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ABSTRACT
Genetic Algorithms (GAs) are a search and optimization
technique based on the mechanism of evolution. Recently,
another sort of population-based optimization method called
Estimation of Distribution Algorithms (EDAs) have been
proposed to solve the GA’s defects. Although several com-
parison studies between GAs and EDAs have been made,
little is known about differences of statistical features be-
tween them. In this paper, we propose new statistical in-
dices which are based on the concepts of crossover and muta-
tion, used in GAs, to analyze the behavior of the population
based optimization techniques. We also show simple results
of comparison studies between GAs and the Bayesian Op-
timization Algorithm (BOA), a well-known Estimation of
Distribution Algorithms (EDAs).

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-
ity]: Miscellaneous

General Terms
Algorithms

Keywords
Genetic Algorithms, Bayesian Optimization Algorithms, Di-
versity, Population-based Optimization Methods

1. INTRODUCTION
Recently, a vast number of population based search and

optimization algorithms have been proposed and applied
successfully to many kinds of problems. One of the popu-
lar and excellent population based algorithms is the genetic
algorithm (GA)[4, 7].
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GAs are a search and optimization technique based on
the mechanism of real life evolution. Dynamics of GAs
have many similarities to many-particle systems in physics.
One of the authors has proposed two novel GAs based on
hints from physics called the ThermoDynamical Genetic Al-
gorithm (TDGA)[13, 11, 9, 12] and the Spin Glass based
Genetic Algorithm (SGGA)[5, 6].

Typically GAs utilize three operators called mutation,
crossover and selection. In the GA search, new solutions
are generated by crossover and mutation. The role of mu-
tation is increasing diversity of the population by random
perturbation. On the other hand, crossover produces new
solutions by combining two solutions in the previous pop-
ulation. If several high-quality partial solutions are com-
bined, we expect to obtain new high-quality solutions by
crossover. High-quality partial solutions are often called
building blocks[7].

Although GAs are a very powerful method, GAs some-
times fail to search when crossover works not well. Es-
pecially, when the structure of building blocks is complex,
GA’s defects are emphasized because crossover destroys the
building blocks rather than combining them. To solve this
problem of GA, another sort of population based optimiza-
tion method called Estimation of Distribution Algorithms
(EDAs)[14] have been proposed. The main difference be-
tween EDAs and GAs is that EDAs utilize not individuals
in the population but global information to make a new pop-
ulation. EDAs make a distribution model from the selected
population, and generate new solutions using this model.
EDAs are expected to learn the linkage of genes and pre-
serve building blocks better than GAs. Several methods of
representing the distribution model have been proposed. We
focus on the Bayesian Optimization Algorithm (BOA)[1, 2,
17, 18], a well-known EDA, which utilizes Bayesian networks
to represent the joint distribution of genes.

The comparison study of dynamics of GAs and EDAs is
very important and interesting. However little is known
about differences of statistical features between them be-
cause there is no appropriate statistical indices to analyze
the search process. In this paper, we propose new statisti-
cal indices, based on the concepts of crossover and mutation
used in GAs, to analyze the behavior of population based
optimization techniques. We also show some results of com-
parison studies between GAs and BOA taking a knapsack
problem as an example.
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2. GENETIC ALGORITHM

2.1 Thermodynamical Genetic Algorithm
In the selection operator used in conventional GAs, an

individual having a good fitness value has more probability
of being selected, and thus of yielding offspring in the next
generation.

While it is a basic mechanism to find the optimal solution
by focusing search on the neighborhood of good solutions, it
also brings about the problem of premature convergence. To
solve this problem, one of authors has proposed the Ther-
moDynamical Genetic Algorithm (TDGA)[13].

In the TDGA, the selection operation is designed to min-
imize the free energy of the population. The free energy F
is defined by:

F = 〈E〉 −HT, (1)

where 〈E〉 is the mean energy of the system, H is the entropy
and T is a parameter called the temperature. It is known
that the free energy F is minimum in the Gibbs distribution,
and this is called the principle of minimum free energy[3].
TDGAs introduce this principle to selection operation.

Minimization of the free energy can be interpreted as tak-
ing a balance between minimization of the energy function
(the first term in the RHS of Eq. (1), or equivalently max-
imization of the fitness function in GAs by regarding −E
as the fitness function) and maintenance of the diversity
measured by the entropy (the second term in the RHS of
Eq. (1)). Hence, individuals having relatively small energy
(or relatively large fitness) values will be given priorities to
survive in the next generation. At the same time, individ-
uals having rare genes will also be preserved owing to their
contribution to minimization of the free energy via increase
in the entropy term HT of Eq. (1). Thus, the diversity of the
population can be controlled by adjusting the temperature
T explicitly.

In Eq. (1), the energy function E is easily given from
the optimum function and the temperature T is only a pa-
rameter, thus calculating these values does not represent a
problem.

However, there is some problem to estimate entropy H.
HALL which is entropy of the variety of individuals is ob-
tained as follows:

HALL = −
X

i

pi log pi (2)

where pi is the ratio of species i. Each genotype represents
one species. If the chromosome is M -bit binary string, the
number of species is equal to 2M . In GAs, the number of
the population is extremely smaller than the possible species
number, so using HALL directly is meaningless. Therefore
we use another entropy H1 which is calculated from each
allele as follows:

H1 =

MX

k=1

H1
k , H1

k = −
X

j∈{0,1}
P k

j log P k
j (3)

where H1
k is entropy of the locus k and P k

j is the existence
probability of the gene j on the locus k. M is the chromo-
some length. One of authors proved that HALL in Eq. (2)
and H1 in Eq. (3) are equal when each locus’s gene takes a
value independently[13].

In order to minimize the free energy, we use an approxi-
mate greedy method which adds the individual making free
energy minimum in the temporary generation into the next
generation one after another[13].

2.2 Spin Glass based Genetic Algorithm
The authors have proposed the Spin Glass based Genetic

Algorithm(SGGA)[5, 6], which utilizes the dynamics of spin
glasses[15]. The basic structure of SGGA is Cellular GAs.
Each individual is arranged at a lattice point of 2-D field.

In SGGAs, there exists interaction J between the Neu-
mann neighborhoods. Therefore, each lattice has 4 different
J(up, down, left, right). Interaction between lattice i and j
is represented by Jij , and we set Jij be symmetrical with i
and j. The value of Jij is adjustable parameter in SGGA.
Let d(i, j) be the Hamming distance between an individual
at a lattice i and an individual at a lattice j, and M be the
chromosome length. We define the interaction energy EI

ij

as follows:

EI
ij = Jij cos(

d(i, j)

M
π) (4)

SGGAs renew the individual by the state transition. In
this procedure, neighborhood energy E is utilized for the cri-
teria. Let fi be the fitness of individual at a lattice i. E is
defined as follows:

E = −
X
i∈N

fi − 1

2

X
i,j∈N

EI
ij (i 6= j) (5)

where N represents the target neighborhood. The first term
in the RHS of Eq. (5) achieves the maximization of the fit-
ness and the second term in the RHS of Eq. (5) controls
the diversity. Lower E is more stable in SGGA. If all J are
positive, SGGAs become ferromagnetic type. On the other
hand, all J are negative, SGGAs become anti-ferromagnetic
type. Generally, both positive J and negative J exist by
mixture in SGGA in order to make a spin glass like state.

The genetic operators of SGGA are following.

State transition
State transition in SGGA is a operator like a selection in con-
ventional GA. In this operation, the Metropolis method[8]
which is typical SA’s transition rule is utilized to realize the
transition between two states. The probability of transition
between two states s and s′ is represented as follows:

8
<
:

1 if E(s′) < E(s)

exp

„−E(s′) + E(s)

T

«
otherwise

where E(s) represents the energy of state s defined in Eq. (5).
T is the parameter called temperature.

Crossover
Crossover in SGGA is applied 2 individuals in the neigh-
borhood. Original parents state and the smallest energy
offsprings state are selected for transition. Figure 1 shows
the outline of SGGA crossover.

Mutation
Mutation in SGGA is applied 1 individual. Original state
before mutation and the state after mutation are selected for
transition. Figure 2 shows the outline of SGGA crossover.
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3. BAYESIAN OPTIMIZATION ALGORITHM
The Bayesian optimization algorithm (BOA)[1, 2, 17, 18]

is one of the excellent population based search algorithm
by using a global information about the set of promising
solutions. The BOA is one of Estimation of Distribution
Algorithms (EDAs)[14]. Figure 3 shows the outline of EDA.

The important feature of BOA is the way of representing
a distribution model in Figure 3. BOAs utilize Bayesian net-
works to represent the distribution model. Figure 4 shows
the example of a Bayesian network which represents a joint
distribution of 4 genes X1 ∼ X4.

The algorithm of the BOA follows:

1. Let t = 0 and generate the initial population randomly.
Select appropriate values for the maximum number of
generations Ng.

2. Select a set of promising individual S(t) from P (t).

3. Construct the Bayesian networks B using a chosen
metric and constraints.

Population

Select a set of 

promising individual
        Estimation

Distribution

   Model

Generate new 

individuals

Figure 3: Outline of EDA
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Figure 4: Bayesian network of 4 genes

4. Generate a set of new individual O(t) according to the
joint distribution encoded by B.

5. create a new population P (t + 1) by replacing some
strings from P (t) with O(t).

6. Let t = t + 1. If t < Ng, go to Step 2, otherwise
terminate the algorithm.

4. COMMON INDICES OF POPULATION
BASED SEARCH ALGORITHMS

Several indices have been utilized to analyze dynamics of
population-based search algorithms. The following two are
the main indices in a GA analysis.

1. Search performance

2. Fitness information

One of the authors has proposed the diversity measure
calculated by the entropy of each locus H1 in Eq. (3)[10].
Besides these indices, following indices are used occasionally.

1. The number of different phenotypes

2. Entropy of the phenotype

3. The number of different genotypes

4. The number of different optimum solutions

5. The number of allele lost

6. The age information of individuals[9]

Indices above except search performance are obtained by
the population in one generation. Since the state of previous
population is unnecessary to calculate the indices above, we
call these the static indices.

On the other hand, only a few indices which represent
the relation between the current population and previous
populations have been proposed although they are very im-
portant. We call such indices the dynamic indices.

In the next section, we propose several type of the dynamic
indices in order to analyze the search dynamics deeply.
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5. NEW INDICES OF POPULATION BASED
SEARCH ALGORITHMS

5.1 Necessity of New Indices
The symbols used in this section are as follows:

t : the generation number

P (t) : population in generation t

it : individual i in generation t

d(i, j) : The Hamming distance between individual i and j

M : chromosome length

gx
k : gene of individual x on locus k

To understand the search dynamics well, the dynamic in-
dices is required. One dynamic index is the cumulative num-
ber of genotypes.

This index represents the total number of solutions which
are sampled by a search algorithm. If the genotype which
has been already selected past is sampled again, the cumula-
tive number of genotypes does not increase. The cumulative
number of genotypes shows the number of effective fitness
evaluations. Information about P (k), k = 0, 1, 2 · · · t − 1 is
necessary to calculate this index in t.

In addition, indices which represent the relation between
P (t) and P (t − 1) are also important because almost ev-
ery population based-algorithm is a Markov process. We
propose new statistical indices of this type in this paper.

5.2 Basic Concepts
First, we define several basic concepts.

Definition 1. Individual set generated by i and j

The individual set generated by individual i and j, Si,j ,
is defined as follows:

Si,j = {x|gx
k = gi

k or gx
k = gj

k, k = 1, 2, · · · , M} (6)

That is, Si,j is the set of all possible individuals which are
generated by uniform crossover between i and j. We can
easily extend this concept to n-parents cases.

If the Hamming distance between i and j is d(i, j) and the

chromosome is the binary-string, |Si,j | = 2d(i,j).

Definition 2. Mutation length from x to i and j

The mutation length from x to i and j, Lx
i,j , is defined as

follows:

Lx
i,j = min

k∈Si,j

d(x, k) (7)

where d(x, k) represents the Hamming distance between x
and k. That is, Lx

i,j is the Hamming distance between x and
the most similar individual to x in Si,j .

Definition 3. Twist frequency of x to i and j

Let h be generated by crossover between i and j. Next,
check the gene of h on each locus where genes are different
between i and j. Next, investigate which parent’s gene was
selected in h on all loci. The locus where gene is the same
between i and j is skipped. If a h’s gene on inspected locus
is equal to i’s gene, record the symbol i. If h’s gene is equal

to j’s gene, record the symbol j likewise. We can obtain the
string as iijiiji by arranging each symbol from left to right.
Next, count the number of changes i → j or j → i. The
number is 4 in this example iijiiji. We define this number
as the basic twist frequency of h to i and j.

If x could not be produced by crossover between i and
j, the twist frequency of x to i and j (ξx

i,j) is obtained as
follows:

1. Find the most similar individual to x in Si,j . Let this
individual be x′.

2. ξx
i,j is the basic twist frequency of x′ to i and j.

3. If there are several candidates for x′, select the x′ to
minimize the basic twist frequency of x′ to i and j.

If i and j are the identical, ξx
i,j = 0. If i and j are dif-

ferent and h is generated by crossover between i and j, the
following equation is satisfied.

0 ≤ ξx
i,j ≤ d(i, j)− 1 (8)

5.3 Mutation length and twist frequency of x
to P (t)

The mutation length of x to P (t), Lx
P (t), is defined as

follows:

Lx
P (t) = min

i,j∈P (t)
Lx

i,j (9)

Lx
P (t) is the distance between x and the most similar in-

dividual in ∪i,j∈P (t)S(i, j).
The twist frequency of x to P (t) is defined as the twist

frequency of x to i and j, where i and j are individuals that
reach the minimum value defined in Eq. (9). If there are
several candidates for i and j, select i and j to minimize the
twist frequency.

Finally, we obtain the mutation length and the twist fre-
quency of P (t) to P (t−1) by taking the average of each value
for all individuals in P (t) to P (t−1). We assume i 6= j in all
indices. We also define the generalized mutation rate by di-
viding the mutation length by the chromosome length. The
proposed three indices, the mutation length(ML), the twist
frequency(TF) and the generalized mutation rate(GMR), are
intended to represent the detail of search dynamics.

6. COMPUTER SIMULATION
We analyzed the dynamics of Simple GAs (SGAs)[4],

TDGAs[13], SGGAs[5, 6] and BOAs[1, 2, 17, 18] by
using the proposed indices.

6.1 Problem
We utilized the following knapsack problem as an exam-

ple:

Table 1: The setting of problem
Type knapsack problem

The number of items 50
The number of fitness evaluations 40000
The number of fitness evaluations
(performance simulation)

50000
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6.2 Parameter of each algorithm
Table 2 ∼ 5 show the parameters of each algorithm. Those

parameters were set as the best values in the preliminary
experiments.

The basic implementation of BOA is referred to the BOA
with decision graphs (dBOA)[16].

Table 2: The parameters of BOA
Population size 100

The number of generations 800
The ratio of new individual (%) 50

Selection tournament selection
Tournament size 4

Table 3: The parameters of SGA
Population size 100

The number of generations 400
Selection tournament selection

Tournament size 4
Crossover type uniform
Crossover rate 0.6

Mutation rate of each locus 1
25

Table 4: The parameters of TDGA
Population size 100

The number of generations 200
Crossover type uniform
Crossover rate 0.6
Temperature 5.0

Mutation rate of each locus 1
25

7. RESULTS
Figure 5 shows the performance of each algorithm. The

abscissa indicates the number of fitness evaluations, and
the ordinate indicates the performance, which is the num-
ber of successful runs (ie. found optimum solution) in 30
runs. It is shown in Figure 5 that the performance order is
TDGA(best), SGA, SGGA and BOA(worst).

Figure 6 shows the number of cumulative species of each
algorithm. It is shown in Figure 6 that the number of cumu-
lative species of SGA is increasing in proportion to the num-
ber of fitness evaluations. On the other hand, the numbers
of cumulative species of other 3 algorithms become constant
at the early stage of searching. Figure 7 shows the enlarged
graph of Figure 6. From this figure, the number of cumu-
lative species of TDGA is the smallest in all algorithms, al-
though TDGA has the best performance. This result shows
TDGA can sample the individuals effectively.

Figure 8 shows the number of current species of each algo-
rithm. It is shown in Figure 8 that the numbers of current
species of BOA and SGGA always decline, while that of
TDGA increases at a middle stage of searching. This result
shows that the thermodynamical selection rule in TDGA can
maintain diversity adaptively. On the other hand, BOA and

Table 5: The parameters of SGGA
Population size (H×W) 10×10

The number of generations 200
Crossover type uniform
Crossover rate 1.0

Mutation rate of each locus 1
50

The ratio of positive interaction 0.25
The absolute value of interaction 10.0

Temperature 5.0

SGGA are difficult to increase or maintain diversity. This
fact is shown more clear in following entropy graphs. The
numbers of current species of SGA is hight and almost con-
stant from the beginning. This result shows that SGA can
maintain diversity well, but fail to shrink the search space.

Figures 9 ∼ 12 show the variation of the entropy of each
locus of each algorithm. Figures 10 and 11 show that TDGA
and SGA can maintain diversity well, while Figures 9 and
12 show that BOA and SGGA lose diversity quickly. This
result strongly suggests that maintaining diversity is impor-
tant in solving knapsack problems. In Figure 9, the en-
tropy of BOA becomes 0 the early stage of searching. This
is because there is no mechanism of maintaining diversity
in BOA. This result suggests to introduce a mechanism of
maintaining diversity into BOA, e.g. the thermodynamical
selection rule[13], has a positive effect.

Figures 13 ∼ 16 show the GMR of each algorithm. Those
figures show that the GMR falls to 0 in the early stage of
searching, except in the case of SGA. This result and Fig-
ure 10 show that SGA is able to maintain diversity by ran-
dom perturbation. Figure 15 show that the GMR of TDGA
is not so high compared to that of SGA, while entropy of
TDGA in Figure 11 is not so low. This results show TDGAs
maintain diversity effectively and the population change of
TDGA is more moderate than that of SGA.

Figures 17 ∼ 20 show the TF of each algorithm. Those
figures show that the TF falls to 0 in the early stage of
searching, except in the case of SGA. This result shows that
the effect of uniform crossover is only dominant at an early
stage of searching in BOA, TDGA and SGGA.

In BOA, TDGA and SGGA, the GMR and the TF decline
very quickly. To achieve more detail analysis, we need to
observe the GMR and the TF between P (t) and P (t−∆t)
(∆t > 1).

To summarize, our indices have provided a much clearer
understanding of the reasons for the differences in effective-
ness of different algorithms on these typical knapsack prob-
lems than has been available previously.

8. CONCLUSION
In this paper, the authors propose novel indices called

the mutation length, the twist frequency and the generalized
mutation rate and show the results of comparison studies be-
tween 3 GAs and BOA. By means of several computational
experiments, it has been confirmed that the proposed in-
dices are effective to understand the dynamics of population-
based optimization methods.

Deeper analysis of the features of these indices and ap-
plying the proposed analyzing method to another cases are
subjects of further study. To extend the proposed method to
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Genetic Programmings which have a complicated genotype
is also important study.
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Figure 11: Entropy of TDGA in knapsack problem
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Figure 12: Entropy of SGGA in knapsack problem
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Figure 13: GMR of BOA in knapsack problem
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Figure 14: GMR of SGA in knapsack problem
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Figure 15: GMR of TDGA in knapsack problem
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Figure 16: GMR of SGGA in knapsack problem
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Figure 17: TF of BOA in knapsack problem
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Figure 18: TF of SGA in knapsack problem
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Figure 19: TF of TDGA in knapsack problem
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Figure 20: TF of SGGA in knapsack problem
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