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ABSTRACT 
We propose a method for applying genetic algorithms to create 
3D terrain data sets.  Existing procedural algorithms for 
generation of terrain have several shortcomings. The most popular 
approach, fractal-based terrain generation, is efficient, but is 
difficult for a user to control. Other methods tend to require too 
much user input. In this paper, we provide an alternative method 
of terrain generation that uses a two-pass genetic algorithm 
approach to produce a variety of terrain types using only intuitive 
user inputs. We allow a user to specify a rough sketch of terrain 
region boundaries, and we refine these boundaries using a genetic 
algorithm. We then couple this with a database of given terrain 
data to generate an artificial terrain, which we optimize using a 
second genetic algorithm. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search  
I.3.5 [Computer Graphics]: Computational Geometry and Object 
Modeling 

General Terms 
Algorithms 

Keywords 
Terrain generation, genetic algorithms, geographic information 
systems (GIS), height field, image processing 

1. INTRODUCTION 
Artificial terrain generation involves the creation of a set of 
elevation values over a two dimensional grid, such that the 
resulting model appears to be the surface of a real region of land. 
While games, movies, and similar forms of entertainment are the 
most popular applications for terrain generation algorithms, these 
algorithms also find application in a variety of other contexts, 
including simulation and training environments. 

Current terrain generation algorithms span a wide range.  These 
are described in more detail in section 2.2.  All of these current  
techniques have key limitations.  Many of the simpler methods are 
suitable for creating only a narrow range of terrain types.  Some 
require the user to possess arcane parameter tuning skills in order 
to get acceptable results.  Most of them provide no localized 
control over the landscape, and those that do require the user to 
invest a significant amount of skilled labor in order to get results.  

In contrast, for a terrain generation tool to be maximally useful to 
artists, game developers, architects, and simulation designers (i.e., 
the user base of such a tool), it ought to enable its users to design 
the terrain visually using intuitive controls, producing realistic 
results across a variety of terrain types. 

The approach we present here aims to address many of the 
shortcomings of these existing methods.  We give the user a 
manageable level of control in specifying the types of terrains, and 
the approximate regions that each terrain type should occupy.  We 
then make use of genetic algorithms in two stages to create a 
realistic terrain model.  The resulting method is capable of 
generating realistic terrains with only intuitive inputs and limited 
knowledge required of the user, and could be implemented as a 
standalone, CAD-style tool, or as a plugin for any of the major 3D 
modeling packages commercially available. 

2. BACKGROUND 
2.1 Terrain Representation 
While terrain data can be represented in a number of ways, by far 
the most common structure for terrain representation is the height 
field.  In mathematical terms, a height field is a scalar function of 
two variables, such that every coordinate pair (x, y) corresponds to 
an elevation value h: 

( , )h f x y=  

In practice, a height field is normally implemented as a two-
dimensional, rectangular grid of height values, and is equivalent 
to a grayscale image.  Height fields have the limitation that they 
cannot represent structures in which multiple surfaces have the 
same (x,y) coordinates (such as caves and overhangs), but are 
sufficient for most uses and can be highly optimized for rendering 
and object collision detection [3] [14]. 
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2.2 Existing Terrain Generation Techniques 
Existing terrain generation techniques can be grouped into several 
categories. 

The most flexible class of techniques is the family of sculpting 
techniques, in which a human artist “paints” or “sculpts” the 
terrain manually, using an image editing program (e.g., Adobe 
Photoshop), a 3D modeling program (e.g., Maya or 3D Studio), or 
a specialized “terrain editor” program, (e.g., Terragen [13] or the 
editors that ship with the recent game titles Unreal Tournament 
2004 [15] and SimCity 4 [12]).  The set of terrain modification 
operations available to the artist will differ depending on which 
type of editor is being used, but the general principle is the same.  
These techniques have the advantage of offering the user almost 
unlimited control over the details of the terrain. But this 
advantage is also a disadvantage – by leaving most or all of the 
details up to the user, these techniques place high requirements on 
the user in terms of time and effort, and the realism of the 
resulting terrain is completely dependent on the skill of the user. 

At the opposite end of the spectrum are Geographic Information 
Systems (GIS)-based techniques, in which elevation data is 
derived from real-world measurements (e.g., satellite imagery, 
land surveys).  GIS data can be acquired from a number of sources 
(e.g., [6]) and in several formats, such as the U.S. Geological 
Survey’s DEM (Digital Elevation Model) format [16].  GIS 
approaches have the advantage of offering highly realistic terrains 
with very little human effort, but at the expense of user control.  If 
the user has specific goals for the layout of the terrain and the 
kinds of features present, GIS approaches may actually be very 
time-consuming, as the user might have to search extensively to 
find real-world data that meets specific criteria. 

A third category of terrain generation methods is the class of 
procedural techniques, in which the terrain is generated 
programmatically.  These methods can be further separated into 
the physically-based techniques and the fractal techniques. 

Physically-based techniques simulate the effects of physical 
processes such as erosion by wind [17] or water [4] [7], or plate 
tectonics.  These approaches can generate highly realistic terrains, 
but require a thorough understanding of the physical laws to 
implement, and possibly even to use effectively.  They can also be 
extremely costly in terms of processing time, and may not 
generalize well to accommodate new terrain types. 

Fractal techniques exploit the self-similarity property exhibited (to 
a limited extent) by some types of terrain.  An object is said to be 
self-similar when magnified subsets of the object are similar (or 
identical) to the whole object and to each other [10].  For 
example, the jagged edge of a broken rock might appear similar to 
the ridgeline on a distant horizon. One can thus use certain forms 
of fractals to generate height fields that somewhat resemble real 
terrains[JK6] [11]. Variability in the resultant terrain can be 
introduced by incorporating randomness into the fractal 
algorithm; even so, the self-similarity characteristic of fractals 
makes fractal-generated terrain often easily recognized as such.  
To get believable terrains, the various (non-intuitive) fractal 
parameters used by the engine may have to be tweaked 
extensively. This class of techniques is the current favorite of the 
computer game industry, largely due to their speed and simplicity 
of implementation [2] [5]. There are a number of specialized 
terrain generation tools available that are based predominantly on 

fractal techniques, such as Terragen [13] (which is really a hybrid 
fractal/sculpting tool) and MojoWorld, a sophisticated program 
for creating entire fractal worlds [8]. 

Based on our observations of the strengths and weaknesses of 
each type of technique, our goal is to explore an alternative 
approach in terrain generation using genetic algorithms 
(GA[JK7]). 

2.3 Characteristics of a Good Terrain 
Generation Algorithm 
Since terrain comes in many different geometric shapes, forms 
and characteristics, a good, general algorithm for terrain 
generation should be: 1) adaptive – performing well across 
different terrain types and permitting new terrain types to be 
added; 2) innovative – exhibiting emergence characteristics such 
that new and original constructs not necessarily specified in the 
input are created; 3) scalable – capable of handling datasets and 
results at varying terrain resolutions; and 4) intuitive – allowing 
the human user to exercise control over the terrain generation 
process using easily understood and predictable parameters.  
While prior methods may meet some of these characteristics well, 
they tend to perform poorly in others; we believe that our 
approach does well at meeting all of these characteristics. 
Evolutionary computation is well suited for the terrain generation 
problem because it requires searching through a huge number of 
possibilities (all possible terrains) to find good approximate 
solutions (meeting both realism and user-specified constraints)[9]. 

3. METHODS 
Our approach breaks down the terrain generation process into two 
stages: the terrain silhouette generation phase, and the terrain 
height field generation phase.  The input to the first phase is a 
rough, 2D map laying out the geography of the desired terrain that 
can be randomly generated or specified by the user.  This map is 
processed by the first phase to remove any unnaturally straight 
edges (Figure 1), and then fed to the second phase, along with a 
database of pre-selected height field samples representative of the 
different terrain types.  The second phase searches for an optimal 
arrangement of elevation data from the database that approximates 
the map generated in the first phase. 

3.1 Terrain Silhouette Generation 
The input to this phase is a 2D “map” of polygonal terrain 
“regions” specifying the approximate size, shape, and position of 
different terrain types (for example, a large, elliptical region of 
mountains surrounded on all sides by rolling hills).  The user 
could create these regions manually, using a simple, CAD-style 
interface, or they could be generated randomly. In either case, for 
the linear boundaries of these rough polygonal shapes not to be 
noticeable as artifacts in the generated terrain, they must be 
broken down into more natural-looking, uneven boundaries. We 
perform this edge modification by subdividing each edge into a 
sequence of points and applying a GA to produce an acceptable 
boundary shape.  
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Individuals in the initial population are created as follows: 

1. For a particular input boundary segment, let P0 be the 
starting point and Pn be the end point.  Define P0 to be 
at the origin, and Pn to lie on the positive x-axis. 

2. We will generate a series of n intermediate points, Pi, 
which will be connected to create a new set of line 
segments connecting P0 to Pn, evenly spaced in terms of 
their x-coordinates. Create the first line segment 
connecting P0 to P1 by choosing an arbitrary angle, θ 
 from the x-axis, lying within a predetermined range of 
angles, and place P1 along that angle at a fixed x-value. 

 
3. Now create a line segment connecting Pi to Pi+1 (whose 

y-coordinate is still unknown) by generating an arbitrary 
angle θ such that the resultant angle formed from Pi-1, 
Pi, and Pi+1 falls below the user-defined 
threshold[JK15].  This user-defined threshold gives a 

measure of the boundary’s local smoothness (small 
values indicate slow variation, and thus smoother 
boundaries). 

4. Repeat step 3 n - 1 times.  Note that Pn is probably not 
at the same position the original end point was in. 

5. Since the resultant boundary’s endpoints will not, in 
general, line up with those of the original shape, apply a 
rotation and scaling to make the generated boundary fit 
into the desired location (Figure 2). 

3.1.1 Encoding/Decoding and Fitness 
Evaluation 
Floating point encodings are used in the genes to record the angle 
θ (in radians) between Pi and Pi+1  such that the encoded values 
may range from -1 to 1 where a value of 1 indicates that the line 
segment heads in the same direction as Pi-I. Figure 3 provides two 
examples of how the angle between two line segments is 
measured. A value of 1 in a gene represents an angle of п radians 
(i.e., the two segments have the same direction), with positive 
values representing “upward turning” angles and negative values 
representing “downward-turning” angles. The smaller-magnitude 
angle is always chosen, such that no angles larger than п radians 
are possible. The angle at P0 is encoded slightly differently since 
there is no P-1; instead, the angle measure is calculated with 
respect to the imaginary line connecting the start and end points.  
The decoding process is essentially the reverse of the encoding 
process (and therefore will not be described).  The merit of such 
an encoding scheme is that it allows us to evaluate the fitness of 
an individual without explicitly decoding the floating point 
numbers to Cartesian coordinates. S is the smoothness parameter, 
which ranges from 0.0 to 1.0 such that 1.0 indicates perfect 
smoothness (i.e., a perfectly straight line). The floating point 
values f in the genes have a direct relationship with the value of S 
since a higher value of f indicates a smoother transition between 
the line segments (and thus, a higher S value).  

 
Unconstrained mutations or generation of line segments in the 
silhouette can yield results that are difficult or impossible to 

Figure 1. A simple, 2D 
polygonal map and two 
GA-refinements , using 

different smoothness 
parameters. 

Figure 3. Angle between two line segments will be 
encoded into a gene as a floating point number 

Figure 2. Rotate and scale the line segments to match the 
specified start and end points 
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transform to fit the specified start and end points (consider the 
case where the generated boundary’s start and end points are 
identical). In light of this observation, we impose a global 
constraint on the initialization stage and mutation operators such 
that the segments in the silhouette line can only fall within the 
region spanned by two lines projected at ± 1/4 п (with respect to 
the baseline) (Figure 4). The value ± 1/4 п was chosen somewhat 
arbitrarily, but works well in practice – any value significantly 
smaller than ± 1/2 п can be used, since this ensures that progress 
is always being made towards the end point, and that the 
generated boundary can be easily transformed to fit.  

[JK21]

 
Fitness of the individuals is determined by evaluating the 
smoothness of the resultant silhouette. A smoothness measure is 
computed based on the ideal range of f for a particular smoothness 
parameter S, calculated as: 

  1 as encoded is Π  since 1)
4

1(1 ≤≤+−− f
S δ  

where δ is a small, predefined floating point value. This range is 
reduced as S increases so that higher fitness values are assigned 
only to line segments with smoother transitions and vice versa. 
[JK22]As the deviation of a gene’s f from this ideal range 
increases, the gene is penalized with a lower fitness value. The 
fitness value for a gene i is computed as follows: 

))-(1.1
2

(    v valueFitness   i SfSin i
Π=  

Where vi is the fitness value for a particular gene i and fi is the 
encoded angle for gene i. The function exhibits a horizontal 
asymptote at fi = 1 for low smoothness level due to the term 1.1 – 
S (The value 1.1 is chosen instead of 1 to handle cases when S = 
0) so that the assignment of fitness values favors sharper 
transitions between the line segments. The function slowly turns 
into a linear function for higher smoothness values in order to 
penalize sharper transitions between the line segments. Finally, 
the fitness value from each gene is combined to obtain a value that 
contributes to the individual’s fitness value.  

 Similarly, the smoothness at coarser granularities of the resultant 
silhouette is computed by taking a subset of the fs from the line 
segments at certain fixed intervals, such as f1, f4, f8 and f12, and 
computing their fitness value based on the evaluation scheme 
discussed above. Lastly, the fitness values at each different 
granularity level are combined based on a weighted average 
function. Thus, the final fitness value F (overall smoothness) is 
determined by the following equation: 

∑ ∑=
=

=
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Where m is the number of granularity levels we are computing for 
the silhouette line fitness and the N function provides the number 
of elements in the Ai set of f values.  

To simplify calculations, fitness values of individuals in the 
implementation of our GA are computed at only two granularity 
levels. As an example, we assume that our line segments at two 
different granularity levels are A1 = {f1, f2, f3, f4, f5, f6, f7} and A2 = 
{f1, f3, f5, f7} respectively. The total fitness values for the 
corresponding granularity level are F1 and F2 respectively. 

3.1.2 Genetic Operators 
The GA used in the silhouette generation process utilizes the 
standard crossover and mutation operators [1]. The crossover 
operator (Figure 5) randomly chooses a locus and exchanges the 
subsequences before and after that locus between two 
chromosomes to create two offspring. The mutation operator 
randomly alters the floating point value encoded in the genes 
(Figure 6). The effects of these operators on the candidate 
solutions can be very drastic because the direction (and indirectly, 
the length) of a particular line segment is dependent on the 
previous radian values f encoded in the genes before it.  

 

Figure 4. Line segments can only fall in between the 
region spanned by the boundaries 

Figure 5. The effects of crossover on the end points 
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3.1.3 Discussion 
Depending on how much detail we want in the resultant 
silhouette, the number of line segments used can be adjusted.  The 
maximum amount of useful detail is limited by the resolution of 
the height field that will be generated in the second phase – if the 
silhouette has details finer than this limit, they will have no 
contribution to the output height field. 
Since, in real-world terrain, a single region may be adjacent to 
several other regions of different types, and they may transition 
differently into each other, we allow the individual boundary 
segments in the silhouette of a particular region to have different S 
values for their fitness evaluation criteria. 

3.2 Terrain Height Field Generation 
Terrain silhouettes generated from the processes described in the 
section 3.1 are used as guidelines in this stage. Each region 
enclosed by a set of boundaries is assigned by the user a particular 
terrain type.  Instead of trying to generate terrain features and 
height fields from scratch, such as is the case in most fractal-based 
algorithms, we use a collection of terrain type sample height fields 
and features as building blocks for our GA population, and 
manipulate these samples to generate new configurations. These 
input examples can be taken from real-world GIS data scans, or 
from user-created samples. Since the input samples may be taken 
directly from real-world surveying data, our approach has an 
inherent advantage with respect to realism over fractal-based 
methods.  For example, if a terrain type is set to be “mountain 
foothills”, we can use satellite-scans of regions identified as 
mountain foothills to initialize our data. 

3.2.1 Encoding/Decoding  
Each chromosome represents a candidate solution (height field) 
corresponding to the silhouettes generated in the earlier phase. A 
single gene represents a small, localized cluster of height values 
with a “center point” in the generated height field and an “area of 
influence” (for example, a 16-pixel-diameter circle) as shown in 
Figure 7. 

 
Figure 7. Overlapping areas of influence for a particular 

terrain silhouette 
The genes are organized into a uniform, rectangular grid, such 
that their areas of influence overlap with one another and together 
they cover the entire region (height values in overlapped areas are 
calculated by combining the height values of each overlapping 
gene, according to a blending function). The main reason for 
allowing overlap among the genes is to minimize visual artifacts: 
if the region enclosed by the silhouette were partitioned into non-
overlapping sub-regions, there would be inevitable, unnatural 
discontinuities at the gene boundaries. Although different shapes 
could be used for the area of influence, we chose a circular 
Gaussian function because of its good blending characteristics. 
The GA used in this phase is implemented as follows: 

1. Initialize m chromosomes for the population, giving 
each gene in the grid a randomly selected chunk of 
height field data of the appropriate terrain type from the 
database. 

2. Evaluate the fitness of each chromosome in the 
population. 

3. Perform crossovers with probability pc and mutations 
with probability pm. 

4. Replace the current population with the new population. 
5. Go to step 4 until the end of the evolution process 
6. Pick the strongest individual from the population and 

generate the result height field from it by applying all of 
the operations encoded in the chromosome. 

 

 
Figure 8. Encoding of a chromosome 

 

Figure 6. Mutation of the value encoded in a gene, 
resulting in a different end point for a silhouette line 
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3.2.2 Genetic Operators 
The crossover and mutation operators are similar to the standard 
GA operators except that they operate on lists of terrain 
transformation operations, such as rotating a patch of terrain to a 
different orientation and scaling the height values of a terrain 
patch (Figure 8). From the chromosomes’ perspective, these 
operators function identically to the standard operators in that 
they facilitate the exchange or mutation of encoded genetic 
material. From the perspective of the generated height field, they 
are best understood as sequences of image processing instructions, 
such as translating, rotating and scaling the height data (Figure 9).   
 

  

  
 
 
The crossover operator effectively swaps regions of pixels 
between chromosomes (Figure 10). The various mutation 
operators implement image transformations, such as translation, 
rotation and scaling of the elevation pixel data[JK31]. The 
mutations can alter the transformation parameters of the image 
processing operations, or insert new image processing operations 
into the list of sequence carried by a gene (Figure 11). 

3.2.3 Fitness Evaluation[DO32] 
The fitness evaluation is somewhat more complicated in this 
phase than in the previous, because in order to be “good”, a height 
field must satisfy a number of constraints. In particular, the 
following will be true of a “good” height field: 

1. Each region in the terrain resembles the example 
terrains in the terrain database for its terrain type (i.e., 
“mountainous” regions look like the examples of 
“mountains” that we already have, “hills” look like our 
example “hills”, etc.). 

2. The boundaries between regions of different terrain 
types are reasonable. There are no sharp “drop offs” at 
the boundaries between terrain types. 

 

 

 
 

Figure 10. Crossing over the image processing instructions 
between genes 

 
Each terrain type possesses a number of measurable 
characteristics, against which a region of that type can be 
validated. The degree to which these characteristics extracted 
from the generated region match those measured from the 
examples in the terrain database gives a measure of how “like” the 
source examples our generated region is. The more our generated 
height field resembles the sample inputs in these characteristics, 
the higher its fitness will be. The minimum, maximum, mean, and 
variance of the sample elevations are good candidates for 
meaningful measurements, as are the slope, frequency content 
(derived from the Fourier transform of the height field) and the 
density and size of semantic “features”, such as valleys, plateaus, 
ridges and edges (extracted using conventional computer vision 
techniques). 

Figure 9. (top) An 
unmutated height field 

from the database. 
(bottom left) The effect 

of a “vertical offset” 
mutation on a gene. 
(bottom right) The 
effect of a “rotate” 

mutation on that gene.
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Figure 11. Mutation operators can alter the parameters of the 

image processing operations. 
 

One difficulty of applying a GA to optimize terrain height fields is 
that, since the terrain can be adjusted in so many ways, and since 
the local adjustment of a single gene makes such a small 
contribution to the global, overall fitness of the terrain, 
convergence is likely to be very slow using a scalar-valued fitness 
evaluation, since so much information is lost in aggregating the 
regional fitness values. To address this, rather than keeping only 
the aggregate (global) fitness value, we also retain the individual 
fitness values for each region, in order to provide some 
probabilistic guidance to the mutations and crossovers in the next 
evolution cycle. 

3.2.4 Discussion 
Encoding all of the terrain-related data into each chromosome 
would be expensive since each chromosome would then contain a 
complete 3D terrain (actually, more than a complete terrain since 
the genes overlap one another); this is a primary reason for 
encoding only the sequence of transformation operations. By 
allowing the chromosomes to contain only the instructions for 
generating a height field, it is feasible to use a larger population 
for the evolution process. In our experiments, we used between 5 
and 15 chromosomes, evolved over 10 to 20 cycles. 

Since (like all genetic algorithms) the height field generation 
algorithm is inherently random, the terrains generated from two 
separate runs of the algorithm will not, in general, be the same, 
even if they use the same map.  While this has the benefit of 
allowing an infinite number of variations to be created, it would 
also inhibit the user’s design process, as each successive run 
would produce an entirely new terrain, even if the user had made 
only a small tweak to the map between runs.  To control this, the 
seed for the random number generator can be kept the same across 
separate runs of the algorithm, allowing the same terrain to be 
regenerated as many times as desired. 

4. FUTURE WORK 
The silhouette generation process has several shortcomings, in 
that a single run of the GA is unable to generate some types of 
terrain features that can be found in nature due to the constraint 
we placed on the allowable range of θ. We could further improve 
the performance of the GA used in this phase by first generating 
silhouette lines of arbitrary length and θ, then extracting from it 
line segments having the desired length to initialize our 
population. A complexity parameter could also be incorporated 
into the GA used in the generation processes to better 
approximate the simplicity or complexity of certain terrain 
silhouettes, such as that exhibited by deserts or shorelines. 

Currently, the terrain samples for the different terrain types used 
in the terrain height field generation phase are all hand-picked. 
We are experimenting with various image and pattern analysis 
techniques such as Fourier analysis, image feature detection, and 
perceptron-based classification in an attempt to automate this 
process such that the system can automatically or semi-
automatically categorize a given set of terrain samples into 
different logical terrain types and determine the relevant  
characteristics of each, further simplifying the process from a 
user’s perspective. We are also considering methods of identifying 
the presence of multiple terrain types within a single source 
sample. Such improvements in our methods of analyzing terrain 
types will allow us to refine our fitness evaluation algorithm in the 
height field generation stage. 

We believe that the fitness evaluation and mutation operators can 
be further improved to better track the formation of terrain 
features spanning multiple genes, allowing entire features to be 
crossed over en bloc and resulting in faster convergence 
properties. More extensive feature tracking would also enable the 
formation of rivers and such (which impose additional constraints, 
such as being continuous across region boundaries and always 
flowing downhill). 

5. CONCLUSIONS 
We have presented a new approach to terrain generation using 
genetic algorithms. Instead of trying to solve the problem as a 
whole, we break it down into two phases: terrain silhouette 
generation, and terrain height field generation. In contrast to 
fractal-based algorithms, our approach provides better control 
over the shape and layout of the resultant terrain, through the 
placement of regions of different terrain types.  We provide a 
balance between user input and real-world data capture 
unmatched by previous approaches.  
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There is still much room for improvement, as discussed in the 
future work section. Our experimentations in automatic terrain 
sample categorization can further improve the usability of this 
approach and the fitness evaluation function for the chromosomes. 
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