q′

ij is the average
value of the measurement function applied to the children of
i after the application of operator j, and ∆qij = q′ij−q′i(j−1).

Bassett et al. further extended Price’s equation to calcu-
late the second central moment (variance) of the measured
population attribute to get a better sense of how often an
operator creates the above average individuals that enable
the population to continue to improve over time [4]. From
equation 1 the random variable of interest is X = qik − qi,
where qik is the measured q of the kth child of parent i. This
gives the following variance equation:

V ar[X] =

N
X

i=1

zi
X

k=1

 

qik − qi −

PN

i=1 zi∆qi

Nz

!2

Nz
. (3)

A similar variance equation can be derived from equation 2
using the random variable X = qijk − qi(j−1)k, where qijk is
the measured q of the kth child of parent i after the appli-
cation of operator j.

2.3 Statistical Models of EAs
Our work with Price’s equation has a strong statistical

component, and so a comparison with other statistical mod-
els of EAs is warranted. One such model was developed
by Prügel-Bennett and Shapiro, and is based on statistical
mechanics theory [11]. The state of the EA is represented
in each generation by a set of cumulants of a population’s
fitness distribution. Using maximum entropy distributions,
equations of motion can then be derived, providing a method
to infer the change in the cumulants from one generation
to the next. This approach has proved successful in mak-
ing reasonably accurate predictions of EA behavior on some
moderately difficult problems. It can also predict effects
where other models typically fail, such as predicting the ef-
fects of finite population sizes.

Mühenbein developed another statistical model of EAs
based upon the methods and theories used in livestock breed-
ing [8]. In his Breeder Genetic Algorithm (BGA), the “re-
sponse to selection” equation [5] is used to build a predictive
model of the GA’s behavior. Using this model, Mühenbein is
able to analyze a variety of operators to determine which will
be most effective. It is interesting to note that Mühenbein
also uses Price’s equation as a way to estimate the response
to selection.

In general, theory has two purposes: to predict, and to
explain. In the two cases just described, the authors built
an iterative model which could predict the behavior of a
running EA. Our work differs from theirs in that we are fo-
cusing using theory to explain the behavior of an algorithm,
and not to do prediction.
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Figure 1: Intermediate populations in an EA using

parent selection.

3. METHODOLOGY

3.1 Shifting the Frame of Reference
One way to view an evolutionary algorithm is as a set of

operators applied in turn to a series of intermediate popu-
lations. As is shown in figure 1, selection is applied to the
parent population to create a new intermediate population.
Crossover is then applied to this intermediate population to
create another intermediate population. And finally, muta-
tion is applied to create the next generation. The gray boxes
represent individuals that do not survive into the next gen-
eration.

In a Genetic Algorithm (GA) the operators are typically
placed in the order just described: selection, crossover, mu-
tation. Since selection is applied to the parent population,
it is sometimes referred to as parent selection. An Evolu-
tion Strategies (ES), on the other hand, tends to use the
order: crossover (maybe), mutation, then selection. When
selection is performed after the genetic operators, it is often
referred to as survival selection.

Bäck has shown that these two selection approaches are
equivalent [3]. The only real differences comes at the very
beginning and end of the run, at which point there may
be one extra, or one missing selection operation, depending
on how you view things. One can view these two selection
schemes as simply having a slightly different frame of refer-
ence as shown in figure 2. Or more accurately, all EAs can
be viewed from either frame of reference.

Most applications of Price’s equation to EAs have been
implemented using the parent-selection frame of reference.
This is well matched with the intuitive notion of what the
terms in Price’s equation mean. For example, the covari-
ance term in the equation, which Price claimed to be the
selection component, calculates the difference between the
entire parent population and some subset of that popula-
tion (perhaps with some members duplicated). This gives
the impression that selection is expected to operate on the
parent population. In fact, if one were to measure the dif-

Figure 2: Intermediate populations in an EA using

survival selection.

ferences between the average q values of the intermediate
populations in figure 1, they would match exactly with the
terms in Price’s equation.

One might expect Price’s equation to have the same be-
havior when applied in a survival selection frame of refer-
ence, but this is not the case. The property described above
no longer holds. The terms of Price’s equation no longer
match the differences between the average q values of the
intermediate populations. This does not mean that Price’s
equation is invalid, because the resulting ∆Q is still cor-
rect. So the question here is, what do the terms of Price’s
equation mean, and are they useful?

To answer this question, we need to take a closer look
at what is actually being calculated. One important aspect
of the notation for Price’s equation that is not immediately
obvious is that an association between parents and their chil-
dren is built in. Specifically, when we apply Price’s equation
to an EA using parent selection, ∆qi in equation 1 represents
the difference between a parent’s q value and the average q

value of all of its children, including the ones that are not
viable.

In a parent selection frame of reference, what ends up
happening is that all children that are ever produced end up
being associated with their parents. But in a survival selec-
tion frame of reference, some children which get produced in
the intermediate populations end up not surviving into the
next generation. When performing the association between
parents and children, these failed intermediate children are
lost and not considered, as illustrated by the shaded boxes
and dashed lines in figure 2. The equation still balances out
though, with these lost children being accounted for in the
covariance term. Furthermore, this is more consistent with
the biological notion of successful offspring, which are most
likely the only offspring Price intended to measure.

The net effect of this is that survival selection acts as
a filter, weeding out the poorer fitness individuals from the
calculations for the operators. So instead of representing the
overall effects of the operators, the terms in Price’s equation
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now represent only the beneficial effects of each operator. Or
perhaps it is more accurate to say that they represent only
the effects of each operator that did not end up killing the
child. As a result, the terms which calculate the change in
fitness due to the genetic operators now gives us the mean of
what is essentially the upper tail of the distributions. These
calculations should give us a better indication of what each
operator is actually contributing to the search process.

3.2 Example Problem
To demonstrate the utility of using the survival-selection

frame of reference with Price’s equation, we have chosen a
standard problem from the function optimization literature
introduced by Schwefel [13]. The objective function

f(~x) =

n
X

i=1

xi sin
“

p

|xi|
”

defines a landscape covered with a lattice of large peaks
and basins. The predominant characteristic of the Schwefel
function is the presence of a second-best maximum far away
from the global maximum, intended to trap optimization al-
gorithms on a suboptimal peak. The highest peaks are near
the corners of the space. In this formulation of the problem,
the global maximum is 418.9829n. In our experiments the
problem has thirty independent variables constrained to the
range (−500.0, 500.0), which means the global maximum has
a value of 12569.487.

3.3 Algorithm Specifications
The Evolutionary Algorithm we have chosen to analyze

uses a real-valued representation. We use a generational
model, meaning that there is no overlap between parent and
child populations. The operators used are truncation selec-
tion in which the top 20 percent of the offspring survive,
uniform crossover at 100 percent, and Gaussian mutation
with either fixed or adaptive sigma values, depending on
the experiment.

We chose a 100 percent crossover rate because a lower
crossover rate would have some side-effects that we wanted
to avoid. Specifically, when crossover is not performed, a
clone is created and mutated. This means that we would
be analyzing two pairs of operators; one that produces chil-
dren by crossover followed by mutation, and another that
produces children by cloning followed by mutation. In the
future we plan to explore the ramifications of this in more
detail.

Gaussian mutation was chosen for a similar reason, since
in most implementations (including ours) it is applied to
all genes in the genome. Thus it is essentially used 100
percent of the time, avoiding the issue mentioned above. In
situations where the sigma values of the mutation operator
are adapted, we store a separate sigma value for each gene,
and adapt them using the approach described in [3].

All experiments use a population size of 100. While this is
generally acknowledged to be too small to find the global op-
timum much of the time [12], it is sufficient for our purposes
here.

4. RESULTS
To evaluate this new approach to using Price’s equation,

we will apply it in a series of four experiments. Our goal
is to see if the results give us any more information than
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Figure 3: Price plot from experiment 1 using parent-

selection frame of reference.

already established approaches. In all experiments we use
the EA described above to solve the Schwefel function, and
average results over 100 runs of the EA.

4.1 Experiment 1
In our first experiment, the gaussian mutation operator

is configured with a fixed standard deviation of 1.0. Fig-
ure 3 shows a Price plot generated using the parent-selection
frame of reference. The q value that we are measuring here
is fitness, and we plot the average change in fitness as a re-
sult of using each one of the operators: selection, crossover
and mutation. Each of these curves is calculated using the
appropriate term from equation 2.

In general, unless a genetic operator is highly tuned to a
particular search space, we would expect it to reduce the
fitness of an individual at least as often as it improves it.
As a result, we can expect the lines for crossover and muta-
tion to be at or below the zero line almost all of the time.
Given what is being used to calculate these values, we con-
clude that this plot gives us an indication of how disruptive
(on average) each operator is at any given time during the
run. While this information is useful, it does not answer the
questions we are really interested in. Specifically, how much
are the operators contributing to the evolvability of the EA?
We might infer that disruptive operators are not helpful, but
this could be wrong. They might on occasion create indi-
viduals which are very good, and this might be critical to
the search process. A notion we refer to as “constructive
diversity”.

An approach that has been used in an attempt to an-
swer the question of operator contribution has been to ex-
tended Price’s equation to calculate the standard deviations
of the ∆Q components in addition to the means [4]. Fig-
ures 4 and 5 plot these standard deviations for both the
crossover and mutation operators (calculated using equa-
tion 3). The figures show that crossover is creating much
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Figure 4: Standard deviation of crossover compo-

nent of ∆ fitness from experiment 1 using parent-

selection frame of reference.

greater improvements to individuals than the mutation op-
erator, and hence is contributing more to the evolvability of
the population. But again, these results are not completely
satisfying. Knowing that the potential is there is helpful,
but we would also like to have a clear idea of what is actu-
ally happening.

Figure 6 shows a Price plot for the same algorithm and
problem, but using the survival-selection frame of reference.
Now we see that the crossover and mutation lines have moved
up above the zero mark, indicating that they are showing
the contribution of just the viable individuals, and weeding
out the contribution of the poorer individuals that did not
survive.

It is interesting to observe the effects of mutation in this
plot. At first mutation seems to contribute nothing. This
is probably because crossover is contributing so much to
the evolvability that the effects of mutation are negligible,
and therefore washed out. But as the population converges,
and the effects of crossover diminish, the effects of mutation
become more prominent. This causes the line for mutation
to rise up and almost meet the crossover line.

4.2 Experiment 2
Next we examine what happens when we switch the muta-

tion operator to an adaptive Gaussian mutation. In figure 7
we plot the terms of Price’s equation from a parent-selection
frame of reference. From this we can see that the mutation
function is very disruptive. But does this mean that it is
ineffective?

In figures 8 and 9 we plot the standard deviations of the
crossover and mutation components of the ∆Q fitness dis-
tribution. As in experiment 1, we see that the upper tail of
the crossover distribution extends higher than the upper tail
of the mutation distribution. Therefore, it seems likely that
crossover is contributing more to evolvability than mutation.
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Figure 5: Standard deviation of mutation compo-

nent of ∆ fitness from experiment 1 using parent-

selection frame of reference.
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Figure 7: Price plot from experiment 2 using parent-

selection frame of reference.
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Figure 8: Standard deviation of crossover compo-

nent of ∆ fitness from experiment 2 using parent-

selection frame of reference.
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Figure 9: Standard deviation of adaptive mutation

component of ∆ fitness from experiment 2 using

parent-selection frame of reference.

This is corroborated by the survival frame Price plot shown
in figure 10. Note that the scale on the y-axis has been
changed in order to make this plot more readable.

4.3 Experiment 3
Next, we examine the effects of modifying the problem

domain by performing a random coordinate rotation along
each axis of the landscape. Salomon [12] demonstrated that
several of the standard GA genetic operators are biased so
that they perform particularly well when the fitness land-
scapes are decomposable. In other words, the fitness func-
tion is an aggregation of smaller functions, each applied to
just one gene. This means that there are no interdepen-
dencies between the genes, and thus no epistasis. Salomon
demonstrated that by rotating such landscapes, they lost
the property of decomposability.

The unrotated Schwefel function is decomposable and our
crossover operator has a strong bias towards this type of
landscape, so we would expect rotation to have a negative
effect on crossover. The gaussian mutation operator, on the
other hand, does not have the same type of bias, so we would
expect it to be to be much less effected by rotation. In these
experiments we select the coordinate rotations randomly in
each run. When we look at the Price plot in the parent-
selection frame of reference in figure 11, we see that the
crossover operator has indeed become much more disruptive.
But how much are crossover and mutation now contributing
to the search?

The standard deviation plots for the two operators (see
figures 12 and 13) show that the distributions are very simi-
lar, with the upper tail of the mutation operator going a lit-
tle higher and the lower tail of the crossover operator going
a little lower. Although, any interpretation of these results
is likely to be subjective, we will say that mutation seems
to be contributing more to evolvability than crossover.

1376



0 50 100 150 200

−
30

0
−

10
0

0
10

0
20

0
30

0

Generation

∆ 
F

itn
es

s

Crossover
Mutation
∆Q

Figure 10: Zoomed Price plot from experiment 2

using survival-selection frame of reference.
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Figure 11: Price plot from experiment 3 using

parent-selection frame of reference.
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Figure 12: Standard deviation of crossover compo-

nent of ∆ fitness from experiment 3 using parent-

selection frame of reference.
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Figure 14: Price plot from experiment 3 using

survival-selection frame of reference.

The survival frame Price plot in figure 14 seems to verify
the interpretation given above, showing that mutation is
contributing more to evolvability than crossover.

4.4 Experiment 4
The EA used in all of the previous experiments applies

crossover followed by mutation. In this final experiment
we reran the first three experiments with the order of the
crossover and mutation operators swapped (i.e., children are
produced by applying mutation followed by crossover) to see
if they would achieve the same results, at least qualitatively.

In the first two experiments, the results were consistent
and the survival frame Price plots looked roughly the same.
In experiment 3 though, we saw something different. The
plot (not shown) looked to be almost the exact opposite
of figure 14. Crossover seemed to be contributing most to
evolvability, and the line for mutation fell well below zero.

We surmise that in this case, since both operators are
fairly disruptive on average, the first one damages most of
the individuals, creating children that are lower down on the
peaks. This creates an opportunity for the second operator
to repair this damage, and move the children back up the
peaks to higher fitnesses. In the end though, the overall
behaviors of the algorithms are the same.

5. CONCLUSIONS AND FUTURE WORK
If tools like Price’s equation are going to be applicable to

the work we do in evolutionary computation, they will have
to provide some information about the upper tails of distri-
butions, and not just the means. This work has successfully
shown one approach to doing this.

While these results are not completely free of ambiguity,
they do provide a less subjective method for evaluating what
contribution an operator makes to the evolvability of an EA
than some of the previous research. An important next step

in this research is to make sure we can apply statistical tests
to our results so that we can make assertions with some
degree of confidence.

Note that this work has focused exclusively on the ge-
netic operators, and ignored the meaning of the covariance
(or selection) term in Price’s equation. We suspect that in
a survival selection frame of reference, this term instead be-
comes a measure of contribution due to inheritance. In the
future work we would like to explore this further.

Our ultimate goal is to extend these tools to other repre-
sentations and operators which are not as well understood.
The real power of these tools can be realized when designing
new representations and operators.
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