
Terrain Generation Using Genetic Algorithms
Teong Joo Ong

Center for the Study of Digital
Libraries

Department of Computer
Science

Texas A&M University
College Station, TX 77843-3112

mong@csdl.tamu.edu

Ryan Saunders
John Keyser

Department of Computer
Science

Texas A&M University
College Station, TX 77843-3112
{rls8901,keyser}@cs.tamu.edu

John J. Leggett
Center for the Study of Digital

Libraries
Department of Computer

Science
Texas A&M University

College Station, TX 77843-3112
leggett@csdl.tamu.edu

ABSTRACT
We propose a method for applying genetic algorithms to create
3D terrain data sets. Existing procedural algorithms for
generation of terrain have several shortcomings. The most popular
approach, fractal-based terrain generation, is efficient, but is
difficult for a user to control. Other methods tend to require too
much user input. In this paper, we provide an alternative method
of terrain generation that uses a two-pass genetic algorithm
approach to produce a variety of terrain types using only intuitive
user inputs. We allow a user to specify a rough sketch of terrain
region boundaries, and we refine these boundaries using a genetic
algorithm. We then couple this with a database of given terrain
data to generate an artificial terrain, which we optimize using a
second genetic algorithm.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search
I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling

General Terms
Algorithms

Keywords
Terrain generation, genetic algorithms, geographic information
systems (GIS), height field, image processing

1. INTRODUCTION
Artificial terrain generation involves the creation of a set of
elevation values over a two dimensional grid, such that the
resulting model appears to be the surface of a real region of land.
While games, movies, and similar forms of entertainment are the
most popular applications for terrain generation algorithms, these
algorithms also find application in a variety of other contexts,
including simulation and training environments.

Current terrain generation algorithms span a wide range. These
are described in more detail in section 2.2. All of these current
techniques have key limitations. Many of the simpler methods are
suitable for creating only a narrow range of terrain types. Some
require the user to possess arcane parameter tuning skills in order
to get acceptable results. Most of them provide no localized
control over the landscape, and those that do require the user to
invest a significant amount of skilled labor in order to get results.

In contrast, for a terrain generation tool to be maximally useful to
artists, game developers, architects, and simulation designers (i.e.,
the user base of such a tool), it ought to enable its users to design
the terrain visually using intuitive controls, producing realistic
results across a variety of terrain types.

The approach we present here aims to address many of the
shortcomings of these existing methods. We give the user a
manageable level of control in specifying the types of terrains, and
the approximate regions that each terrain type should occupy. We
then make use of genetic algorithms in two stages to create a
realistic terrain model. The resulting method is capable of
generating realistic terrains with only intuitive inputs and limited
knowledge required of the user, and could be implemented as a
standalone, CAD-style tool, or as a plugin for any of the major 3D
modeling packages commercially available.

2. BACKGROUND
2.1 Terrain Representation
While terrain data can be represented in a number of ways, by far
the most common structure for terrain representation is the height
field. In mathematical terms, a height field is a scalar function of
two variables, such that every coordinate pair (x, y) corresponds to
an elevation value h:

(,)h f x y=

In practice, a height field is normally implemented as a two-
dimensional, rectangular grid of height values, and is equivalent
to a grayscale image. Height fields have the limitation that they
cannot represent structures in which multiple surfaces have the
same (x,y) coordinates (such as caves and overhangs), but are
sufficient for most uses and can be highly optimized for rendering
and object collision detection [3] [14].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’05, June 25-29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006…$5.00.

1463

2.2 Existing Terrain Generation Techniques
Existing terrain generation techniques can be grouped into several
categories.

The most flexible class of techniques is the family of sculpting
techniques, in which a human artist “paints” or “sculpts” the
terrain manually, using an image editing program (e.g., Adobe
Photoshop), a 3D modeling program (e.g., Maya or 3D Studio), or
a specialized “terrain editor” program, (e.g., Terragen [13] or the
editors that ship with the recent game titles Unreal Tournament
2004 [15] and SimCity 4 [12]). The set of terrain modification
operations available to the artist will differ depending on which
type of editor is being used, but the general principle is the same.
These techniques have the advantage of offering the user almost
unlimited control over the details of the terrain. But this
advantage is also a disadvantage – by leaving most or all of the
details up to the user, these techniques place high requirements on
the user in terms of time and effort, and the realism of the
resulting terrain is completely dependent on the skill of the user.

At the opposite end of the spectrum are Geographic Information
Systems (GIS)-based techniques, in which elevation data is
derived from real-world measurements (e.g., satellite imagery,
land surveys). GIS data can be acquired from a number of sources
(e.g., [6]) and in several formats, such as the U.S. Geological
Survey’s DEM (Digital Elevation Model) format [16]. GIS
approaches have the advantage of offering highly realistic terrains
with very little human effort, but at the expense of user control. If
the user has specific goals for the layout of the terrain and the
kinds of features present, GIS approaches may actually be very
time-consuming, as the user might have to search extensively to
find real-world data that meets specific criteria.

A third category of terrain generation methods is the class of
procedural techniques, in which the terrain is generated
programmatically. These methods can be further separated into
the physically-based techniques and the fractal techniques.

Physically-based techniques simulate the effects of physical
processes such as erosion by wind [17] or water [4] [7], or plate
tectonics. These approaches can generate highly realistic terrains,
but require a thorough understanding of the physical laws to
implement, and possibly even to use effectively. They can also be
extremely costly in terms of processing time, and may not
generalize well to accommodate new terrain types.

Fractal techniques exploit the self-similarity property exhibited (to
a limited extent) by some types of terrain. An object is said to be
self-similar when magnified subsets of the object are similar (or
identical) to the whole object and to each other [10]. For
example, the jagged edge of a broken rock might appear similar to
the ridgeline on a distant horizon. One can thus use certain forms
of fractals to generate height fields that somewhat resemble real
terrains[JK6] [11]. Variability in the resultant terrain can be
introduced by incorporating randomness into the fractal
algorithm; even so, the self-similarity characteristic of fractals
makes fractal-generated terrain often easily recognized as such.
To get believable terrains, the various (non-intuitive) fractal
parameters used by the engine may have to be tweaked
extensively. This class of techniques is the current favorite of the
computer game industry, largely due to their speed and simplicity
of implementation [2] [5]. There are a number of specialized
terrain generation tools available that are based predominantly on

fractal techniques, such as Terragen [13] (which is really a hybrid
fractal/sculpting tool) and MojoWorld, a sophisticated program
for creating entire fractal worlds [8].

Based on our observations of the strengths and weaknesses of
each type of technique, our goal is to explore an alternative
approach in terrain generation using genetic algorithms
(GA[JK7]).

2.3 Characteristics of a Good Terrain
Generation Algorithm
Since terrain comes in many different geometric shapes, forms
and characteristics, a good, general algorithm for terrain
generation should be: 1) adaptive – performing well across
different terrain types and permitting new terrain types to be
added; 2) innovative – exhibiting emergence characteristics such
that new and original constructs not necessarily specified in the
input are created; 3) scalable – capable of handling datasets and
results at varying terrain resolutions; and 4) intuitive – allowing
the human user to exercise control over the terrain generation
process using easily understood and predictable parameters.
While prior methods may meet some of these characteristics well,
they tend to perform poorly in others; we believe that our
approach does well at meeting all of these characteristics.
Evolutionary computation is well suited for the terrain generation
problem because it requires searching through a huge number of
possibilities (all possible terrains) to find good approximate
solutions (meeting both realism and user-specified constraints)[9].

3. METHODS
Our approach breaks down the terrain generation process into two
stages: the terrain silhouette generation phase, and the terrain
height field generation phase. The input to the first phase is a
rough, 2D map laying out the geography of the desired terrain that
can be randomly generated or specified by the user. This map is
processed by the first phase to remove any unnaturally straight
edges (Figure 1), and then fed to the second phase, along with a
database of pre-selected height field samples representative of the
different terrain types. The second phase searches for an optimal
arrangement of elevation data from the database that approximates
the map generated in the first phase.

3.1 Terrain Silhouette Generation
The input to this phase is a 2D “map” of polygonal terrain
“regions” specifying the approximate size, shape, and position of
different terrain types (for example, a large, elliptical region of
mountains surrounded on all sides by rolling hills). The user
could create these regions manually, using a simple, CAD-style
interface, or they could be generated randomly. In either case, for
the linear boundaries of these rough polygonal shapes not to be
noticeable as artifacts in the generated terrain, they must be
broken down into more natural-looking, uneven boundaries. We
perform this edge modification by subdividing each edge into a
sequence of points and applying a GA to produce an acceptable
boundary shape.

1464

Individuals in the initial population are created as follows:

1. For a particular input boundary segment, let P0 be the
starting point and Pn be the end point. Define P0 to be
at the origin, and Pn to lie on the positive x-axis.

2. We will generate a series of n intermediate points, Pi,
which will be connected to create a new set of line
segments connecting P0 to Pn, evenly spaced in terms of
their x-coordinates. Create the first line segment
connecting P0 to P1 by choosing an arbitrary angle, θ
 from the x-axis, lying within a predetermined range of
angles, and place P1 along that angle at a fixed x-value.

3. Now create a line segment connecting Pi to Pi+1 (whose

y-coordinate is still unknown) by generating an arbitrary
angle θ such that the resultant angle formed from Pi-1,
Pi, and Pi+1 falls below the user-defined
threshold[JK15]. This user-defined threshold gives a

measure of the boundary’s local smoothness (small
values indicate slow variation, and thus smoother
boundaries).

4. Repeat step 3 n - 1 times. Note that Pn is probably not
at the same position the original end point was in.

5. Since the resultant boundary’s endpoints will not, in
general, line up with those of the original shape, apply a
rotation and scaling to make the generated boundary fit
into the desired location (Figure 2).

3.1.1 Encoding/Decoding and Fitness
Evaluation
Floating point encodings are used in the genes to record the angle
θ (in radians) between Pi and Pi+1 such that the encoded values
may range from -1 to 1 where a value of 1 indicates that the line
segment heads in the same direction as Pi-I. Figure 3 provides two
examples of how the angle between two line segments is
measured. A value of 1 in a gene represents an angle of п radians
(i.e., the two segments have the same direction), with positive
values representing “upward turning” angles and negative values
representing “downward-turning” angles. The smaller-magnitude
angle is always chosen, such that no angles larger than п radians
are possible. The angle at P0 is encoded slightly differently since
there is no P-1; instead, the angle measure is calculated with
respect to the imaginary line connecting the start and end points.
The decoding process is essentially the reverse of the encoding
process (and therefore will not be described). The merit of such
an encoding scheme is that it allows us to evaluate the fitness of
an individual without explicitly decoding the floating point
numbers to Cartesian coordinates. S is the smoothness parameter,
which ranges from 0.0 to 1.0 such that 1.0 indicates perfect
smoothness (i.e., a perfectly straight line). The floating point
values f in the genes have a direct relationship with the value of S
since a higher value of f indicates a smoother transition between
the line segments (and thus, a higher S value).

Unconstrained mutations or generation of line segments in the
silhouette can yield results that are difficult or impossible to

Figure 1. A simple, 2D
polygonal map and two
GA-refinements , using

different smoothness
parameters.

Figure 3. Angle between two line segments will be
encoded into a gene as a floating point number

Figure 2. Rotate and scale the line segments to match the
specified start and end points

1465

transform to fit the specified start and end points (consider the
case where the generated boundary’s start and end points are
identical). In light of this observation, we impose a global
constraint on the initialization stage and mutation operators such
that the segments in the silhouette line can only fall within the
region spanned by two lines projected at ± 1/4 п (with respect to
the baseline) (Figure 4). The value ± 1/4 п was chosen somewhat
arbitrarily, but works well in practice – any value significantly
smaller than ± 1/2 п can be used, since this ensures that progress
is always being made towards the end point, and that the
generated boundary can be easily transformed to fit.

[JK21]

Fitness of the individuals is determined by evaluating the
smoothness of the resultant silhouette. A smoothness measure is
computed based on the ideal range of f for a particular smoothness
parameter S, calculated as:

 1 as encoded is Π since 1)
4

1(1 ≤≤+−− f
S δ

where δ is a small, predefined floating point value. This range is
reduced as S increases so that higher fitness values are assigned
only to line segments with smoother transitions and vice versa.
[JK22]As the deviation of a gene’s f from this ideal range
increases, the gene is penalized with a lower fitness value. The
fitness value for a gene i is computed as follows:

))-(1.1
2

(v valueFitness i SfSin i
Π=

Where vi is the fitness value for a particular gene i and fi is the
encoded angle for gene i. The function exhibits a horizontal
asymptote at fi = 1 for low smoothness level due to the term 1.1 –
S (The value 1.1 is chosen instead of 1 to handle cases when S =
0) so that the assignment of fitness values favors sharper
transitions between the line segments. The function slowly turns
into a linear function for higher smoothness values in order to
penalize sharper transitions between the line segments. Finally,
the fitness value from each gene is combined to obtain a value that
contributes to the individual’s fitness value.

 Similarly, the smoothness at coarser granularities of the resultant
silhouette is computed by taking a subset of the fs from the line
segments at certain fixed intervals, such as f1, f4, f8 and f12, and
computing their fitness value based on the evaluation scheme
discussed above. Lastly, the fitness values at each different
granularity level are combined based on a weighted average
function. Thus, the final fitness value F (overall smoothness) is
determined by the following equation:

∑ ∑=
=

=
m

i
mj

j

i F
AN

ANF
1

i

..1

*
)(

)(

Where m is the number of granularity levels we are computing for
the silhouette line fitness and the N function provides the number
of elements in the Ai set of f values.

To simplify calculations, fitness values of individuals in the
implementation of our GA are computed at only two granularity
levels. As an example, we assume that our line segments at two
different granularity levels are A1 = {f1, f2, f3, f4, f5, f6, f7} and A2 =
{f1, f3, f5, f7} respectively. The total fitness values for the
corresponding granularity level are F1 and F2 respectively.

3.1.2 Genetic Operators
The GA used in the silhouette generation process utilizes the
standard crossover and mutation operators [1]. The crossover
operator (Figure 5) randomly chooses a locus and exchanges the
subsequences before and after that locus between two
chromosomes to create two offspring. The mutation operator
randomly alters the floating point value encoded in the genes
(Figure 6). The effects of these operators on the candidate
solutions can be very drastic because the direction (and indirectly,
the length) of a particular line segment is dependent on the
previous radian values f encoded in the genes before it.

Figure 4. Line segments can only fall in between the
region spanned by the boundaries

Figure 5. The effects of crossover on the end points

1466

3.1.3 Discussion
Depending on how much detail we want in the resultant
silhouette, the number of line segments used can be adjusted. The
maximum amount of useful detail is limited by the resolution of
the height field that will be generated in the second phase – if the
silhouette has details finer than this limit, they will have no
contribution to the output height field.
Since, in real-world terrain, a single region may be adjacent to
several other regions of different types, and they may transition
differently into each other, we allow the individual boundary
segments in the silhouette of a particular region to have different S
values for their fitness evaluation criteria.

3.2 Terrain Height Field Generation
Terrain silhouettes generated from the processes described in the
section 3.1 are used as guidelines in this stage. Each region
enclosed by a set of boundaries is assigned by the user a particular
terrain type. Instead of trying to generate terrain features and
height fields from scratch, such as is the case in most fractal-based
algorithms, we use a collection of terrain type sample height fields
and features as building blocks for our GA population, and
manipulate these samples to generate new configurations. These
input examples can be taken from real-world GIS data scans, or
from user-created samples. Since the input samples may be taken
directly from real-world surveying data, our approach has an
inherent advantage with respect to realism over fractal-based
methods. For example, if a terrain type is set to be “mountain
foothills”, we can use satellite-scans of regions identified as
mountain foothills to initialize our data.

3.2.1 Encoding/Decoding
Each chromosome represents a candidate solution (height field)
corresponding to the silhouettes generated in the earlier phase. A
single gene represents a small, localized cluster of height values
with a “center point” in the generated height field and an “area of
influence” (for example, a 16-pixel-diameter circle) as shown in
Figure 7.

Figure 7. Overlapping areas of influence for a particular

terrain silhouette
The genes are organized into a uniform, rectangular grid, such
that their areas of influence overlap with one another and together
they cover the entire region (height values in overlapped areas are
calculated by combining the height values of each overlapping
gene, according to a blending function). The main reason for
allowing overlap among the genes is to minimize visual artifacts:
if the region enclosed by the silhouette were partitioned into non-
overlapping sub-regions, there would be inevitable, unnatural
discontinuities at the gene boundaries. Although different shapes
could be used for the area of influence, we chose a circular
Gaussian function because of its good blending characteristics.
The GA used in this phase is implemented as follows:

1. Initialize m chromosomes for the population, giving
each gene in the grid a randomly selected chunk of
height field data of the appropriate terrain type from the
database.

2. Evaluate the fitness of each chromosome in the
population.

3. Perform crossovers with probability pc and mutations
with probability pm.

4. Replace the current population with the new population.
5. Go to step 4 until the end of the evolution process
6. Pick the strongest individual from the population and

generate the result height field from it by applying all of
the operations encoded in the chromosome.

Figure 8. Encoding of a chromosome

Figure 6. Mutation of the value encoded in a gene,
resulting in a different end point for a silhouette line

1467

3.2.2 Genetic Operators
The crossover and mutation operators are similar to the standard
GA operators except that they operate on lists of terrain
transformation operations, such as rotating a patch of terrain to a
different orientation and scaling the height values of a terrain
patch (Figure 8). From the chromosomes’ perspective, these
operators function identically to the standard operators in that
they facilitate the exchange or mutation of encoded genetic
material. From the perspective of the generated height field, they
are best understood as sequences of image processing instructions,
such as translating, rotating and scaling the height data (Figure 9).

The crossover operator effectively swaps regions of pixels
between chromosomes (Figure 10). The various mutation
operators implement image transformations, such as translation,
rotation and scaling of the elevation pixel data[JK31]. The
mutations can alter the transformation parameters of the image
processing operations, or insert new image processing operations
into the list of sequence carried by a gene (Figure 11).

3.2.3 Fitness Evaluation[DO32]
The fitness evaluation is somewhat more complicated in this
phase than in the previous, because in order to be “good”, a height
field must satisfy a number of constraints. In particular, the
following will be true of a “good” height field:

1. Each region in the terrain resembles the example
terrains in the terrain database for its terrain type (i.e.,
“mountainous” regions look like the examples of
“mountains” that we already have, “hills” look like our
example “hills”, etc.).

2. The boundaries between regions of different terrain
types are reasonable. There are no sharp “drop offs” at
the boundaries between terrain types.

Figure 10. Crossing over the image processing instructions
between genes

Each terrain type possesses a number of measurable
characteristics, against which a region of that type can be
validated. The degree to which these characteristics extracted
from the generated region match those measured from the
examples in the terrain database gives a measure of how “like” the
source examples our generated region is. The more our generated
height field resembles the sample inputs in these characteristics,
the higher its fitness will be. The minimum, maximum, mean, and
variance of the sample elevations are good candidates for
meaningful measurements, as are the slope, frequency content
(derived from the Fourier transform of the height field) and the
density and size of semantic “features”, such as valleys, plateaus,
ridges and edges (extracted using conventional computer vision
techniques).

Figure 9. (top) An
unmutated height field

from the database.
(bottom left) The effect

of a “vertical offset”
mutation on a gene.
(bottom right) The
effect of a “rotate”

mutation on that gene.

1468

Figure 11. Mutation operators can alter the parameters of the

image processing operations.

One difficulty of applying a GA to optimize terrain height fields is
that, since the terrain can be adjusted in so many ways, and since
the local adjustment of a single gene makes such a small
contribution to the global, overall fitness of the terrain,
convergence is likely to be very slow using a scalar-valued fitness
evaluation, since so much information is lost in aggregating the
regional fitness values. To address this, rather than keeping only
the aggregate (global) fitness value, we also retain the individual
fitness values for each region, in order to provide some
probabilistic guidance to the mutations and crossovers in the next
evolution cycle.

3.2.4 Discussion
Encoding all of the terrain-related data into each chromosome
would be expensive since each chromosome would then contain a
complete 3D terrain (actually, more than a complete terrain since
the genes overlap one another); this is a primary reason for
encoding only the sequence of transformation operations. By
allowing the chromosomes to contain only the instructions for
generating a height field, it is feasible to use a larger population
for the evolution process. In our experiments, we used between 5
and 15 chromosomes, evolved over 10 to 20 cycles.

Since (like all genetic algorithms) the height field generation
algorithm is inherently random, the terrains generated from two
separate runs of the algorithm will not, in general, be the same,
even if they use the same map. While this has the benefit of
allowing an infinite number of variations to be created, it would
also inhibit the user’s design process, as each successive run
would produce an entirely new terrain, even if the user had made
only a small tweak to the map between runs. To control this, the
seed for the random number generator can be kept the same across
separate runs of the algorithm, allowing the same terrain to be
regenerated as many times as desired.

4. FUTURE WORK
The silhouette generation process has several shortcomings, in
that a single run of the GA is unable to generate some types of
terrain features that can be found in nature due to the constraint
we placed on the allowable range of θ. We could further improve
the performance of the GA used in this phase by first generating
silhouette lines of arbitrary length and θ, then extracting from it
line segments having the desired length to initialize our
population. A complexity parameter could also be incorporated
into the GA used in the generation processes to better
approximate the simplicity or complexity of certain terrain
silhouettes, such as that exhibited by deserts or shorelines.

Currently, the terrain samples for the different terrain types used
in the terrain height field generation phase are all hand-picked.
We are experimenting with various image and pattern analysis
techniques such as Fourier analysis, image feature detection, and
perceptron-based classification in an attempt to automate this
process such that the system can automatically or semi-
automatically categorize a given set of terrain samples into
different logical terrain types and determine the relevant
characteristics of each, further simplifying the process from a
user’s perspective. We are also considering methods of identifying
the presence of multiple terrain types within a single source
sample. Such improvements in our methods of analyzing terrain
types will allow us to refine our fitness evaluation algorithm in the
height field generation stage.

We believe that the fitness evaluation and mutation operators can
be further improved to better track the formation of terrain
features spanning multiple genes, allowing entire features to be
crossed over en bloc and resulting in faster convergence
properties. More extensive feature tracking would also enable the
formation of rivers and such (which impose additional constraints,
such as being continuous across region boundaries and always
flowing downhill).

5. CONCLUSIONS
We have presented a new approach to terrain generation using
genetic algorithms. Instead of trying to solve the problem as a
whole, we break it down into two phases: terrain silhouette
generation, and terrain height field generation. In contrast to
fractal-based algorithms, our approach provides better control
over the shape and layout of the resultant terrain, through the
placement of regions of different terrain types. We provide a
balance between user input and real-world data capture
unmatched by previous approaches.

1469

There is still much room for improvement, as discussed in the
future work section. Our experimentations in automatic terrain
sample categorization can further improve the usability of this
approach and the fitness evaluation function for the chromosomes.

6. ACKNOWLEDGMENTS[JK36]
This research is supported in part by the Humanities Informatics
Initiative, Telecommunications and Informatics Task Force, Texas
A&M University, and by NSF grant CCR-0220047.

7. REFERENCES
[1] Baeck, T., Fogel, D. B., Michalewicz Z. and Back, T.

Evolutionary Computation 1: Basic Algorithms and
Operators. Institute of Physics Publishing; 2000.

[2] Burke, Carl. Generating Terrain.
http://www.geocities.com/Area51/6902/terrain.html.

[3] Duchaineau, Mark et al. ROAMing Terrain: Real-time
Optimally Adapting Meshes. In proceedings of IEEE
Visualization '97. IEEE Computer Society Press, 1997.

[4] Erosion 3D. Schmidt, Walter A. (dev). http://www.geog.fu-
berlin.de/~erosion/

[5] Fernandez, António Ramires. Lighthouse 3D - Terrain
Tutorial.
http://www.lighthouse3d.com/opengl/terrain/index.php3.

[6] GeoCommunity. ThinkBurst Media, Inc.
http://data.geocomm.com/

[7] Kelley, A., Malin, M. and Nielson, G. Terrain Simulation
Using a Model of Stream Erosion. ACM Computer Graphics
Vol. 22, No. 4, August 1988, pp.263-8

[8] MojoWorld. Pandromeda, Inc. (dev).
http://www.pandromeda.com/

[9] Mitchell M. An Introduction to Genetic Algorithms. The
MIT Press, MA, 1999.

[10] Peitgen, H., Jurgens, H., Saupe D., Jnrgens H. and Jurgens
H. Chaos and Fractals. Springer-Verlag, 02-edition, 2004.

[11] Prusinkiewicz, Przemyslaw and Hammel, Mark. A Fractal
Model of Mountains with Rivers. In proceedings of Graphics
Interface '93. , 1993.

[12] SimCity 4. Electronic Arts (pub). 2003.
[13] Terragen. Planetside Software (dev).

http://www.planetside.co.uk/terragen/
[14] Ulrich, Thatcher. Rendering Massive Terrains Using

Chunked Level of Detail Control. In proceedings of ACM
SIGGRAPH 2001. , 2002.

[15] Unreal Tournament 2004. Epic Games, Inc. (dev). Atari, Inc.
(pub). http://www.unrealtournament.com/

[16] USGS. National Mapping Program Standards.
http://rockyweb.cr.usgs.gov/nmpstds/demstds.html. United
States Geological Survey, 2003.

[17] WERU. Wind Erosion Simulation Models.
http://www.weru.ksu.edu/weps.html. Wind Erosion Research
Unit, Kansas State University, 2003.

1470

