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ABSTRACT
We propose three distance measures for genetic search space.
One is a distance measure in the population space that is
useful for understanding the working mechanism of genetic
algorithms. Another is a distance measure in the solution
space for K-grouping problems. This can be used for nor-
malization in crossover. The third is a level distance measure
for genetic algorithms, which is useful for measuring prob-
lem difficulty with respect to genetic algorithms. We show
that the proposed measures are metrics and the measures
are efficiently computed.

Categories and Subject Descriptors
G.2.3 [Mathematics of Computing]: DISCRETEMATH-
EMATICS—Applications

General Terms
Theory

Keywords
Distance mesaure, genetic algorithms

1. INTRODUCTION
Metric is one of the fundamental tools for understanding

space. It gives induced topology to the space and it is the
most basic way to provide the space with topology [9]. Dif-
ferent metrics make different topologies. The shape of the
space largely depends on its metric. In understanding ge-
netic algorithms, metric is also basic and important. In ge-
netic algorithms, a good distance measure not only helps to
analyze their search spaces [13, 17, 19], but can also improve
their search capability [5]. Hamming distance has been pop-
ular in most researches for genetic algorithms that deal with
discrete spaces. It has also been widely adopted in studies
about the analysis of the problem space [2, 8, 16].
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In this paper, we propose more reasonable distance mea-
sures depending on situations in the process of genetic algo-
rithms and show that they are actually metrics. We propose
three distance measures:

• one for the population-based search such as genetic
algorithms

• another for the solution space based on K-ary encod-
ing (K ≥ 2)

• the third as an approximate measure of performance
improvement of linkage-based genetic algorithms.

The remainder of this paper is organized as follows. In Sec-
tion 2, we provide some preliminaries. In Section 3, Sec-
tion 4, and Section 5, we propose three distance measures
for genetic algorithms, provide their applications in genetic
algorithms, and show that all the proposed distances become
metrics. Finally, we make conclusions in Section 6.

2. PRELIMINARIES

2.1 Metric
A metric space is a set of points with an associate metric

on the set [9]. Given a space X, the properties of its metric
d : X ×X → R are in the following.

1. 0 ≤ d(x, y) < ∞ for all x and y in X.

2. d(x, y) = 0 if and only if x = y.

3. d(x, y) = d(y, x) for all x and y in X.

4. (Triangle Inequality)
d(x, z) ≤ d(x, y) + d(y, z) for all x, y, and z in X.

If property 2 is violated (i.e., for some x and y such that
x �= y, d(x, y) = 0), then d is called a pseudo-metric. If
property 4 does not hold, then d is called a semi-metric.

2.2 The Optimal Assignment Problem
Consider a weighted complete bipartite graph with bipar-

tition (X,Y ), whereX = {x1, x2, . . . , xK}, Y = {y1, y2, . . . , yK},
and each edge (xi, yj) ∈ X×Y has its weight wij . The opti-
mal assignment problem is the problem of finding a maximum-
weight (or minimum-weight) perfect matching in this weighted
graph as follows:

max
σ∈ΣK

 
KX

i=1

wiσ(i)

!
or min

σ∈ΣK

 
KX

i=1

wiσ(i)

!
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where σ is a permutation. It is also known as the bipartite
weighted matching problem.
To solve the optimal assignment problem, it is possible to

enumerate all K! permutations in ΣK and find an optimal
one among them. However, for a large K, such a procedure
is intractable. Fortunately, Kuhn [14] proposed an efficient
way to solve the problem. It is called the Hungarian method.
Roughly speaking, starting from the initial unweighted bi-
partite graph with no edge, the method iteratively modifies
edge weights, adds new edges into the bipartite graph, and
applies the maximum matching (or minimum covering) in
the resulting bipartite graph. It continues the above process
until a perfect matching is found. The Hungarian method
gives an optimum assignment and it can be implemented in
O(K3) time [18].

2.3 Fitness Distance Correlation
The fitness distance correlation (FDC) is a measure of

problem difficulty proposed by Jones and Forrest [8]. FDC
is defined to be the correlation coefficient of the fitness and
the distance to the nearest global optimum of sampled so-
lutions. Thus, it ranges from −1 to 1. The problem of
maximizing the fitness is considered to become easier as the
value comes close to −1. On the other hand, that of min-
imizing the fitness is considered to become harder as the
value approaches −1.
When a genetic algorithm is hybridized with a local op-

timization, the population contains only local optima. It is
thus valuable to examine FDC of the local-optimum space
rather than that of the whole solution space.

3. DISTANCE MEASURE IN
POPULATION SPACE

Since the genetic algorithm is a population-based search,
the distance measure between populations is useful for un-
derstanding the behavior of genetic algorithms (e.g., [13]).
For example, it can be used in the visualization of popula-
tion convergence and in the analysis of the population space
analogically to the solution space. Recently, Wineberg and
Oppacher [19] pointed out the need for a population met-
ric, proposed distance measures between populations, and
showed that some measures are metric. They proposed two
types of population distances. One is based on population
diversity, which is defined to be the sum of the Hamming
distances between all pairs of chromosomes. This measure is
not intuitive. The other is defined to be the minimal number
of mutations to transform one population to another. This
is quite natural and intuitive. However, they considered just
the gene frequency at each locus over the population, ignor-
ing gene dependency, which is a serious drawback in obtain-
ing reasonable distance formulas. Moreover, they considered
the solution space having only the Hamming distance. In
this section, we propose an intuitive and reasonable metric.
We also assume that the solution space can have any metric.

3.1 New Measure

Definition 1. Let K be the population size. Let popula-
tion p = {c1, c2, . . . , cK} and population p′ = {c′1, c′2, . . . , c′K}.
Given a metric d in solution space, we define the distance

p2

=

c1: 0 0 0 0 1
c2: 1 1 1 1 0

c4: 1 1 0 1 1
c3: 0 0 0 0 0

c3: 0 0 0 0 0
c1: 0 0 0 0 1
c4: 1 1 0 1 1
c2: 1 1 1 1 0

c1: 0 0 0 0 0

p1

c2: 0 0 0 1 1
c3: 1 1 0 0 0
c4: 1 1 1 1 1

p2’

Figure 1: An example of two populations

DK of the two populations as follows:

DK(p, p′) := min
σ∈ΣK

 
KX

i=1

d(ci, c
′
σ(i))

!

where σ denotes a permutation.

Theorem 1. DK is a metric in the population space.

Proof: It is enough to show that DK satisfies the triangle
inequality.

DK(px , py) +DK(py , pz)

=(WLOG)

KX
i=1

d(cx
i, c

y
σ(i)) +

KX
i=1

d(cy
i, c

z
σ′(i))

=

KX
i=1

d(cx
i, c

y
σ(i)) +

KX
i=1

d(cy
σ(i), c

z
σ′(σ(i)))

=

KX
i=1

`
d(cx

i, c
y

σ(i)) + d(cy
σ(i), c

z
σ′·σ(i))

´

≥
KX

i=1

d(cx
i, c

z
σ′·σ(i)) (∵ d is a metric)

≥ DK(px, pz) (∵ σ′ · σ ∈ ΣK). �

Figure 1 shows an example of two populations p1 and p2
containing four binary chromosomes with five genes. As-
sume that the solution space has the Hamming distance.
If we simply use the sum of the distances between pairs of
chromosomes with the same indices, the distance between
populations p1 and p2 is 8. The mutation-based distance
of Wineberg and Oppacher [19] is 0 since two populations
have the same gene frequency at each locus. But, since p1
is not equal to p2, it is not reasonable. We use the distance
between p1 and p2′, which becomes 4.

3.2 Hungarian Method Can Compute DK

The problem of computing DK is formulated as the opti-
mal assignment problem. Then, it can be computed by the
Hungarian method. Figure 2 shows the assignment weight
matrix M = (mij) between two populations p and p′. Each
element mij represents d(ci, c

′
j). The problem of computing

DK is exactly the problem of finding an assignment (permu-
tation) with minimum summation.

4. DISTANCE MEASURE FOR
K-GROUPING PROBLEM

We propose a distance measure for disjoint K-grouping
problems such asK-way graph partitioning, graphK-colorability,
bin packing, etc. These problems are well-known NP-complete
problems [6]. A number of genetic algorithms have been
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Figure 2: The assignment weight matrix between
two populations

proposed for solving the problems. In these problems, since
each group is not distinguishable, each solution has K! rep-
resentations. This makes the Hamming distance between
two solutions unrealistic and undermines the effectiveness
of crossover operators in genetic algorithms.

4.1 New Measure

Definition 2. Let the universal set U be {1, 2, . . . ,K}N ,
where N is the problem size. Given two K-ary encodings
a, b ∈ U and a metric d in U , we define the distance measure
dK for K-grouping problem as follows:

dK(a, b) := min
σ∈ΣK

d(a, bσ)

where σ is a permutation and bσ is a permuted encoding of b
by σ, i.e., the ith element ei of b is transformed into σ(ei).

In the case of K = 2, the measure d2 has been successfully
used [3, 5, 12]. The definition generalizes it into the distance
measure for K-grouping problem. We provide the following
theorems.

Theorem 2. dK is a pseudo-metric in U .

Proof: It is enough to show that dK satisfies the triangle
inequality.

dK(x, y) + dK(y, z) =(WLOG) d(x, yσ) + d(y, zσ′)

= d(x, yσ) + d(yσ, (zσ′)σ)

= d(x, yσ) + d(yσ, zσ·σ′)

≥ d(x, zσ·σ′) (∵ d is a metric)

≥ dK(x, z) (∵ σ · σ′ ∈ ΣK). �

Given an element a ∈ U , since d is a metric, there are only
K! elements such that the distance dK to a is zero. If the
distance dK between two elements is equal to zero, we define
them to be in relation ∼. Then, the following proposition
holds.

Proposition 1. The relation ∼ is an equivalence rela-
tion.

Proof: It is obvious that the relation ∼ is reflexive and
symmetric. It is transitive as in the following.

a ∼ b, b ∼ c ⇒(WLOG) a = bσ, b = cσ′

⇒ a = (cσ′)σ = cσ·σ′

⇒ a ∼ c (∵ σ · σ′ ∈ ΣK). �

Theorem 3. Suppose that Q is the quotient set of U by
relation ∼ (i.e., Q = U/ ∼). Then, (Q, dK) is a metric
space, i.e., dK is a metric in Q.

Proof: By Proposition 1, Q is well defined. Since dK is a
pseudo-metric by Theorem 2, it is clear that dK is a metric
in Q. �

4.2 Hungarian Method Can Compute dK

When the metric d is the Hamming distance H1, the prob-
lem of computing dK is also formulated as the optimal as-
signment problem. Hence, it can be computed by the Hun-
garian method. Figure 3 shows the assignment weight ma-
trix M = (mij) between two chromosomes X and Y . Each

elementmij means
PN

k=1 I(Xk = i, Yk �= j) or
PN

k=1 I(Xk �=
i, Yk = j), where N is the length of chromosome and I(·) is
the indicator function, i.e., I(true) = 1 and I(false) = 0.
The problem of computing dK is exactly the problem of
finding an assignment (permutation) with minimum sum-
mation.

Theorem 4. If the metric d is the Hamming distance H,
then

dK(X,Y ) = min
σ∈ΣK

 
KX

i=1

NX
k=1

I(Xk = i, Yk �= σ(i))

!

where N is the length of chromosome and I(·) is the indica-
tor function, i.e., I(true) = 1 and I(false) = 0.

Proof:

dK(X,Y )

= min
σ∈ΣK

H(X,Yσ)

= min
σ∈ΣK

 
NX

k=1

I(Xk �= σ(Yk))

!

= min
σ∈ΣK

 
NX

k=1

KX
i=1

I(Xk = i, σ(Yk) �= i)

!

= min
σ∈ΣK

 
NX

k=1

KX
i=1

I(Xk = i, σ−1 · σ(Yk) �= σ−1(i))

!

= min
σ∈ΣK

 
NX

k=1

KX
i=1

I(Xk = i, Yk �= σ−1(i))

!

= min
σ∈ΣK

 
KX

i=1

NX
k=1

I(Xk = i, Yk �= σ−1(i))

!

= min
σ∈ΣK

 
KX

i=1

NX
k=1

I(Xk = i, Yk �= σ(i))

!

(∵ σ ∈ ΣK ⇔ σ−1 ∈ ΣK). �
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X ik = Y jk =

i

j

K

K

# of bits such that

&

Figure 3: The assignment weight matrix between
two K-ary chromosomes X and Y

Normalization is an approach that transforms the geno-
type of one parent to be consistent with that of the other
parent. It is a method for alleviating difficulties caused by
redundant encodings in genetic algorithms. It transforms a
given parent to another genotype so that the genotype con-
texts of the parents are as similar as possible in crossover.
There have been a few successful studies that used normal-
ization [4, 10, 15]. Figure 4 shows the process of previous
widely-used normalization in K-way graph partitioning. It
was proposed in [15]. It has been widely used in a number
of researches [5, 10]. However, it is just a greedy heuris-
tic for finding a good assignment. On the other hand, our
method using the Hungarian method always finds the opti-
mum assignment efficiently. The heuristic of Figure 4 and
our method have the same time complexity O(N + K3).
Table 1 shows the average distance values of Hamming dis-
tance, the greedy heuristic, and our method over various
K’s. Those of Hamming distance are theoretical expected
values and the others are obtained from randomly gener-
ated 1,000 pairs of K-ary solutions with N = 1000. Both
methods reduce genotype inconsistency in a large degree.
We can see that the previous heuristic performs worse as K
increases, whereas our method always returns the optima.
Since the normalizations of chromosomes in [5] and [15] pur-
sue the minimization of genotype inconsistency among chro-
mosomes, the proposed metric is ideal in this line of work.
Also, though our method is slower than the greedy heuris-
tic, our optimal method for the proposed metric is practical
even for large K’s.

5. LEVEL DISTANCE MEASURE

5.1 The Second Level Distance
The first level distance measure is commonly the Ham-

ming distance. Other distance measures can also be used
as the first level distance (e.g., normalized Hamming dis-
tance in Section 4). In this section, we define the second
level distance measure. It is defined from the first level dis-
tance. Given the problem instance p, consider the graph Gp

representing the first order gene interaction (e.g., [11]), i.e.,

1It is quite easy to verify that the Hamming distance is a
metric.

Normalization(parent1, parent2)
{

// count[i, j] :=
PN

k=1 I(parent1[k] = i, parent2[k] = j)
count[1..K,1..K]← O;
for i← 1 to N

count[parent1[i], parent2[i]]++;
for i← 1 to K
{

Choose p and q that maximizes count[p, q];
for j ← 1 to K

count[p, j]← −∞, count[j, q]← −∞;
σ(q)← p;

}
for i← 1 to N

parent2[i]← σ(parent2[i]);
}

Figure 4: Previous normalization heuristic between
two parents

1 0 111 00 1 0 1 1 0

1

2

3

4

5
6

First order gene interaction graph New distance = 2

Hamming distance = 5

Figure 5: An example

representing only gene interactions between a pair of genes.
Let Ap be the adjacency matrix of Gp.

Definition 3. Suppose that there exists the inverse of
Ap ⊕ I. We define the second level distance measure Dp

as follows:

Dp(a, b) := ‖(Ap ⊕ I)−1(a ⊕ b)‖
where ⊕ is XOR operator and ‖ · ‖ is a norm derived from
the first level distance d (i.e., ‖ · ‖ = d(·, 0)).

Theorem 5. Dp is a metric.

Proof: It is enough to show that Dp satisfies the triangle
inequality.

Dp(x, y) +Dp(y, z)

= ‖(Ap ⊕ I)−1(x⊕ y)‖+ ‖(Ap ⊕ I)−1(y ⊕ z)‖
≥ ‖(Ap ⊕ I)−1(x⊕ y)⊕ (Ap ⊕ I)−1(y ⊕ z)‖
= ‖(Ap ⊕ I)−1((x⊕ y)⊕ (y ⊕ z))‖
= ‖(Ap ⊕ I)−1((x⊕ z)⊕ (y ⊕ y))‖
= ‖(Ap ⊕ I)−1(x⊕ z)‖
= Dp(x, z). �

In the case that there does not exist the inverse of Ap⊕I , we
can extend the distance into a well-defined form as follows:

Dp(a, b) := min ‖(argmin
x

‖a ⊕ b ⊕ (Ap ⊕ I)x‖)‖.
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Table 1: Comparison of Distance Values
Method Hamming distance Greedy heuristic [15] Our method

Ave∗ Ave CPU‡ Ave† CPU‡

K = 4 750.00 727.22 0.0002 724.46 0.0018
K = 8 875.00 838.27 0.0003 835.35 0.0020
K = 16 937.50 888.03 0.0008 884.44 0.0029
K = 32 968.75 901.03 0.0023 896.76 0.0059
K = 64 984.38 890.65 0.0079 884.51 0.0191
K = 128 992.19 858.82 0.0308 847.51 0.0922

Average over 1,000 pairs of randomly generated solutions.
∗ The theoretical value.
† The optimum value.
‡ CPU seconds on Pentium PC 2.40GHz.

 750

 800

 850

 900

 950

 1000

 4  8  16  32  64  128

Hamming distance

Distance value

K

Greedy heuristic

Our method

The second level distance and its extension are efficiently
computed in O(N3) by a variant of Gauss-Jordan elimina-
tion method [1].

5.2 An Example Application
Intuitively, the proposed distance can be understood as

the minimum number of mutated bits for transforming one
chromosome into the other in the genetic process using opti-
mal gene rearrangement. Figure 5 shows an example about
the distances between two chromosomes with optimal gene
ordering in a gene interaction graph. Consider the 6-node
MAX CUT problem2 instance that maximizes the following
formula:

x1 ⊕ x2 + x2 ⊕ x3 − x4 ⊕ x5 − x5 ⊕ x6,

where xi ∈ {0, 1} means the partition to which the vertex
i belongs. In the problem instance, edges {1, 2} and {2, 3}
positively affect the fitness and edges {4, 5} and {5, 6} neg-
atively affect the fitness. It has the graph of Figure 5 as its
gene interaction graph. If we use the normalized Hamming
distance (for 2-grouping problem) as a distance measure, the
FDC of this problem is −0.50. When its second level dis-
tance is used instead of the normalized Hamming distance,
the FDC becomes −0.95.
Given a graph G = (V,E) and its adjacency matrix A =

(aij), the graph partitioning problem is the problem that

2Given an undirected graph G = (V,E) with edge weights
(wij)(i,j)∈E, the MAX CUT problem is the problem of find-
ing a subset S ⊂ V which maximizes the sum of edge weights
in the cut (S, V \S).

minimizes the following formula:

1

2

|V |X
i=1

|V |X
j=1

aij(xi ⊕ xj) + γ

0
@ |V |X

i=1

xi − |V |
2

1
A

2

where γ is a positive constant. If we ignore the last con-
straint term about balancing, we can regard the given graph
as the gene interaction graph of the given problem instance.
Bui and Moon [3] tried gene rearrangement from given graph
in genetic algorithms for graph partitioning and showed dra-
matic performance improvement on some graphs. The FDC
using the proposed second level distance identified the graphs
that benefited most by gene rearrangement in genetic algo-
rithms. Figure 6 shows the relationship between FDC and
performance improvement for 16 graphs (8 random graphs
and 8 geometric graphs) used in [7]. Here, the performance
improvement means the difference in percentage between the
average performances of genetic algorithms with gene rear-
rangement and without gene rearrangement (data from [3]).
FDC values were approximated from randomly generated
10,000 local optima. When the first level distance was used,
there was little correlation. But, FDC using the second level
distance well accorded with the performance improvement
(see Figure 6(b) and Table 2).

5.3 Higher Level Distance
In this subsection, we extend the second level distance.

Definition 4. We define the ith level gene adjacency ma-
trix as follows:

A(i)
p := I ⊕ (Ap ·A(i−1)

p )
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Figure 6: Relationship between FDC and performance improvement

Table 2: Comparison of FDCs with Different Level
Distances

Graph w/ D
(1)
p w/ D

(2)
p w/ D

(3)
p

G500.05 0.449 −0.002 0.020
G500.20 0.288 0.004 −0.005
G1000.05 0.239 0.001 0.003
G1000.20 0.468 0.021 0.017

U500.05† 0.297 0.438 0.252
U500.20 0.593 0.267 0.198
U1000.05† 0.188 0.384 0.177
U1000.20 0.582 0.291 0.165

† The graphs that benefited most from gene
rearrangement in [3].

where i ≥ 1 and A
(0)
p = O.

Definition 5. Suppose that there exists the inverse of

the ith level gene adjacency matrix A
(i)
p . We define the ith

level distance as follows:

D(i)
p (a, b) := ‖(A(i)

p )−1(a ⊕ b)‖.

In the same way as i = 2, D
(i)
p is a metric for every i.

Without the inverse of Ap ⊕ I , we extend the distance as
follows:

D(i)
p (a, b) := min ‖(argmin

x
‖a ⊕ b ⊕ A(i)

p x‖)‖.

The last column of Table 2 shows FDC values using the
third level distance in graph partitioning. We need to study
more on if we can use the third or higher level distances as
supportive measures of the second level distance.

6. CONCLUSIONS
Most previous studies needing distances among chromo-

somes in genetic algorithms used the Hamming distance.
The purpose of this paper is to develop more meaningful dis-
tance measures for genetic algorithms. We proposed three
distance measures for genetic algorithms and showed that
the proposed distance measures are metrics. We also showed
that there is an efficient method to compute the metrics.

We also proposed higher level distances which see the
problem spaces from a different viewpoint. Among them,
the second level distance turned out to be helpful in expect-
ing the graphs that can benefit from gene rearrangement in
graph partitioning. More examination on the usefulness of
higher level distances is left for future study. We hope that
the proposed metrics are useful for improving GA’s search
capability and understanding GA’s working mechanism.
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