
Evolution of Voronoi based Fuzzy Recurrent Controllers

Carlos Kavka
Departamento de Informatica
Universidad Nac. de San Luis

Ejercito de los Andes 950
D5700HHW, San Luis,

Argentina

ckavka@unsl.edu.ar

Patricia Roggero
Departamento de Informatica
Universidad Nac. de San Luis

Ejercito de los Andes 950
D5700HHW, San Luis,

Argentina

proggero@unsl.edu.ar

Marc Schoenauer
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ABSTRACT
A fuzzy controller is usually designed by formulating the
knowledge of a human expert into a set of linguistic vari-
ables and fuzzy rules. Among the most successful methods
to automate the fuzzy controllers development process are
evolutionary algorithms. In this work, we propose the Re-
current Fuzzy Voronoi (RFV) model, a representation for
recurrent fuzzy systems. It is an extension of the FV model
proposed by Kavka and Schoenauer that extends the appli-
cation domain to include temporal problems. The FV model
is a representation for fuzzy controllers based on Voronoi
diagrams that can represent fuzzy systems with synergistic
rules, fulfilling the ε-completeness property and providing a
simple way to introduce a priory knowledge. In the proposed
representation, the temporal relations are embedded by in-
cluding internal units that provide feedback by connecting
outputs to inputs. These internal units act as memory ele-
ments. In the RFV model, the semantic of the internal units
can be specified together with the a priori rules. The geo-
metric interpretation of the rules allows the use of geometric
variational operators during the evolution. The representa-
tion and the algorithms are validated in two problems in the
area of system identification and evolutionary robotics.

Categories and Subject Descriptors: I.2.8 Heuristic
methods

General Terms: Algorithms.

Keywords: Genetic algorithms, Recurrent fuzzy systems,
Fuzzy control, Voronoi diagrams, Evolutionary Robotics

1. INTRODUCTION
The development of controllers by using fuzzy logic tech-

niques has been subject of fundamental research with many
successful applications produced during last years [1]. The
main reason is that fuzzy logic controllers (FLC) provide
satisfactory performance in face of uncertainty and impre-
cision [8], while keeping an equivalence in knowledge rep-
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resentation with other methods like neural networks and
automata [6]. An FLC represents a non linear model as
the combination of a set of local linear models, where each
one represents the dynamics of a complex system in a single
local region [5]. Each local model is specified by a fuzzy
rule, which defines the local region in which the rule applies
through the membership functions used in the antecedent,
while the consequent defines the output of the model. Most
FLCs can be classified in two categories: the Mamdani type
FLC where the output is computed as a combination of fuzzy
numbers, and the Takagi-Sugeno (TS) type, where the out-
put is defined as a linear combination of the inputs. In a TS
type FLC with n inputs and m outputs, a typical rule has
the following form:

Ri : if x1 is A1
i and . . . and xn is Ani

then y1 = a1
i0 +

P
j a

1
ijxj

. . .
ym = ami0 +

P
j a

m
ijxj

(1)

where xj(1 ≤ j ≤ n) are the input variables, yj(1 ≤ j ≤
m) are the output variables, Aji (1 ≤ j ≤ n) are the fuzzy
membership sets and akij(0 ≤ j ≤ n, 1 ≤ k ≤ m) are the
real valued parameters that define the linear approximation.
The output of the complete FLC is computed by combining
the outputs produced by all the rules, weighted by the degree
of satisfaction of the antecedents.

Simple FLCs are usually defined by a trial and error pro-
cess by using expert knowledge. However, automatic FLC
generation methods are preferred for complex control sys-
tems [3] [21] [1]. Most FLC structures can be mapped into
feed-forward neural networks, allowing the use of neural net-
work learning algorithms to automate the design of FLC
based on numerical data as well as on expert knowledge. The
combined approach provides advantages from both worlds:
the low level learning and computational power of neural
networks is joined together with the high level human-like
thinking and reasoning of fuzzy systems [17]. This combi-
nation has been very successful and there is a large num-
ber of models that combines fuzzy systems with neural net-
works [17], or even with standard PID control [23] [9].

The domain of application of these systems is limited
to static problems due to its feed forward network struc-
ture [16]. Most non linear problems in control require the
processing of temporal sequences, or in other words, in these
problems the output depends on the current input and pre-
vious values of inputs and/or outputs. A very interesting
approach that considers small order temporal problems with
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fuzzy logic is proposed in [2]. However, unless the number
of delayed inputs and outputs is known before, it is not
possible to define a feed forward model without backward
connections that can process temporal sequences [10]. This
is usually the case for most control problems, where this in-
formation is not known. However, recurrent structures can
deal with this kind of problems. There is a large number of
neural network models that have been proposed which are
essentially feed forward structures with an extra set of units
used to store previous activation values that are connected
back to the inputs of other units.

By considering the large amount of recurrent neural net-
work models that have been proposed, it is expected to see
that most recurrent fuzzy systems are based on neural net-
works. For example, the RFNN (Recurrent Fuzzy Neural
Network) model proposed in [16] defines recurrent connec-
tions in the second layer of the structure, which corresponds
to the units that codifies the membership antecedent values.
The RSONFIN (Recurrent Self Organizing Neural Fuzzy In-
ference Network) model proposed in [11] performs structure
and parameter learning and includes an extra layer of units
with recurrent connections that provides a kind of inter-
nal memory. The DFNN (Dynamic Fuzzy Neural Network)
model proposed in [18] includes recurrent neural networks
in the consequent in place of standard linear approximators
like in the TS model. The TRFN (Takagi-Sugeno Type Re-
current Fuzzy Network) model proposed in [10] has an extra
unit with recurrent connections for each fuzzy rule, which
is responsible of memorizing the temporal history of acti-
vations of the rule. Other models like [12] and [24] follow
similar approaches. In most cases, both supervised learning
and non gradient based algorithms, like genetic algorithms,
have been used to build or enhance the models.

Even if these recurrent models are successful in support-
ing learning of temporal sequences, in most cases the logic
interpretation of recurrent units is not considered. In this
work, we propose a recurrent structure for fuzzy systems
based on the Fuzzy Voronoi (FV) method proposed in [14],
that allows the definition of recurrent fuzzy systems with a
clear interpretation of recurrent units. The proposed Re-
current Fuzzy Voronoi (RFV) structure consists in a set of
rules, where the antecedent of the rules are determined by
multidimensional membership functions defined in terms of
Voronoi regions. The RFV model includes external and in-
ternal variables with recurrent connections that allow the
processing of temporal sequences of arbitrary length. Evo-
lutionary algorithms are proposed as a design tool, since
they do not require derivative information, which in most
control problems is unavailable or costly to obtain.

This paper is organized as follows. Section 2 describes
the structure of the RFV model and the details on the ge-
ometrical basic structure. In section 3, the design of RFV
models with evolutionary algorithms is analyzed. The prop-
erties of the proposed representation are discussed in sec-
tion 4. In section 5, two experiments with the RFV model
implemented with the EO library [15] are detailed. Finally,
conclusions are presented in section 6.

2. THE RFV MODEL
In this section, the structure of the RFV model is pre-

sented, the fuzzy reasoning strategy is explained and the
details on the computation of the membership functions are
introduced.

v1 vm yl yr

yry1xlx1

A1 A2 Aω

R1 R2 Rω. . .

. . .

. . .. . .

. . . . . .

z−1

LAYER 4

LAYER 3

LAYER 2

LAYER 1

Figure 1: The structure of the RFV model

2.1 Structure
A schematic diagram of the model is shown in figure 1,

which is organized in four layers and consists of l input vari-
ables, r internal variables, m output variables and ω rules.
Units in layer 1 are called input units. There are two types of
input units: external inputs and internal units that are used
also as standard inputs in rule definition. Units in layer 2 are
called partition units. They act as multidimensional fuzzy
membership functions. Units in layer 3 are called rule units.
Each fuzzy rule in the fuzzy system has a corresponding
rule unit. There is a one to one correspondence with units
in layer 2. Units in layer 4 are called output units. They
compute the outputs as a weighted linear combination of
input units, generating both the external outputs and the
values of the internal units to be made available as inputs
in the next time step. The internal units implement the
recurrent connections of the model.

The function of each type of unit is described below. In
the descriptions, the external input vector of size l is denoted
by x, the internal vector of size r is denoted by h, the output
vector of size m is denoted by y, the complete input vector
for the rules of size l + r is denoted by I = x : h and the
complete output vector produced by the rules of size m+ r
is denoted by O = v : y, where : identifies the concatenation
operator.

Layer 1 : No computation is performed in this layer. Ex-
ternal input values x and previous values of internal
units y are transmitted to the units in layer 2.

Layer 2 : The k-th unit in this layer computes the fuzzy
membership value µAk (I) of the input vector I to the
multidimensional fuzzy set Ak associated to the k-th
rule. More details on this computations are provided
in section 2.3.

Layer 3 : Units in this layer compute a linear combination
of input values based on the parameters specified by
each rule, weighted by the corresponding degree of ac-
tivation, as usual in TS fuzzy systems. Note that this
units produce m+r outputs. The output produced by
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the unit k that corresponds to the output variable i is:

Oki = (aik0 +
X

j

aikjIj)µk(I) (2)

where the aikj are the real valued parameters that com-
pute the linear combination of input values associated
to the rule k for the output variable i.

Layer 4 : Units in this layer compute the output vector
O by computing the summation of the corresponding
outputs produced by each rule. That is:

Oi =
X

k

Oki (3)

2.2 Fuzzy reasoning model
The RFV model performs fuzzy inference by using rules

defined as follows:

Rk : if I is Ak
then O1 = a1

k0 +
P
j a

1
kjIj

. . .
Om+r = am+r

k0 +
P
j a

m+r
kj Ij

(4)

It can be noted that there is a strong similarity with the
standard definition of TS rules given in equation 1. Except
for the fact that now a single multidimensional set is used for
membership, the main difference is that the fuzzy inference
involves r terms in the input vector that are output values
produced in the previous time step. The fuzzy system is a
dynamic fuzzy inference system with the inferred values vi
produced in time t+ 1 given by:

vi(t+ 1) =
X

k

Oki (t) (5)

where the computation of the value Oki (t) (see equation 2)
involves the input vector x(t) at time t and the internal
values y(t− 1) defined in time t− 1.

2.3 Membership computation
The domain partition strategy is based on Voronoi di-

agrams. A Voronoi diagram induces a subdivision of the
space based on a set of points called sites. Formally [4], a
Voronoi diagram of a set of p points P = {P1, . . . , Pp} is
the subdivision of the plane into p cells, one for each site
in P, with the property that a point M lies in the cell cor-
responding to a site Pi if and only if the distance between
M and Pi is smaller than the distance between P and all
other Pj (j 6= i). A related concept is the so called Delaunay
triangulation T , defined as the maximal planar subdivision
(i.e. a subdivision such that no edge connecting two ver-
texes can be added to S without destroying its planarity)
whose vertex set is P and such that the circumcircle of any
triangle in T does not contain any point of P in its interior.
Figure 2 illustrates an example of a Voronoi diagram and
its corresponding Delaunay triangulation in IR2. Note that
these definitions can be straightforwardly extended to IRn,
with n ≥ 2 – all details can be found in [4].

The FV representation [14] considers joint fuzzy sets de-
fined from a Voronoi diagram P = {P1, . . . , Pp}. There are
as many rules as Voronoi sites. The fuzzy set Sk is defined
as by its multivariate membership function µk that takes
its maximum value 1 at site Pk, and decreases linearly to
reach value 0 at the centers of all neighbor Voronoi sites.

Figure 2: An example of a Voronoi diagram
(left) and the corresponding Delaunay triangulation
(right) for a set of points in IR2

(a) (b)

x

C

(c)

Figure 3: An example of a (a) joint fuzzy set for
a single Voronoi region for n = 2, where the mem-
bership value is represented in the z-axis, and a (b)
Voronoi diagram (solid line) and its corresponding
Delaunay triangulation (dotted line) for n = 2. The
graphic (c) shows an example of the membership
computation for n = 2. The outer triangle corre-
sponds to the simplex defined by the Delaunay trian-
gulation to which x belongs. The membership value
corresponds to the area of the shadowed triangle.
Note that the value of the area is 1 when x is equal
to C and it goes down linearly to 0 on the side of
the triangle opposite to C

An example of such a joint fuzzy set is shown in figure 3-a
for n = 2.

Formally, the membership value of the input vector I to
the joint fuzzy set Sk is defined by:

µSk (I) =


lC(I) x ∈ Vk
0 elsewhere.

(6)

where C = Pk is the Voronoi site defining Sk and the Voronoi
cell Vk, and lC(I) is the barycentric coordinate of I in the
simplex TC(I) of the Delaunay triangulation of P that has
C as a vertex and to which I belongs. Figure 3-b shows an
example of the Voronoi diagram and the associated Delau-
nay triangulation. On Figure 3-c, the barycentric coordinate
lC(I) corresponds to the (normalized) gray area (volume if
n > 2) of the sub-simplex formed by I and vertexes of sim-
plex TC(I) but C. Note that a very large triangle containing
all points in the domain is defined in such a way that there
are no open Voronoi regions in the input domain.

The Voronoi based domain partition strategy contrasts
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(a) the two parents (b) the two children

Figure 4: An example of the application of the
Voronoi crossover in IR2. A random line is drawn
of the input space partition of both parents (a), and
the Voronoi regions (plus the associated rule param-
eters) are exchanged, leading to the two children
(b).

with the standard grid partition used in most fuzzy systems,
where the input space is divided regularly by considering
the domain intervals defined by the liguistic terms associ-
ated to each input variable. The grid approach suffers from
the curse of dimensionality, while a multidimensional parti-
tion strategy, like the one proposed here, can define regions
with a size that depends on the application area of the rules
trying to exploit the local complexity of the problem being
modeled.

3. RFV DESIGN WITH EVOLUTIONARY
ALGORITHMS

Evolutionary algorithms are selected as the optimization
tool for RFV controller design, since they have been very
successful on problems where training data or gradient in-
formation is very difficult or costly to obtain, like most con-
trol problems. A floating point coding scheme is selected,
where each individual (or chromosome) represents all free
parameters of the RFV controller as a variable length vec-
tor of floating point values. An individual I with ω rules is
defined as the vector:

Ind = R1 : . . . : Rω (7)

where each sub-vector Ri(1 ≤ i ≤ ω) is defined as the float-
ing point vector:

Ri = P 1
i : . . . : P l+ri : a1

i0 : . . . : am+r
i(l+r) (8)

where the P ji are the coordinates of the site and aikj are the
real valued parameters associated to the rule Ri.

The evolutionary algorithm is described in details in [22,
13]. The crossover operator is based on geometrical ex-
change of Voronoi sites between two parents with respect
to a random hyperplane. In a problem with input space of
dimension d, a random hyperplane h of dimension d − 1 is
randomly defined. The first child receives the local vectors
from the first parent that lie on the left of h, and the lo-
cal vectors from the second parent that lie on the right of
h. The second child receives the remaining local vectors.
Figure 4 presents an example of the application of this op-
erator in IR2. The mutation operator can either modify the
parameters of a particular rule by some standard Gaussian
mutation, or add or delete a Voronoi site, i.e. a rule (see
section 4). Practical details on the algorithms, including all
parameters, will be given in section 5. But before experi-
mentally validating the FV representation, next section will
discuss some of its properties.

4. PROPERTIES
First of all, the RFV representation belongs to the class

of approximative representations [1], where each fuzzy rule
defines its own fuzzy sets. It also provides continuous out-
put, as most fuzzy systems. However, it also has a number
of useful properties, that we shall now discuss in turn.

ε-completeness property: All RFV-based fuzzy sys-
tems defined with the RFV representation fulfills the com-
pleteness property at any required level, which establishes
that any input must belong to at least one fuzzy set with a
membership value not smaller than a threshold value ε:

∀x ∈ U ∃A ∈ {A1, . . . , An} µA(x) > ε. (9)

For the RFV representation, it is clear from the definition of
the membership function of equation (6) that this property
will hold with ε = 1

2
, as lC(x) will be above 0.5 if x lies in

the Voronoi cell defined by C. This property guarantees an
adequate representation for every input point, since there is
always a rule that is applied with at least a known value of
membership.

No need for genetic repair algorithms: Since it is not
possible to define wrong or non complete fuzzy systems, the
fuzzy systems produced by applying mutation or crossover
operators are always valid control systems.

Adaptive fuzzy rules: The influence on the output of
a particular fuzzy rule in the RFV representation does not
only depend on the rule itself, it also depends on all neighbor
rules. The area of application Ak of a fuzzy rule Rk is
defined as the union of all Delaunay regions which contain
the point Pk, center of the rule Rk. Formally:

A(Rk) =
[

Pk∈Dj

Dj Dj ∈ D = {D1, . . . , Dγ}. (10)

where Pk is the center of the rule Rk and D = {D1, . . . , Dγ}
is the Delaunay partition of the set P = {P1, . . . , Pp}. Fig-
ure 5 shows an example of the application area of some rules
in a regular partition, and illustrates the interdependency of
application areas of neighboring rules when some rules are
removed or added. The evolutionary algorithm evolves in-
dividuals that represent complete fuzzy systems defined by
a set of fuzzy rules that are synergistically related, and not
fuzzy systems defined with a set of independent fuzzy rules.
The variation operators hence modify the application ar-
eas of all fuzzy rules, while still maintaining the required
ε-completeness level.

Adaptive a priori rules: In most fuzzy systems, the
user can incorporate a priori knowledge by manually defining
fuzzy sets and the corresponding fuzzy rules. This process
implies that some restriction on the output values and the
partition of the input space is introduced in the evolutionary
process, but the expected benefit is that the evolutionary
process, biased toward hopefully good parts of its search
space, will converge faster to better solutions. Similarly, the
RFV representation allows the definition of a priori rules, i.e.
fixed Voronoi sites that will not be modified by evolution.
But one big advantages of the RFV representation is that
the expert does not need to specify the application area of
such rules: thanks to the synergistic effect described above,
the evolutionary process, by adding rules more or less close
to the a priori rules will also tune its domain of application
– as will be clear on the experimental results in section 5.
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(a) (b)

(c) (d)

Figure 5: Diagram (a) shows the application area
of a fuzzy rule and diagram (b) the application area
of one of its neighbor rules. Diagram (c) shows the
application area of the rule of diagram (a) when the
rule of diagram (b) is removed, and diagram (d) the
application area of the rule of diagram (a) when a
rule is added between both rules.

Recurrent rules: The rules defined in the RFV con-
troller are standard TS type fuzzy rules, with their own
inputs and outputs. The complete system is recurrent be-
cause some outputs are connected to inputs, but each rule
by itself is a standard TS type fuzzy rule. This fact con-
tributes to provide a clear interpretation of the rules and
make easy to define the a priori rules for the RFV controller.
This approach contrasts with other models like RFNN [16],
RSONFIN [11], DFNN [18] or the TRFN [10], where the
rules themselves include backward connections. The recur-
rent connection model is similar to the NFSLS approach
proposed in [20], except that in NFSLS only a single output
is considered and standard fuzzy partition is performed in
the input domain. Section 5 will introduce examples that
show that this way of defining recurrent rules allows easy
introduction of a priori knowledge.

5. EXPERIMENTS
In this section, the evolutionary approach to design RFV

systems is evaluated in two problems. The first one is a
system identification problem, where the outputs of the sys-
tem are function of past inputs and outputs. This problem
is introduced in order to compare the approach with other
methods. The second problem is more interesting: it is an
evolutionary robotic problem [21], where the ability to in-
troduce a priori knowledge in the form of recursive rules is
demonstrated.

5.1 System identification
The controlled plant is the same as used in the example

3 in [10] and is given by:

yp(t+ 1) =
yp(t)yp(t− 1)(yp(t) + 2.5)

1 + y2
p(t) + y2

p(t− 1)
+ u(t) (11)

-3

-2

-1

 0

 1

 2

 3

 0  20  40  60  80  100  120  140  160  180  200

signal
approximation

Figure 6: The test signal (dotted line) and the best
approximation (continuous line) in the system iden-
tification problem.

where yp(t) and u(t) are respectively the output and the
input at time t. The desired output is defined by 250 pieces
of data obtained from:

yr(t+ 1) = 0.6yr(t) + 0.2yr(t− 1) + 0.2sin(2πt/25)
+0.4sin(πt/32)

(12)
In the experiments, the population size is set to 50, the

probability of Voronoi crossover is set to 0.8, Voronoi mu-
tation to 0.3, mutation for addition and removal of Voronoi
sites to 0.1, selection is performed by tournament with size
2, elitism is used and the number of generations is set to
1200. The fitness is defined as the RMS error. The test
signal used and the best approximation found are shown in
figure 6. The results for the best and average RMS error
over 50 runs are listed in table 1. The table shows also the
results obtained with the TRFN and RFNN models as pre-
sented in [10]. The comparison has to be considered with
extreme care since, even if a careful selection of parame-
ters was performed to replicate the experiments, there are
some important differences in the models. For example, the
RFV model uses variable length individuals, while the other
methods use fixed length individuals. The main implica-
tion is that the number of fuzzy rules in the RFV model is
determined by evolution, while in the other models has to
be defined in advance. In the experiments with the TRFN
and RFNN models performed in [10], the number of fuzzy
rules is 4. The number of recurrent units is also 4, since
in these models there is a one to one correspondence be-
tween the number of recurrent units and fuzzy rules. In the
RFV model, the number of recurrent units (internal units)
is not related with the number of rules, however it has to be
defined in advance (see section 2) and cannot change dur-
ing evolution. For the current experiment, the number of
internal units is set to 1. Each evolutionary run took on
average 374 seconds by using a Linux computer system with
an Intel r©Celeron r©M D335 processor. Results in CPU
time from [10] are not cited here since there is no informa-
tion on the hardware used to run the experiments and the
comparisons will not be fair.

5.2 Evolutionary robotics
A problem defined in the area of evolutionary robotics [21]

has been selected to validate the RFV model. As a test base
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Table 1: RMS error for the system identification
experiment with one internal unit

RFNN+GA TRFN+GA RFV
mean best mean best mean best
0.3911 0.0850 0.0910 0.0536 0.0775 0.0235

for experiments, a simulated Khepera robot [19] was used for
experimentation. A Khepera robot has 8 sensors that can
be used to measure proximity of objects and ambient light
levels, and two independent motors to control the speed and
direction of the robot. The problem consists in driving the
robot while avoiding collisions, starting from a fixed initial
position, to a target position that depends on light based
signals that are set to on or off status in the trajectory. The
presence of an illuminated signal (on status) indicates to the
robot that it has to turn left in the next intersection, and
its absence (or off status) that it has to turn right. The
controller needs internal memory, since the light signal is
not present in the intersection, but in a previous (and maybe
distant) point in the trajectory. The controller has to learn
also when to forget light signals that affected the behavior
in previous intersections and have not to be considered in
other point of the trajectory.

The fitness of a RFV controller is computed in a similar
way as in [21], evaluating the controller in e different scenar-
ios. Each scenario defines initial and target positions, and
include path intersections where light signals determine the
expected trajectory of the robot. The fitness is accumulated
at every step of the robot proportionally to the speed, in-
versely proportional to the distance to the target point and
reduced when the robot travels near obstacles, in order to fa-
vor navigation without collisions. The fitness accumulation
is stopped when the robot bumps an obstacle, or it reaches
a maximum number of steps s. The total fitness is the aver-
age of the values obtained in the e scenarios. Formally, the
fitness is defined as follows:

fitness(I) =
1

es

eX

i=1

sX

t=1

v(t) ∗ (1− a(t)) ∗ (1− d(t)) (13)

where t is the time step, v(t) is the normalized forward speed
(summation of the speed of both motors), a(t) is the normal-
ized maximum activation of the sensors [21] (for example,
a(t) = 1 implies a collision) and d(t) is the normalized dis-
tance to the destination point (for example, d(t) = 0 implies
that the target has been reached). This function assigns
larger values to individuals that travel at the highest speed,
in a trajectory that follows (when possible) a straight line,
as far as possible to obstacles and minimizing the distance
to the target point.

The controllers are defined with five inputs, two outputs
and one internal variable. The inputs are, respectively, the
average of the two left sensors, the two front sensors, the two
right sensors, the two back sensors and an average of ambient
light as measured by all sensors. The outputs correspond to
the speed of the two motors. Note that the presence of
an internal variable forces the rules to be defined with six
inputs and three outputs (see figure 1). In the experiments,
the population size is set to 50, the probability of Voronoi
crossover is set to 0.8, Voronoi mutation to 0.3, mutation
for addition and removal of Voronoi sites to 0.1, selection
is performed by tournament with size 2, elitism is used and

(a)

(b)

Figure 7: The performance of the best controller
(a) without a priori knowledge and (b) with a pri-
ori knowledge when evaluated in a scenario not used
during evolution. White areas correspond to corri-
dors and stars represent lights. The starting posi-
tion is on the bottom left side.

the number of generations is set to 200. The performance
of the individuals is measured in e = 4 scenarios with three
intersections and all combinations of light signals, evaluated
in at most s = 500 time steps.

The experiments were performed also by using a priori
knowledge. The rules defined beforehand and inserted as
explained in section 4 are shown in table 2.

The semantic of the rules is defined by considering the in-
ternal variable y1 as a flag that indicates if a light signal was
seen before. The first four rules correspond to the situation
where there are no obstacles near the robot (all distance
sensor values are equal to 0). The output produced in all
cases for the motors is maximum forward speed (note the
constant term of the approximator is 1 for both motor out-
puts v1 and v2). The value of the internal variable y1 is set
to 1 when light is present (rules 3 and 4) and to the previous
value (can be 0 or 1) if no light is measured (rules 1 and 2).
Rule 5 produces a turn to the right (left motor at maximum
speed) if no light was detected before (y1 = 0) and rule 6 a
turn to the left (right motor at maximum speed) if light was
detected (y1 = 1). In both cases, the flag (internal variable

1390



Rule site v1 v2 y1

L,C,R,B,G,y1 a1
0,a1

1,a1
2,a1

3,a1
4,a1

5,a1
6 a2

0,a2
1,a2

2,a2
3,a2

4,a2
5,a2

6 a3
0,a3

1,a3
2,a3

3,a3
4,a3

5,a3
6

R1 0,0,0,0,0,0 1,0,0,0,0,0,0 1,0,0,0,0,0,0 0,0,0,0,0,0,0
R2 0,0,0,0,0,1 1,0,0,0,0,0,0 1,0,0,0,0,0,0 1,0,0,0,0,0,0
R3 0,0,0,0,1,0 1,0,0,0,0,0,0 1,0,0,0,0,0,0 1,0,0,0,0,0,0
R4 0,0,0,0,1,1 1,0,0,0,0,0,0 1,0,0,0,0,0,0 1,0,0,0,0,0,0
R5 0,1,0,0,0,0 1,0,0,0,0,0,0 0,0,0,0,0,0,0 0,0,0,0,0,0,0
R6 0,1,0,0,0,1 0,0,0,0,0,0,0 1,0,0,0,0,0,0 0,0,0,0,0,0,0

Table 2: A Priori rules. The value of the site corresponds to the center of the Voronoi region defined by
the rule. It is specified by the normalized values of the left (L), center (C), right (R), back (B) and light
(G) sensors, and the internal variable y1. The values aij correspond to the parameters used to define the
approximators.

Table 3: Fitness for the evolutionary robot experi-
ment

RFV RFV + a priori knowledge
mean best var mean best var
0.7728 0.8723 0.0686 0.8510 0.8835 0.0255

y1) is reset to 0. It is important to note that the a priori
knowledge is defined by specifying rules that determine the
expected behavior of the controller in specific points in the
input domain, without specifying the area of application of
the rules, as it was detailed in section 4.

The results for the best and average fitness over 10 runs
are listed in table 3, where the best possible value for fit-
ness is 1 and 0 is the worst. Faster learning and smaller
error are achieved with a priori rules, but also the stan-
dard deviation is smaller, meaning that it is a more robust
approach. Figure 7 shows the performance of the best con-
trollers found during evolution in a scenario not used during
evolution. The controllers are evaluated for 800 time steps.
The controller that does not use a priori knowledge can drive
the robot for a longer distance in the same number of time
steps, performing not so abrupt turns in the intersections
but both controllers can drive the robots by following the
light signals as expected.

Table 4 shows two rules obtained through evolution in a
selected experiment. The first rule is applied when there are
obstacles on the right and front sides of the robot, with high
light conditions (0.86) and the light signal (internal unit)
keeps a medium light value (0.48). The output produces (in
the center point of the region) a turn to the left and higher
value in the light signal unit (0.83). The second rule applies
when there are obstacles on the back and on the right side,
with low light conditions (0) and with the light signal with
a medium value (0.63) and produces a turn to the left and
a higher value in the light signal (0.88).

However, the most important point is that a definite se-
mantic interpretation of the internal unit is provided with
the a priori rules: the internal unit behavior indicates if
light was or not detected before the intersection. There is
no guarantee that a clear semantic is provided with the ap-
proach without a priori knowledge. Figure 8 shows the value
of the internal unit of both best controllers plotted for the
800 time steps when evaluated on the test scenario from
figure 7.

The value of the internal unit for the controller evolved
with a priori knowledge represents the expected semantics,
with two peaks on the areas where light signals were de-
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Figure 8: Value of the internal unit of the best con-
troller obtained through evolution (a) without and
(b) with a priori knowledge when evaluated on the
test scenario of figure 7.

tected. This behavior was observed in most controllers ob-
tained after evolution. No clear semantics can be defined in
the case of the controller evolved without a priori knowledge.

6. CONCLUSIONS
In this paper, the RFV model has been proposed. This

model is an extension of the FV model defined to extend the
application domain to include temporal problems. The tem-
poral relations are embedded by including internal units that
provide feedback by connecting outputs to inputs. These in-
ternal units act as memory elements. This paper propose the
use of evolutionary algorithms as a design tool of the RFV
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Rule site v1 v2 y1

L,C,R,B,G,y1 a1
0,a1

1,a1
2,a1

3,a1
4,a1

5,a1
6 a2

0,a2
1,a2

2,a2
3,a2

4,a2
5,a2

6 a3
0,a3

1,a3
2,a3

3,a3
4,a3

5,a3
6

R1 0.4,1,0.8,0,0.9,0.5 0.9,0.9,0.2,0.9,0.4,0.3 0.4,0.9,0.9,0.8,1,0.5,0.7 0.1,0.7,0.5,0.8,0.6,1,1
R2 0.4,0.5,0.7,0.9,0,0.6 0.9,0.3,0.7,0.3,0.4,0.7,0.8 0.9,0.5,0.6,0.9,0.7,0.2,0.2 0.2,0.2,0.8,1,0.1,0,0

Table 4: An example of two rules obtained through evolution (rounded values).

model. The controllers are represented by following the FV
model, which is a representation for fuzzy controllers based
on Voronoi diagrams that can represent fuzzy systems with
synergistic rules, fulfilling the ε-completeness property and
providing a simple way to introduce a priori knowledge. The
geometric interpretation of the rules allows the use of geo-
metric variational operators that proved to be useful also in
other contexts. The main benefit of the proposed represen-
tation is the possibility to provide a definite semantic to the
internal (or recurrent) units. The representation and the
algorithms have been validated in two problems in the area
of system identification and evolutionary robotics. Future
work include experiments on a real mobile robot, the study
of the impact of using the so-called Symbolic Controllers ap-
proach [7], and an analysis of problems with higher number
of variables with and without expert knowledge.
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