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ABSTRACT
Dynamic environments have periods of quiescence and peri-
ods of change. In periods of quiescence a Genetic Algorithm
(GA) should (optimally) exploit good individuals while in
periods of change the GA should (optimally) explore new
solutions. Self-adaptation is a mechanism which allows in-
dividuals in the GA to choose their own mutation rate, and
thus allows the GA to control when it explores new solu-
tions or exploits old ones. We examine the use of this mech-
anism on a recently devised dynamic test suite, the Shaky
Ladder Hyperplane-Defined Functions (sl-hdf’s). This test
suite can generate random problems with similar levels of
difficulty and provides a platform allowing systematic con-
trolled observations of the GA in dynamic environments.
We show that in a variety of circumstances self-adaptation
fails to allow the GA to perform better on this test suite
than fixed mutation, even when the environment is static.
We also show that mutation is beneficial throughout the run
of a GA, and that seeding a population with known good
genetic material is not always beneficial to the results. We
provide explanations for these observations, with particular
emphasis on comparing our results to other results [2] which
have shown the GA to work in static environments. We con-
clude by giving suggestions as to how to change the simple
GA to solve these problems.

Categories and Subject Descriptors: F.2.m [Analysis
of Algorithms] Misc. I.2.8 [Artificial Intelligence] Search

General Terms: Algorithms, Theory

Keywords: Self-Adaptation, Dynamic Environments,
Hyperplane-Defined Functions, Genetic Algorithms

1. INTRODUCTION
Dynamic environments have periods of quiescence and pe-
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riods of change. In periods of quiescence an algorithm trying
to solve a problem should exploit good individuals while in
periods of change the algorithm should explore new solu-
tions. The Genetic Algorithm (GA) is based on evolution,
which works in an inherently dynamic environment and thus
the GA is a natural choice for dynamic environments. The
GA can exploit good individuals by allowing them to re-
produce accurately and in quantity which keeps a constant
supply of good building blocks around. The GA can explore
by creating new individuals that are very different from its
current population.

In fact, the GA has been shown to work successfully in
many dynamic environments [5] [6]. However, in a GA the
balance between exploration and exploitation is controlled
by a variety of parameters, most noticeably the level of mu-
tation and in a simple GA this parameter is constant. There-
fore adding a mechanism to the simple GA to allow it to
change the level of mutation might be desirable. In fact,
Holland originally suggested this very concept with regard
to static environments, since even in static cases it is often
beneficial to change the mutation rate [11]. There are many
ways to change mutation rates that have been explored in
dynamic environments [7] [10] [22]. However in this paper
we choose to look at a mechanism called self-adaptation. In
the past, this mechanism has been investigated in GAs on
static environments [2] [19] but has primarily been examined
in dynamic environments in evolutionary programming and
evolutionary strategies [3] [1].

In order to examine the behavior of the GA we present
a family of test functions that are similar to the dynamic
bit matching functions utilized by Stanhope and Daida [20]
among others. The difference between this new test suite
and other dynamic test functions is that the underlying
representation of this suite is schemata [11]. By utilizing
functions that reflect the way the GA searches, the perfor-
mance of the GA can be easily observed. This test suite
is a subset of the test functions created by John Holland,
the hyperplane-defined functions (hdfs) [12] which were ex-
tensions of the Royal Road functions developed by Mitchell
et al [16]. We have further extended the hdfs to dynamic
environments and we call this test suite the Shaky Ladder
Hyperplane-Defined Functions (sl-hdf’s) [17].

In the rest of this paper, we examine the mechanism
of self-adaptation, then explain the development of the sl-
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hdf’s. Finally we present some simple experiments using
self-adaptation on the sl-hdf’s and discuss the results.

2. SELF-ADAPTATION
Even within static environments, one of the hardest pa-

rameters to set accurately in a GA is the mutation rate. On
the one hand mutation introduces novel bit patterns into the
population. In fact in the standard GA it is the only source
of novelty in the alleles. However, mutation also can have
a deleterious effect because it can destroy good alleles that
are present in the population.

In a dynamic environment, this problem is compounded.
In the ideal case, when the environment is undergoing change
the GA should rapidly adapt to the change, which requires
it to have a high mutation rate. However in periods of quies-
cence the GA should exploit good alleles that it has already
found and thus it should have a low mutation rate, so that
those alleles are passed on to future generations. A high
mutation rate at this time would result in the destruction of
good alleles and would be harmful to the overall search.

One possible solution to this dilemma is to allow the GA
to adapt its own mutation rate during the run. Mechanisms
to allow this have been explored in the past. One such mech-
anism is hypermutation, originally discussed by Cobb [7]. In
this mechanism, the mutation rate is increased dramatically
if there is a drop in the time-averaged performance of the
GA. However, such a mechanism limits the ability of the GA
to control its mutation rate and requires it to select between
predefined rates.

Additionally, Vavak has investigated the use of Variable
Local Search (VLS) in a steady state GA [22]. When the
time-averaged best performance of the population decreases
it applies an operator which increases the range from which
new individuals are drawn. It will continue to increase this
range if performance continues to decrease eventually draw-
ing from the whole search space.

Both hypermutation and VLS require a central control-
ling function. Something monitors the population of the
GA to determine if the best individuals are failing. In natu-
ral systems when mutation rates change there is no cenrtal
controlling function; instead individuals have higher muta-
tion rates because natural selection results in those higher
mutation rates being propagated. Mutation rates are han-
dled on an individual level and it has been shown that at
least in some situations the mutation rates of natural sys-
tems move toward a positive optimal value [14]. Even if
having mutation rates controlled by individual performance
is not a better mechanism for the GA, the fact that it exists
in biological systems makes it interesting to study.

Another mechanism explored in GAs is random immi-
grants, originally discussed by Grefenstette [10]. This tech-
nique introduces a group of randomly generated individuals
every generation. This technique does not allow the GA to
really control the amount of exploration or exploitation go-
ing on but rather forces the GA explore new individuals ev-
ery generation. In some environments this might be useful,
but in slowly changing environments this would not always
be productive, since it could result in the loss of good alleles
in the population. Even if the random immigrants have a
poor fitness there is a low but positive probability that they
could be involved in a crossover that would destroy combi-
nations of good alleles.

In evolutionary programming and evolutionary strategies

the only operator is mutation and hence it makes sense to
look to these fields to see what kind of operators they have
used in dynamic environments. One of the mechanisms that
has proven to be the successful is self-adaptation [3] [1]. This
mechanism allows the mutation rate itself to be adapted in
time as part of the individual being examined.

Bäck [2] investigated self-adaptation on the GA but in a
static environment and showed it to be quite successful on
some standard fitness functions. Besides using a dynamic
fitness function, and a different form of the standard GA,
the self-adaptation mechanism we describe below is similar
to Bäck’s mechanism for one mutation rate.

We chose this particular mechanism of individual self-
adaptation because it seems like an excellent solution to
maintaining an appropriate level of mutation in dynamic
environments. First it does not use knowledge of the whole
population and thus different individuals can be exploring
different parts of the search space. Second, in the general
case it allows the GA to choose any number of different
mutation rates without any prior knowledge of the environ-
ment. Finally, it allows the GA to balance exploration and
exploitation as opposed to forcing the GA to favor one over
the other. All of these factors together allow the GA to be
more adaptive to dynamic environments.

There have been other investigations into the use of self-
adaptation in GAs, including the thesis work of Smith [19]
who investigated self-adaptation in steady state GAs, using
a similiar but different mechanism that involved local search
using a separate GA. Bäck’s mechanism appears to be a first-
order approximation of mutation rate adaptation in haploid
organisms, and thus we chose to investigate it. However,
before we go into detail about how our mechanism works we
first describe the environment we will be utilizing to test the
mechanism.

3. SHAKY LADDER FUNCTIONS
The test functions that we will be utilizing to explore the

GA in dynamic environments are a subset of the hdfs [12].
Holland created these functions in part to meet criteria de-
veloped by Whitley [23]. The hdfs are designed to repre-
sent the way the GA searches by combining building blocks,
hence they are appropriate for understanding the operation
of the GA. We begin by describing these functions, then we
describe a subset called the building block hdfs (bb-hdfs).
Finally, we describe the shaky ladder hdfs (sl-hdfs).

3.1 The Hyperplane-Defined Functions
Holland’s hdfs are defined over the set of all strings (usu-

ally binary) of a given length n. The fitness of a string
is determined by the schemata contained by the string. A
schema is a string defined over the alphabet of the original
string plus the character, ∗, and is also of length n. The ∗
represents a wildcard that will match either a 1 or a 0. Any
position in the string which is not a wildcard is a defining
locus or defining bit. The length of a schema l(s) is the dis-
tance between the first and last defining loci, and the order
o(s) is the number of defining loci. A string x matches (or
contains) a schema s if for every position from 1 to n, the
character is the wildcard or matches the character at that
same position in x. Each schema s is assigned a fitness con-
tribution, or utility, u(s) that is a real number. Thus we
define the hdf fitness, f(x), as the sum of the fitness contri-
butions of all of the schemata x matches [12].
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3.2 Building Block hdfs
Holland stated that the most interesting hdfs are those

built from ground level schemata. We select a group of ele-
mentary (or base or first-level) schemata which have a short
length relative to n and a low order. We then combine pairs
of these schemata to create second-level schemata, and com-
bine the second-level schemata and so on, repeating this pro-
cess until we generate a schema with length close to n. We
call these schemata combinants the intermediate schemata,
We place the intermediate and base schemata within a set
B and associate a positive fitness contribution with them.
Members of the set B are sometimes called the building block
schemata, since they are used to “build” progress toward the
maximal fitness. We also generate a set P of schemata with
negative fitness contributions called potholes, which are local
depressions in the fitness landscape. The potholes are cre-
ated by using one elementary schema as a basis and adding
some of the defining bits from a second elementary schema.
We will refer to the set of hdfs that are constructed from the
sets B and P as the building block hdfs or bb-hdfs.

The problem with the bb-hdfs in the general case is that
the optimal set of strings is not easily known given the sets
B and P , and thus the absolute performance can not easily
be measured. Moreover, there is no way to take one bb-
hdf and create another that is similar to it, which would be
useful when exploring dynamic environments.

3.3 Shaky Ladder hdfs
In this section we describe three conditions that restrict

the set of all bb-hdfs to a set that does not have the two
difficulties described in the previous subsection.

The first condition is the Unique Position Condition (UPC).
It requires that all elementary schemata contain no conflict-
ing bits. For instance if both schemata s1 and s2 have a
defining bit at position i, they must specify the same value.

The second condition we call the Unified Solution Condi-
tion (USC). This condition guarantees that all of the spec-
ified bits in the positive-valued elementary level schemata
must be present in the highest level schema. This condi-
tion also guarantees that all intermediate schemata are a
composition of lower level schemata. A composition of two
schemata is simply a new schema which contains all of the
defining loci of both schemata1. The USC means (a) if bit n
is specified by s1 then it also must be specified in the highest
level schema sh, and (b) there can be only one highest level
schema.

The third condition is the Limited Pothole Cost Condition
(LPCC), which states that the fitness contribution of any
pothole plus the sum of the fitness contributions of all the
building blocks in conflict with that pothole must be greater
than zero. A pothole, p, is in conflict with a building block,
b, if both p and b specify a defining locus with the same
value. Thus potholes are temporary barriers to the search,
but a string is rewarded if it matches all of the building
blocks in conflict with a pothole.

These three conditions guarantee that any string which
matches the highest level schema must be a string with op-
timal fitness. By knowing the optimal set of strings we solve
one of the problems with Holland’s original hdfs.

1Given the UPC we do not have to worry about conflicting
loci.
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Figure 1: Illustration of Shaky Ladder Construction
and the Process of Shaking the Ladder

3.4 The Algorithm
This section describes the algorithm that we used to gen-

erate examples of the sl-hdf problems. This is one algorithm
out of many that could be used to generate instances of sl-
hdf problems, but this algorithm guarrentees that the prob-
lem instances generated meet the three conditions specified
above. We focus here on an approach which is as simple as
possible, while following the general guidelines outlined by
Holland [12].

The algorithm manipulates four major parts: elementary
schemata, highest level schema, potholes, and intermediate
schemata. Of course we also need to describe how we “shake
the ladder” by changing the intermediate schemata. The
process described below is illustrated pictorially in Figure 1
and more thoroughly described in previous work [17].

The Elementary Schemata: The elementary schemata
must be created in such a way as to fulfill the UPC spec-
ified above. Holland also recommends that the elementary
schemata have short lengths and low orders. Thus we need
to be able to create random schemata with length l and
order o that meet the UPC. Holland recommends a length
equivalent to 1/10 the length of the string and an order of
roughly 8. Due to the UPC it is fairly difficult to meet
both of these additional requirements for an arbitrary set of
schemata. Thus to simplify matters in all of the experiments
in this paper we set the order of elementary schemata to 8
and did not worry about the schema length.

To begin with we create a random schema with order o (8
in this paper). We do this by choosing o random indices in
the schema and with equal probability setting them to either
a 1 or 0. We then create another list of indices which acts
as a cumulative record of which loci can be assigned 1’s, by
examining the previous schema and adding to the list any
places that are still wildcards or that are defined as ones.
In a similar way we create a list for zeroes. We then shuffle
these lists. To create subsequent schemata we flip a coin o
times and if it is a 1 (0) we pull an index off the list for ones
(zeroes), making sure we do not reuse any index we have
already set. After we are done with this we add this schema
to the list of schemata, update the cumulative list for 1’s
and 0’s, and repeat the process for the next schema. When
we are done we have a list of what we call non-conflicting
schemata since they all meet the UPC. We assign a fitness
contribution of 2 to each of them.

Highest Level Schemata: Given the elementary schemata,
it is a simple matter to create the highest level schema since
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Population Size 1000
Crossover Rate 0.7
Generations 1800
String Length 500
Selection Type Tournament, size 3
Number of Elementary Schemata 50
Number of Runs 30

Table 1: Parameters of the GA and sl-hdf

Exp. µ Type & lµ µ, [µMin, µMax] Seeded Cross

1 Fixed 0.001 No Yes
2 Fixed 0.0005 No Yes
3 Fixed 0.0001 No Yes
4 Self, 10 [0.0, 1.0] No Yes
5 Self, 15 [0.0001, 0.1] No Yes
6 Self, 15 [0.0001, 0.1] Yes Yes
7 Self, 15 [0.0001, 0.1] Yes No

Table 2: Parameters of Experiments

according to the USC it contains all of elementary schemata.
We examine each index in the string and see if any of the
elementary schemata have it defined; if so we set the same
location in the highest level schema equal to the same defin-
ing bit. If none of the elementary schemata have the bit
set we leave the location as a wildcard in the highest level
schema. We assign a fitness contribution of 3 to this schema.

Potholes: The potholes are created in a way inspired
by the bb-hdfs. We simply go through the list of elemen-
tary schemata (ordered randomly) and use each one as a
primary schema and its neighbor in the list as a supplemen-
tary schema, which creates one pothole for every elementary
schema. We build a pothole by including all of the defined
bits from the primary schema in the pothole, and then for
each defining bit in the supplementary schema, we copy that
bit value into the pothole with 0.5 probability. We assign
a fitness contribution of −1 to all potholes. Note that it
is possible to create a pothole that is simply the union of
two elementary schemata, or a pothole that is exactly the
same as the primary schema. That means that when exam-
ining the LPCC, we include the fitness contribution of one
elementary schema and the highest level schema, and since
(2 + 3 +−1) > 0 the LPCC is satified.

Intermediate Schemata: To create the intermediate
schemata, we first decide how many schemata, nNextLevel,
should be at the next level by taking the number of schemata
at the previous level and dividing by two (rounding down).
We draw two schemata (without replacement) from a shuf-
fled list of schemata at the current level, and create a com-
position of these schemata which we add to the next level
of schemata. We repeat this process nNextLevel times. We
continue to create new levels until nNextLevel ≤ 1

Shaking The Ladder: The four mechanisms described
above allow us to generate hdfs that are similar. Once a
set of elementary schemata have been established we al-
ready know the highest level schema. If we hold the elemen-
tary and highest level schemata constant, we can generate
new hdfs by creating new intermediate schemata. To “shake
the ladder” we first delete all of the previous intermediate
schemata, and then we create new ones by repeating the pro-
cess described in the previous paragraph. Since at each level

we randomly select partners to create the combinants at the
next level, we should get different intermediate schemata
most of the time. For clarity we call a set of hdfs with the
same elementary schemata and highest-level schema an sl-
hdf equivalence set. The sl-hdf’s fulfill the conditions that
Holland [12] and Whitley [23] set out, but also have the
benefit of an easily identifiable optimal fitness.

4. THE EXPERIMENTS
The basic setup for our experiments is a simple GA using

the sl-hdf as its fitness function. The base GA presented here
uses one-point crossover, per bit mutation, full population
replacement, and is similar to the one described by Mitchell
[15]. For the GA and sl-hdf we use the parameters in Table 1.
In all experiments, we examine a control variable, tδ, which
specifies the number of generations before we change the
environment. Every tδ generations we shake the ladder and
switch to another sl-hdf in the same equivalence set. We
set tδ = (1, 5, 10, 25, 50, 100, 900, 1801). In the last case the
time between changes exceeds the run of the GA and thus
it provides a benchmark of the performance of the GA on a
static environment. We carried out 7 experiments which are
described in Table 2.

The first column of this table presents the experiment
number. The second column describes the type of mutation.
“Fixed” is the traditional per-bit mutation with a fixed mu-
tation rate as specified in the 3rd column. “Self” is the self-
adaptive mechanism. In these experiments, self-adaptation
is accomplished by adding a string of bits, called mutation
bits, of length lµ, to each individual in the population, and
using these bits to determine the mutation rate, µ, for that
individual. At the end of each generation, each individual
is asked to mutate its own string. The individual accom-
plishes this by reading the mutation bits, and translating
these bits into a decimal numerator. It then divides by the
maximum possible numerator (2lµ−1), to determine the mu-
tation rate. This results in a value between 0 and 1, called
µRaw. This number is then scaled by the maximum, µMax,
and minimum µMin, mutation rates, to determine the final
mutation rate, µ, i.e. µ = {µRaw ∗ {µMax −µMin}}+ µMin.
These scaling values are specified in the third column. µ is
then used as a probability to determine whether each bit in
the individual is changed, including the mutation bits them-
selves. This mechanism is meant to imitate that presented
by Bäck [2] even though some of the details of the rest of
the GA differ from Bäck’s implementation.

Normally initial µ values were uniformly distributed. How-
ever, occasionally we seeded the population with a known
good µ. In this case we initially fill the mutation bits with
values that were as close as the binary representation could
get to 0.001 which was found to be a good value in the fixed
mutation case. Thus Seeded = Y es indicates that we did
this.

The final parameter we manipulated determines whether
or not crossover was turned on at all. When crossover was
turned on, individuals generated from crossover constituted
70% of the new population of each generation, but when
Crossover = No, no crossover of individuals was done, thus
individuals only changed through mutation.

The first three experiments used fixed mutation and are
present as a baseline of comparison. The first of these ex-
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periments was explored in more detail in previous work [17].
In Experiment 1 (Fixed 0.001) µ = 0.001, in Experiment
2 (Fixed 0.0005) µ = 0.0005, and in Experiment 3 (Fixed
0.0001) µ = 0.0001.

Experiment 4 (Self 0-1) is the first one to include the self-
adaptation mechanism. We set µMin = 0.0 and µMax = 1.0.
This allowed the µ to take any value possible.

In Experiment 5 (Self 0.0001-0.1), we decided to scale µ as
described above, and we restricted it to [0.0001, 0.1]. µMin

was an order of magnitude below the best fixed µ we had
found and µMax was two orders of magnitude higher. This
provided the GA with some guidance in finding a good mu-
tation rate by limiting the space it had to explore. However,
the upper limit proved to be non-limiting since the GA never
approached it. We also allowed the GA to have more precise
control over µ by increasing lµ to 15.

We realized that with µ uniformly distributed initially,
there would be some individuals that would be changing 1
out of 100 bits every generation, or 5 bits a generation on
average. Thus in Experiment 6 (Seeded), we decided to seed
the GA with the best µ we had found in the fixed mutation
experiments. By seeding the population with good genetic
material, we hoped to facilitate the performance of the GA.

The effects of crossover might confound the search for
good µ values. Thus in Experiment 7 (NoCross), we de-
cided to turn off crossover and observe the results.

5. RESULTS
In the results, we examine tδ = (1, 25, 100, 900, 1801),

since that set illustrates the most interesting phenomenom.
We had planned to investigate the temporal dynamics of how
the self-adaptive mutation rate changed over time but to do
that we first wanted to make sure that the self-adaptitive
GA matched the performance of the fixed GA. However, we
were never able to achieve that level of performance, and
hence most of the rest of this paper is spent examining why
we were not able to achieve our first goal. We begin by
looking at the best fitness found by the GA in the final gen-
eration, and average those results over 30 runs. The best
fitness of the generation is representative of how the system
can do in the current environment, regardless of the past.
The optimal fitness for these sl-hdf’s is 191. The results are
displayed in Tables 3 and 4.

Finally, we examine the average µ of the population over
time for tδ = 100 and average the results over 30 runs. These
results, through generation 1200, are in Figure 2. Though
there are some temporal differences for different tδ’s the gen-
eral trend is similar for all five values, and thus we choose
tδ = 100 as a representative.

Experiment 4 (Self 0-1): Experiments 1-3 (the fixed
experiments) are provided mainly for comparison purposes
and so we begin by examining the results of Experiment 4.
The greatest improvement in the experiments was made by
limiting the range of µ that the GA could select which is
shown by the improvement of Experiments 5 through 7 over
Experiment 4. One interesting result of Experiment 4 is
that µ goes to 0 in the first 200 generations as illustrated by
Figure 2. Since this experimental setup far underperformed
the others it is clear that mutation is needed throughout the
run in order to promote good performance. The simplest
explanation of this is that mutation maintains diversity in
the population and keeps the population from converging to
local minima. This is well known, but an explanation as to
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Figure 2: Avg. µ of the Population, tδ = 100.

why the GA chose not to use mutation is more interesting,
and hence we investigate this phenomenom.

Experiments 5 (Self 0.0001-0.1) and 6 (Seeded):
It is interesting that seeding the population (Experiment 6)
with a known good µ had no significant effect on the overall
performance over a non-seeded but limited µ (Experiment
5). As can be seen from Figure 2, these two experiments
quickly wind up with the same µ, the only difference is at
the beginning. In Experiment 5, the average µ at the begin-
ning is 0.05005 (halfway between 0.1 and 0.0001), while in
experiment 6 it is 0.001 the seeded µ value. However after
generation 200 both of these experiments maintain roughly
parallel µ values. The high initial µ of Experiment 5 may
allow it to do more search at the beginning resulting in the
two experiments having a long term equivalent performance.
In fact Experiment 6 also initially increases its µ value but
not nearly as high as Experiment 5 starts out.

Experiment 7 (NoCross): The fact that a high µ ini-
tially is good seems to be supported by the results of experi-
ment 7. Experiment 7 shows a larger increase in the average
µ value initially than Experiment 6. In the beginnning the
GA needs diversity in order to search the large environment,
but once it has found a few peaks it decreases its average µ
in order to avoid deleterious mutations which destroy good
alleles.

Experiment 7 is the only self-adaptation experiment that
shows clear differences between the various values of tδ. As
in Experiment 1, the highest rates of fitness are attained
by intermediate rates of change, tδ = (25, 100); this is be-
cause with an intermediate shaking of the ladder the system
is forced to maintain diversity and not rely too heavily on
any particular set of building blocks [17]. In cases where the
environment changes slowly the GA finds local peaks and
stays near them. In cases where the environment changes
too quickly the GA is never able to maintain a set of inter-
mediate schemata.

The average µ results in Experiment 7 are also interest-
ing. At the end of the run Experiment 7 still maintains an
average µ above the minimum value when tδ = 100 (and
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Experiment tδ = 1 tδ = 25 tδ = 100
Best Fit. Std. Dev. Best Fit. Std. Dev. Best Fit. Std. Dev.

1 (Fixed 0.001) 182.17 12.99 191.00 0.00 191.00 0.00
2 (Fixed 0.0005) 120.73 29.30 142.73 22.07 150.73 23.50
3 (Fixed 0.0001) 44.70 7.12 42.83 8.39 48.67 10.94
4 (Self 0-1) 30.90 8.15 32.40 8.50 31.90 10.00
5 (Self 0.0001-0.1) 67.13 13.93 74.90 24.49 76.27 18.42
6 (Seeded) 65.17 9.67 70.47 19.44 75.90 18.12
7 (NoCross) 53.30 11.39 107.87 28.76 81.03 29.15

Table 3: Best Fitness in Current Population after 1800 Generations Averaged over 30 Runs, tδ = {1, 25, 100}

Experiment tδ = 900 tδ = 1801
Best Fit. Std. Dev. Best Fit. Std. Dev.

1 (Fixed 0.001) 141.80 21.85 160.97 14.22
2 (Fixed 0.0005) 110.70 19.53 130.87 19.89
3 (Fixed 0.0001) 46.50 10.13 51.77 10.91
4 (Self 0-1) 32.00 10.35 37.50 11.18
5 (Self 0.0001-0.1) 70.87 15.81 83.57 18.51
6 (Seeded) 67.83 19.95 79.43 21.11
7 (NoCross) 61.93 19.80 72.23 19.31

Table 4: Best Fitness in Current Population after 1800 Generations Averaged over 30 Runs, tδ = {900, 1801}

for tδ = 25, not shown). When tδ = (1, 900, 1801) the av-
erage µ is much lower than in the intermediate cases. The
self-adaptative mechanism appears to be working better in
Experiment 7 than the other experiments. It selects a higher
average µ for the environments where it is possible to make
improvements using mutation on a regular basis (the in-
termediate changing environments). In environments where
the system has found a local optimum and there is not much
chance for improvement, tδ = (900, 1801), the system selects
a lower average µ. In the environment where the system can
do very little to adapt to changes, tδ = 1, the GA reduces
its average µ to prevent losing the few building blocks it has
found.

General Comments: In general, as is shown in the ta-
bles, self-adaptation fails to increase the performance of the
best individual in the population in the long term over the
best fixed mutation GA. From examining the course of both
the average and best fitness, we can say that generally in
all stages of exploration self-adaptation underperforms fixed
mutation for this problem. However, in Experiment 3 where
we set µ to the same as the µMin in the last three experi-
ments, the GA’s results are not significantly different from
the self-adaptive results. The fact that the self-adaptation
GA does not underperform is probably due to the fact that
even though eventually the average µ winds up the same,
initially the self-adaptive GAs have a higher average µ re-
sulting in more diversity.

From Figure 2, we can start to see part of the reason why
self-adaptation consistently fails to outperform fixed muta-
tion. In the self-adaptive runs the GA lowers its average
µ very quickly, and decreases its ability to create new alle-
les. In order for a population to perform well in a dynamic
environment ideally the system should be able to change
between higher µ and lower µ values to adapt to changes
in the environment. It is possible for a system with a high
average µ to find an individual with low µ. Moreover this
individual (if successful) will remain in the population since

an individual with a low µ is almost guarenteed to produce
additional individuals that have a low µ. However, it is
hard for a system that has a low average µ to create a large
number of individuals with a high µ. Clearly the GA can
quickly find an individual with a high µ by mutating the
most significant bit of the µ. However the GA can not tran-
sition to a population with a high µ, because the offspring of
the individual with a high µ are generally worse performers,
and are not guarenteed to inherit the same high µ, because
the µ will even change itself. Thus self-adaptation does not
work well in these environments because in attempting to
minimize the damage caused by mutation it also destroys
its own ability to improve. This is further established by
the initial jumps in the average µ as can be seen in several
of the experiments. Early on the loss of good alleles due
to a high µ is outweighed by the possibility of finding new
building blocks but once those blocks are found individuals
with lower µ’s do better because they avoid self-destruction.

6. DISCUSSION
Why does the GA seem to prefer a low average µ? In

biology, how and why natural systems change mutation rates
is still an open question [4]. Some biologists have shown
that under certain circumstances evolution favors positive
optimal mutation rates [14]. Other biologists theorize that
mutation rates can only decrease [24], which might explain
why the GA favors low µ’s.

However we know that in the environments we are looking
at there are times when it is beneficial to have a positive µ,
therefore we need to consider what incentives we can provide
to increase µ at those times. An individual has an incentive
to have a low µ since that is good for their offspring but this
trend is bad for the population over time because the average
µ will tend toward 0 which prevents the GA from solving the
problem. Thus by changing the incentive structure we may
be able to break the GA out of this situation.
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Exploration and Exploitation: This seems to be very
similar to the balance between exploration and exploitation
that Holland described in his original work on GAs. In order
to balance exploration and exploitation, the optimal alloca-
tion of trials establishes the representation of individuals
in the population in proportion to the observed payoff over
time [11]. In this case though we are describing mutation
rates, which have a compound effect on the amount of ex-
ploration or exploitation being done within the GA. If the
GA is on top of a fitness peak then individuals with low µ’s
are preferred because the GA should exploit the peak that
it has found. If the GA is climbing a fitness peak then in-
dividuals with high µ’s are preferred because the offspring
may be higher up the fitness peak. Therefore since in the
sl-hdf’s there are local optima early on, the GA gets to the
top of the fitness peaks and starts to prefer individuals with
lower µ’s. However as explained above once the GA has a
population with low µ’s, it is very difficult for it to create a
large number of individuals with higher µ’s, which makes it
hard to jump to the next higher fitness peak.

Thus there are cases where self-adaptation may be useful
to the GA. If the observed fitness of individuals with high
µ’s was greater than the average fitness of the population
over time, then their representation in the population would
increase. One example would be an environment in which
the GA was contantly climbing a fitness peak.

Changes to the GA: It might also be possible to change
the mechanism that we are using to vary µ. For instance,
one could decrease the cost of switching between a high and
low µ. If the GA simply had two preset µ’s and could switch
between them by flipping one bit, that might be enough to
allow the system to maintain some individuals with a high µ
and some with a low µ. This would be similiar to hypermu-
tation [7] and variable local search [22] since ideally the GA
would simply increase mutation when a change was encoun-
tered, but it would still allow each individual to control its µ
and would not require global knowledge of the population.
Thus current good individuals could maintain a low µ while
poor performing individuals could switch to a higher µ. It
might also make sense to investigate a GA that made use
of a memory system like multiploidy [9] since it would be
easier to maintain diversity.

Comparison to Bäck’s Results: Why was Bäck able
to get a similiar self-adaptation mechanism to work in static
environments when it did not work in the static version of
the sl-hdf? Bäck utilized two unimodal functions from De
Jong and Schwefel (f1, f15) and one multimodal function
from Törn et al (f7) [13] [18] [21]. Bäck pointed out that self-
adaptation had the strongest effect for unimodal functions.
When the functions are unimodal it is to their benefit to
produce offspring with a high µ because their offspring may
be higher up the hill. If the function is multimodal like the
sl-hdf’s, when the GA finds the local optimum, individuals
with a high µ are not preferred because they are likely to
produce offspring that are no longer at the local optimum.
In the one multimodal function that Bäck investigated self-
adaptation only worked better than fixed mutation when he
used a strong selection mechanism, unlike the one used here
[2].

It also is interesting that µ in Bäck’s experiments never
goes to the minimum, unlike it does in the our results. One
possible reason may be that in the unimodal problems the
GA is always (until it finds the global optimum) on the side

of a hill, therefore individuals with a positive µ will have
more offspring, since some of their offspring will be higher
up the hill. Moreover, the multimodal problem that Bäck
investigated was a unimodal problem with a sine wave su-
perimposed on top of it, and the potholes may not have been
as great as they are in the sl-hdf’s. This would allow a pos-
itive µ to be favored because individuals with a a positive
µ could produce offspring that jumped over the potholes to
higher fitness peaks [2].

Research has also shown that the problems Bäck was ex-
amining are amenable to easily being solved by a mutation
hill-climber [8]. The hdf’s on the other hand are designed
to be deliberately resistant to hill-climbers [12]. The hdfs
are mainly solved through recombination. Two different in-
dividuals find different building blocks and recombination
puts them together to create a better individual. Thus mu-
tation, though it is important, does not have as strong an
effect as recombination. Thus it makes sense that the GA
should favor a higher µ in Bäck’s experiments than in the
sl-hdf’s.

Finally as mentioned Bäck only found the best results for
self-adaptation when he used very strong selection. Bäck’s
method is an example of extinctive selection since at least
one of the individuals in the current population do not have
a positive probability of appearing in the next generation.
The selection method that we use above (Tournament, size
3) is not extinctive, since even the lowest fitness individuals
have some chance of surviving in each round. When Bäck
utilizes a similiar selection method he also finds that his
mutation rates drop to a much lower rate than when he uses
the extinctive selection method.

The effect of this strong selection pressure, the different
testing environments and some other minor differences be-
tween Bäck’s experiments and our own, make it difficult to
directly compare the results. Thus the fact that we do not
observe positive µ values or an improvement in our results
over fixed mutation are not in conflict with Bäck’s results.
We strongly suspect that the multimodal nature of our test
environment is the reason for the differences and we plan to
investigate this more in the future. Investigations into the
different selection methods and a more indepth comparison
to Bäck’s multimodal fitness function are also warranted.

7. CONCLUSIONS AND FUTURE WORK
We have shown that one type of self-adaptation fails to im-

prove the performance of the GA in some dynamic environ-
ments and for the static version of the environment. How-
ever there are environments where self-adaptation is useful,
and we plan to investigate this more in the future. Moreover
it may be that our implementation of self-adaptation is not
the best choice and in the future we plan to examine different
implementations [19]. It is important to note that it seems
that some sort of dynamic µ would still be valuable in the
sl-hdf environment since the ability to increase µ at periods
of transition should be beneficial. Finally in the future we
plan to investigate other mechanisms like hypermutation.

Regardless, we have observed several interesting phe-
nomenon. For instance, mutation has a large positive in-
fluence on the GA throughout its run. In addition, in some
cases seeding a population with what is known to be good ge-
netic material (µ) did not improve the overall performance.

1499



The overall goal of our project is to better understand
how the GA works in dynamic environments, by conducting
systematic controlled observations of the GA. We feel that
this allows us to contribute to theory by providing a series
of regular observations and to contribute to practice by
providing suggestions for a rich set of environments.
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