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ABSTRACT
Genetic Algorithms (GAs) can efficiently produce high qual-
ity results for hard combinatorial real world problems such
as the Vehicle Routing Problem (VRP). Genetic Vehicle
Representation (GVR), a recent approach to solving instances
of the VRP with a GA, produces competitive or superior
results to the standard benchmark problems. This work
extends GVR research by presenting a more precise mathe-
matical model of GVR than in previous works and a thor-
ough comparison of GVR to Path Based Representation ap-
proaches. A suite of metrics that measures GVR’s efficiency
and effectiveness provides an adequate characterization of
the jagged search landscape. A new variation of a crossover
operator is introduced. A previously unmentioned insight
about the convergence rate of the search is also noted that
is especially important to the application of a priori and
dynamic routing for swarms of Unmanned Aerial Vehicles
(UAVs). Results indicate that the search is robust, and it
exponentially drives toward high quality solutions in rela-
tively short time. Consequently, a GA with GVR encoding
is capable of providing a state-of-the-art engine for a UAV
routing system or related application.

Categories and Subject Descriptors: I.2.6 [Learning]:
Miscellaneous, I.2.8 [Problem Solving, Control Methods, and
Search]: Heuristic Methods

General Terms: Algorithms

Keywords: Vehicle Routing Problem, Genetic Algorithm,
Genetic Vehicle Representation, Unmanned Aerial Vehicle

1. INTRODUCTION
The Vehicle Routing Problem (VRP) is one of the most

common problems in practice and dates as early as organized
civilization itself in the form of goods distribution, trading,
and public transport [16]. Graph modeling formulations of
this abstract problem definition is the base of many combi-
natoric problems that run in real-time such as Unmanned
Aerial Vehicle (UAV) routing [1, 6, 12, 14, 18].
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In addition to already being an NP-complete problem, the
VRP is often subject to a plethora of constraints including
heterogeneous vehicle types, delivery time windows, mini-
mizing total cost, time travelled or the number of vehicles,
and asymmetric routing [28]. Consequently, VRP combina-
torics exceed that of other hard problems such as the trav-
eling salesman problem (TSP) and the bin-packing problem
(BPP). In fact, the largest solvable instances of the VRP are
two orders of magnitude larger than those of the TSP [20].
Myriad combinatorics and highly practical applications de-
mand finding high quality VRP solutions as quickly as possi-
ble. Genetic Algorithms (GAs) can efficiently and effectively
fulfill this computational demand.

2. PROBLEM AND ALGORITHM
Vehicle Routing Problem The most basic VRP for-

mulation is that of the Capacitated VRP (CVRP). The
CVRP defines the problem in terms of a fleet of homoge-
neous vehicles with each member of the fleet having a fixed
capacity that may not be exceeded. Tuples of the form
(location, demand) exist and must be serviced subject to
the capacity constraints of the vehicles. The objective of
the problem is to minimize the overall cost of supplying the
locations via the delivery fleet; the total Euclidean distance
traveled is typically the cost metric.

As applied to UAV routing, the CVRP defines a set of
locations L each requiring a reconnaissance payload known
a priori ck, such that ∀li∃cn, where n > 0. A fleet of UAVs
K having maximum capacity cvehicle is located at location
ldepot and is available to fulfill the requested reconnaissance
payloads according to a cost from the set Q 3 qij , which
is incurred by traveling amongst any two locations li and
lj . Let G be a sequence obtained from L ×k L that starts
and ends at ldepot. The objective of the CVRP is then to
find a set of simple circuits given by Z 3 min

P

g∈G

P

q∈Q
q

subject to the following additional constraints: No partial
reconnaissance payloads are allowed, ∀lm∃ci 3 ci = cm, all
reconnaissance payloads must be fulfilled, ∀li[∃qai, qib ∈ Z],
and the only intersection of the circuits is at ldepot,

T

zi∈Z
=

ldepot. Figure 1 illustrates a small CVRP benchmark prob-
lem of relatively low combinatorics1 and its optimal solu-
tion. CVRP benchmark problems are well addressed in
the literature [5] and are typically of the form X-nYY-kZ.
X refers to the problem class, Y to the number of loca-

1Using the TSP’s asymptotic complexity as a gross under-
estimate, this instance’s combinatorics are Ω(nn). Using
this metric, there exist at least 1.46 × 1048 possibilities to
consider in the solution space.
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(a) Each coordinate on the graph is a delivery location and has

an associated delivery demand. Deliveries begin and end at a

central depot.
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(b) The optimal solution minimizes the total Euclidean distance

travelled.

Figure 1: Benchmark problem A-n32-k5 and its op-

timal solution.

tions, and Z to the theoretical minimum number of vehi-
cles required. Problems usually cluster, equally spread, or
strategically place delivery locations. The average ‘packed-
ness’ ratio for the theoretical minimum number of vehicles
is also a benchmark design factor. Having much applica-
bility to everyday commerce and transportation, the VRP
has been approached from nearly every angle imaginable.
Some specific approaches from the literature include Ant
Colony Optimization [8, 13], Tabu Search [22], Evolutionary
Strategies [11], parallel approaches [2, 17], Simulated An-
nealing [7], problem simplification [31], fuzzy logic [16], and
branch-and-bound techniques [20]. GVR [15, 19, 24, 25], the
focus of this discussion, is a recent approach with special
emphasis on the data representation. An efficient data rep-
resentation is the key to lowering overall computing times;
it is especially important in GAs, which are stochastic as
well as iterative in nature.

Path Based Representation A naive method for rep-
resenting VRP solutions is with path-based representation
(PBR). In PBR (PBR-1) a solution to the VRP is simply
a single sequence of locations. In such a sequence, routes
are obtained by walking the sequence from start to finish
in order to group consecutive locations into groups. When
adding the next consecutive location would violate a feasibil-

(a) PBR-1 (b) PBR-2

Figure 2: PBR solution decodings. Even locations

have a demand of 1 unit, while odd have a demand

of 2 units. Vehicle capacity is 10 units.

ity constraint (exceeding the total capacity of a vehicle), the
current route is terminated and a new route begins with the
next consecutive location. This particular decoding proce-
dure takes Θ(n) time for n locations. Figure 2(a) illustrates
PBR-1. The actual genotype is depicted as a single route
with a dark line to designate the earliest point the need for a
repair can be detected, if locations are processed by walking
through the array. The dark arrow represents the repair pro-
cess that leads to the feasible solution. A variant of PBR-1
is shown in Figure 2(b) as PBR-2. When possible, this op-
erator more tightly packs the repaired solution than PBR-1.
Instead of simply segmenting the current route, any possible
location that could be added to the current solution from the
remaining locations is added. This particular procedure in
its worst case could potentially take O(n2) time and would
involve each vehicle only being capable of serving a single
location. Thus, all possible attempts to add an additional
location are in vain. The worse case is not expected in any
real-world problem, because an optimal solution would be
trivial: use a single vehicle for each delivery location. Still, a
worst case time complexity calculation gives an upper bound
on the decoding time and is trivial to prove with mathemat-
ical induction. The best case for PBR-2 is given when the
sequence of locations optimally packs the vehicles. In this
case, the decoding sequence takes only O(n) time.

Genetic Vehicle Representation GVR is the work of
Tavares et. al [15, 19, 24, 25] and provides a solid base on
which to build an effective UAV routing algorithm. The
strength of GVR is its data representation; its novel aspects
include its crossover and mutator operators. A more pre-
cise presentation of these operators than has been previously
presented in the literature is paramount to developing bet-
ter metrics for GVR and to controlling its balance between
exploration and exploitation.

GVR differs from Path Based Representation (PBR) in
that it can explicitly provide the number of routes and lo-
cations in them for a given solution without a significant
decoding burden. For any given solution, there exist a set
of routes where each route is a sequence of locations. In pre-
vious works of GVR [15, 19, 24, 25], each route may or may
not meet feasibility criteria. In the case that a route fails
to meet feasibility criteria, it is repaired as in a Baldwinian
evolutionary model [4]; a copy of the solution is repaired
and evaluated, but the actual building blocks of the solu-
tion in the GA population remain unaltered. A Lamarckian
model [4], on the other hand would have repaired the original
solution, evaluated it, and left the newly repaired solution
in the GA population. Given these two models, the time
complexity to decode a solution varies between Θ(n) for the
case in which solutions are explicitly repaired and exactly n
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Figure 3: The crossover in GVR The final repair

step occurs with 0 ≤ p ≤ 1.

locations are visited with each decoding, and O(n2) for the
worse case in which no repairs take place and a mechanism
such as PBR decodes the solution.

Crossover Operator The GVR crossover operator is
conceptually simple. Two individuals, C1 and C2 are chosen
for selection. A subroute, r from individual C1 is inserted
into a copy of individual C2 in a way that the distance be-
tween the insertion location and the first location in r1 is
minimized. Mathematically, ∃k∀ldist(k, r1) < dist(l, r1) ∧
k 6= r1∧k, r1 ∈ L. In general, the crossover operator requires
Θ(n) time for n locations in a solution since all possible so-
lutions must be examined. For a given subroute r and donor
S of size n, there exist n possible crossovers.

Clever techniques such as table lookups or hashes may de-
crease this time to a constant, but even then, it may still take
O(n) time to traverse the routes and insert r. Depending
upon the particular implementation, an additional prepro-
cessing time of O(n) may be necessary in order to remove
the duplicate locations from the surrogate such that once r

is inserted, the solution is again feasible. Figure 3 illustrates
the GVR crossover. The step illustrating the repair oper-
ation occurs with some probability 0 ≤ p ≤ 1. Note that
the crossover operator can never create additional routes,
because there always exists a location in an existing route
that has a minimal distance to r1. The crossover operator,
however, can eliminate an existing route. This happens only
when the subroute r already exists in the donor as its own
route.

Swap Mutation In swap mutation, two locations l1 and
l2 in solution S are chosen at random and swapped with
one another. These two locations may or may not exist
in the same route, and there exists the possibility that both
random locations may be the same (in which case no change
occurs as the result of the mutation). Thus, for a solution
containing n locations, there are n possible swap mutations
that may take place. Figure 4(a) shows the swap mutator.

Notable properties of the swap mutator are that the num-
ber of locations in the affected routes does not change:
∀Rpre−swap∀Rpost−swap ∈ S [|Rpre−swap| = |Rpost−swap|].
The length of the routes and total demand for the route,
however, almost certainly changes. Additionally, swapping
may result in a feasibility violation by causing a route to ex-
ceed the maximum capacity of a vehicle. The potential dis-
ruption for the swap mutator is comparatively low because
at most two locations are affected. Consequently, even if
frequent swaps occur in a model with low repair probability,
the overall characteristics of the solution remain relatively
similar for the general case.

Inversion Mutation For inversion mutation, a subroute

(a) Swap (b) Inversion

(c) Displacement (d) Insertion

Figure 4: GVR mutation operators

from a solution r ⊆ S is chosen and inverted. For a solution
containing n locations, there are Σn

i=1

`

n

i

´

possible inversions
including the trivial ones in which a subroute of size 1 is
inverted, and no actual mutation occurs.

Notable properties of the inversion mutator are that the
number of locations and total demand of the affected route
does not change, ∀Rpre−inv∀Rpost−inv ∈ S, |Rpre−inv | =
|Rpost−inv| ∧ dem(Rpre−inv) = dem(Rpost−inv). Thus, the
feasibility criteria is not affected as a result of the mutation.
The only change that may occur is the total distance of the
route. Inversion mutation, however, can be very disruptive,
especially in models with very low repair probability. The
reason for this disruption is because the inversion mutator
can change a subroute of a solution in which the subroute is
actually all of or parts of two separate routes. Figure 4(b)
gives the inversion mutator.

Displacement Mutation The displacement mutator se-
lects a subroute from a solution r ⊆ S and relocates it to
another place, which may or may not be in the same route.
In fact, it is identical to the crossover operator except that
it randomly inserts the subroute r instead of inserting it
in such a way that the total distance after the operation
is minimized. This random insertion point may result in
the creation of a new route with some probability; Recent
approaches use the probability 1

2V
, where V is the num-

ber of vehicles in the current solution [15, 19, 24, 25]. Thus,
the higher the number of routes in a solution, the lower the
probability that an additional route is inserted.

Like the crossover operator, for a solution containing n

locations there exist Σn+1

i=1 i total possible displacement mu-
tations including the trivial cases in which no change occurs.
For a given subroute r of cardinality k, there exist (n+2)−k

possible displacements in the solution. The possible disrup-
tion associated with this mutator is expected to be relatively
high since possibly long subroutes may be displaced. Figure
4(c) shows the displacement mutator.

Insertion Mutation Insertion mutation is a special case
of displacement mutation in which the subroute size of dis-
placement is of size one. Thus, for a solution containing
n locations, there are (n + 1) possible insertion mutations
including the trivial case in which no change occurs. Po-
tential disruption from insertion mutation is expected to be
very low since at most one route and one location is affected.
This holds true even in models with low repair probability
in which very long infeasible routes may exist in a solution.
Figure 4(d) illustrates the insertion mutator.

Generating Feasible Solutions There exist three main-
stream approaches for handling feasibility criteria with a
GA. One approach is to generate an initial population of fea-
sible individuals, and design operators that guarantee feasi-
bility after their operation. The overwhelming disadvantage
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of this approach is that it is not always a straight-forward
process and can be difficult or impossible to implement ef-
ficiently for the crossover operator, especially with integer-
represented solutions reflected in the TSP or VRP. Given
this difficulty, repair and penalty functions become the two
notable alternatives.

Repair Functions A repair operator transforms an in-
feasible solution into a feasible one. This approach has the
advantage over the previous possibility in that the crossover
operator can be more simply and efficiently implemented.
As a result, more creativity and thought can be placed on
its design, and it can be more easily maintained or updated.
A decision that must be made when designing a repair opera-
tor, however, is whether to repair explicitly as in a Lamarck-
ian model, or implicitly as in a Baldwinian model. In either
case, a repair may occur with some probability 1 ≤ p ≤ 0.

Penalty Functions Another possibility is not to pose
any explicit feasibility constraints on a solution; rather, use
a penalty function that guides the search towards feasible so-
lutions by rating infeasible solutions with lower fitness val-
ues2. A penalty function should produce solutions to the
problem that are feasible, and has the potential benefit over
the repair function in that it does not explicitly manipu-
late the building blocks to guide the search. Still, effective
penalty functions are usually not trivial to derive and often
require problem specific information.

A common type of penalty function is one that applies
a static penalty to solutions that violate feasibility in any
way. One formulation of a static penalty function is given
by Equation 1 [4]:

fp(x) = f(x) + Σm
i=1Ciδi



δi = 1 if i violated
δi = 0 otherwise

(1)

A disadvantage of this approach, however, is that it assumes
that the penalty is a function of the number of constraints vi-
olated, which may not be the case. Satisfying constraints for
some optimization problems requires solving additional NP-
Complete problems. Additionally, suitable coefficients must
be specified for this approach to be effective depending upon
the relative severity of the constraints to one another. An
additional concept to investigate when using a static penalty
function like Equation 1 is whether or not penalizing for
constraint violations can actually guide the search towards
feasible areas. In problems with a semi-chaotic landscape, a
static penalty function may be of little use. Nonetheless, its
success or failure is still an additional insight into the search
landscape.

Another approach that is generally superior to Equation 1
penalizes according to the ‘cost-to-completion’ [9, 21]. Equa-
tion 2 illustrates such a penalty function [4]:

fp(x) = f(x)+Σm
i=1Cid

κ
i



di = δigi(x) for 1 ≤ i ≤ q

di = |hi(x)| for q < i ≤ m

(2)
In Equation 2, κ is a user-defined exponent, and di is the
distance metric of constraint i applied to solution x. Con-
straints 1...q are inequality constraints and are activated
when the constraint is violated. Constraints (q + 1)...m
are equality constraints that activate the penalty if there is
any distance between the solution and constraint values [4].
Thus, the inequality constraints guide the search toward
the feasible solutions, and the equality constraints guide the

2This approach assumes an exterior penalty function.

search toward local or global optima. Although existing lit-
erature for static penalty functions is quite mature, defining
parameters for penalty functions remains far from trivial
and very much problem dependent [26]. Additionally, the
notion of ‘distance’ between feasible and infeasible solutions
is hard to precisely define for hard optimization problems,
especially ones with a viperous landscape.

Adaptive penalty functions can be viewed as a particu-
lar implementation of Equation 2. Adaptive penalty func-
tions increase penalty values in monotonically nondecreasing
manner proportional to the search time, which may be the
number of generations. Equation 3 illustrates an implemen-
tation of Equation 2, where si(t) is the monotonically nonde-
creasing function that satisfies the definition of an adaptive
penalty function as presented. An explicit example of si(t)
might be an expression such as si(t) = Cit or some variation
thereof.

fp(x, t) = f(x) + Σm
i=1si(t)d

κ
i (3)

3. EXPERIMENTATION
Experiments in this suite are designed to provide insight

into GVR’s efficiency and effectiveness. These experiments
collectively form a suite and the outcome of each experiment
successively determines a point of interest for the following
experiment. This is to say that preliminary experiments are
somewhat broadly designed, and each successive experiment
becomes more narrowly focused based on previous results.
For implementation, the GA is designed with GAlib [29]
and runs on a 32-bit 2.2GHz AMD Opteron Processor with
4GB of memory. Data from each experiment is collected to
qualitatively fulfill each experiment’s objective using basic
first order statistics.

Experiment 1 To qualitatively determine the extent that
a static penalty function can guide the search process and
lead to effective solutions using GVR.
The objective function is crucial to successful search with
a GA. An important design decision impacting a GA’s ef-
fectiveness is how it handles infeasible solutions generated
from the recombination operators. GVR very often gen-
erates infeasible solutions from the crossover operator; the
infeasible solutions could be either repaired or penalized in
order to guide the search. Previous approaches for GVR
used repair functions for guiding the search [19, 23–25].The
intention of this experiment is to determine to what extent a
static penalty function can guide the search process. Feasi-
ble CVRP solutions pose two basic constraints: 1) No vehi-
cle capacities can be exceeded, and 2) At least the minimum
number of routes possible must appear in a solution.

The problem definition provides vehicle capacities, and
a lower limit on the number of possible routes is given by
dividing the total demand of all delivery locations by the
vehicle capacity. Equation 4 penalizes both criteria; for the
former condition, it penalizes using a ‘cost-to-completion’
metric, which is shown to be more effective than penalizing
based only on the number of violated constraints [4].

fp = ΣR
i=1fcap · fveh

(

fcap = Pcliδc

fveh = Pvδv

{δc, δv = 0} iff i satisfied.
(4)

This experiment runs all possible ratios of penalties, pcap

and pveh ∈ {0, 1, 2, 4, 8, 16, 32, 64, 128, 256} on benchmark
problem A-n32-k5 [5]. This problem, as previously men-
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tioned, is of relatively low combinatorics and is optimally
solved in well under 10,000 generations by previous GVR
research using a repair-based approach [24, 25].

Experiment 2 To measure the effectiveness of the repair
operator in guiding the search process.
The GA is run on a diverse test suite of common CVRP
benchmarks using a repair operator that segments infeasible
solutions at the point of violation in the route.3 The bench-
mark problems include A-n32-k5, A-n54-k7, A-n69-k9, B-
n63-k10, E-n76-k8, and M-n200-k17. Results are compared
to the best published in the literature and to results from
other algorithmic techniques.

For all problems except A-n32-k5 and M-n200-k17, popu-
lation sizes of 200 with 50,000 generations of evolution are
tested. For problem A-n32-k5 only 10,000 generations are
tested, because this is an ‘easy’ benchmark problem and
most published results use this metric. For problem M-
n200-k17, a population of size 400 and 100,000 generations
are used because the combinatorics of the problem are much
larger than the other benchmarks under test. Furthermore,
a matrix of runs is conducted for all possible combinations
of prepair ∈ {0.0, 0.25, 0.5, 0.75, 1.0} and for all possible mu-
tation combinations from pmutation ∈ {0.05, 0.10, 0.15, 0.20}
except for two cases. Because problem M-n200-k17 is very
large and takes a long time period to execute, the mutation
combinations are reduced to pmutation ∈ {0.10, 0.15, 0.20}.
For this experiment, tournament selection with tournament
size q = 5 and crossover pcross = 0.75 is used. The tourna-
ment size is designed to apply very little selection pressure
during the search, while the crossover rate is intended to
exploit the effects of recombination. Given various solutions
to these benchmark problems, visualization is accomplished
via graphing the maximum, average, and minimum fitness
values over time.

Experiment 3 To determine how dependent effective prob-
lem solutions depend on tuning mutation parameters.
Effective mutators are crucial to gaining insight into a GA’s
ability to explore. Given the best results from problem M-
n200-k17 in Experiment 2, four matrices of runs with fixed
crossover rate and variable mutation rates are constructed.
Graphical display of the data is accomplished by holding two
of the mutators at constant values while varying the others
over a fixed range for 0.02 increments. This grid size should
be fine grained enough to collect data indicative of the land-
scape. The combinations of rates being varied include: dis-
placement and insertion, swap and inversion, inversion and
displacement, and swap and displacement.

Experiment 4 To determine if there exists a statistical
significance between two different repair operators; one oper-
ator segments routes at the point of capacity violation, while
the other packs the existing route as tightly as possible.
Given the best results from problem M-n200-k17 in Exper-
iment 2, this experiment determines whether there is a sig-
nificant difference in solution quality for two different repair
operators. One operator repairs by packing the infeasible
routes encountered during objective function evaluation as
tightly as possible. Another repair operator, the one used
in Experiment 2, simply segments infeasible solutions at the
point of the violation and creates another route with the
infeasible portion. For each of the two operators, a series of

3Experiment 4 compares this operator to one that attempts
to pack routes as tightly as possible by fitting any possible
locations into the remaining space.

Table 1: Summary of benchmark results
Problem prep pswp pinv pdis pins fitn. best % diff
A-n32-k5 ** ** ** ** ** 784 784 0
A-n54-k7 ** ** ** ** ** 1167 1167 0
A-n69-k9 0.5 0.15 0.15 0.15 0.1 1164 1159 0.4

B-n63-k10 0.5 0.05 0.15 0.1 0.1 1507 1496 0.7
E-n76-k8 0 0.15 0.1 0.1 0.05 741 735 0.8

M-n200-k17 0.5 0.1 0.15 0.1 0.1 1348 1296 3.9

11 runs with different random number seeds is conducted.
Experiment 5 To determine how dependent the search

process is on tournament size and if population reinitializa-
tion after a time of stagnation can improve search results.
Selection pressure is proportional to the ratio of the tourna-
ment size q to the population size. Given graphical displays
of maximum, mean, and minimum fitness values over time
from Experiment 2, this experiment determines if doubling
q and reinitializing the population each time the minimum
fitness value in the population does not decrease by more
than ε = 10 units can improve solution quality. This ap-
proach is tried on the best and worst solutions for problem
M-n200-k17 from Experiment 2.

Experiment 6 To determine if high quality solutions gen-
erated from the GA can be further improved by a lambda ex-
change local search algorithm [26] as a post-processor.
Given a high quality solution produced with the Genetic
Algorithm, this experiment determines if the results can be
further improved by means of a fast local search that sys-
tematically displaces all combinations of up to two locations.
Results from this experiment provide additional insight into
the proximity of ‘good’ solutions to either local or global
minima.

The following section presents results from these exper-
iments and the analysis needed in order to ascertain the
impact of GVR encoding for UAV routing applications.

4. RESULTS AND ANALYSIS
Given results from the suite of experiments, analysis is tai-

lored toward determining the efficiency and effectiveness for
using the GA and GVR encoding for real-time UAV routing
applications. Basic statistics are adequate to analyze the
data collected.

Experiment 1 For all ratios of penalty functions given by
Equation 4, no solutions were feasible. Given that problem
A-n32-k5 is considered an ‘easy’ benchmark problem, these
results suggest at a minimum that Equation 4 is not an ef-
fective static penalty function, and more likely, that static
penalty functions are not effective techniques for guiding the
search process. Results from Experiment 2 produce results
competitive with the best-published results on A-n32-k5 in
under 300 generations. It appears that penalizing solutions
to the problem is not effective in part because of the sheer
combinatorics. All other experiments in this suite use re-
pair functions to guide the search process. Future work in
investigating penalty functions should inspect adaptive or
dynamic approaches [4].

Experiment 2: The GA produces optimal or near op-
timal results for the CVRP benchmarks tested. All results
are more than adequate for effective vehicle routing requir-
ing limited time for a priori computation. Known optimums
are quickly reached for all tested parameter combinations in
problems A-n32-k5 and A-n54-k7. Near optimal and high
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quality solutions for all other parameter combinations are
produced for all other problems.

The high quality results GVR produces are desirable, but
it is important to determine how fast the search converges
on these results if it is to provide the engine for a route plan-
ning system that demands near optimal solutions as quickly
as possible. Mission planning does not necessarily entail an
optimum solution; rather, solutions within a particular tol-
erance are often acceptable. Additionally, it might be noted
that the exponential increase in solution quality suggests
that this algorithmic technique is likely to provide compet-
itive results for instances of the Dynamic VRP, in which
delivery schedules might change while vehicles are en route.
A graphical display of the search progress over time reveals
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Figure 5: Solution quality exponentially increases

that a period of rapid improvement in solution quality is
followed by long periods of stagnation for all benchmark
problems. In the end, this type of convergence is almost
ideal for fast a priori routing. This suggests that a local
search or a similar technique could be used during this pe-
riod of stagnation instead of continuing the global search
with the GA, although the GA does continue to gradually
improve results. It is also evident that GVR increases the
number of good building blocks at an exponential rate, per
the Schema Theorem4 [30]. Gradually improving partial
solutions in a problem like the VRP is more than reason-

4Acceptance of the Schema Theorem is not unanimous [27].

Table 2: Search times for selected benchmarks.
Benchmark sec/gen termination (gen) routing time

A-n32-k5 0.00142 500 7.15 sec
A-n69-k9 0.0292 5000 2.43 min

B-n63-k10 0.0277 10000 4.61 min
E-n76-k8 0.0311 10000 5.18 min

M-n200-k17 0.158 15000 39.5 min

able; locations close together gradually link into routes, and
routes that complement one another have a higher probabil-
ity of survival and continued improvement. The results from
Experiment 5 present the results from increasing the selec-
tion pressure and reinitializing the population during these
periods. Results from Experiment 6 present the results from
trying a local search as a post-processing routine.

Figure 5 shows the max, min, and average fitness values of
each generation for benchmark problems A-n32-k5 and Mn-
200-k17. Problems A-n63-k10, A-n69-k9, B-n63-k10, and
E-n76-k8 result in the same net effect: a period of rapid
increase in solution quality is followed by a period of stag-
nation with very little improvements occurring. Only the
first 500 generations are shown. Note that the elitism em-
ployed in the GA results in a monotonically non-increasing
minimum fitness value over time. The fluctuations in the
maximum and average fitness values illustrates that explo-
ration is taking place, but the stagnation of minimum fit-
ness values indicates that the search space is treacherous
once solutions become nearly optimal. A fair description of
the search space at this low level amounts to something like
trying to sink a golf ball into a hole surrounded by potholes
and ruts from 100 yards away using only a bent putter.

Table 2 hypothesizes a a priori routing time based upon
subjective termination of the search once stagnation is de-
tected.

Experiment 3: This experiment varied two mutation
rates over a fixed range in incremental amounts while hold-
ing the other two mutation rates constant for the best re-
sults on problem M-n200-k17 in Experiment 2. The results
of the experiment as shown in Figure 6 simply provide a
visual display of the problem landscape as a projection of
two dimensions. Portions of the surface near the front of
the plot are not displayed if it were to block any part of
the entire contour map, and consequently, cause data loss
in the graph. Very small adjustments to mutation rates can
impact the quality of solution discovered by GVR. This in-
sight confirms the idea that the landscape searched is very
jagged and that local minimal run rampant. Global minima
are very difficult to find, even though the local minima are
not very different in terms of percentage difference. For mis-
sion routing purposes, sensitivities to mutation parameters
might be overcome by having several processors compute
routes using different mutation parameters in parallel, or
the mutators might be encoded as part of the chromosome
in an effort to become self-tuning.

Experiment 4: Table 3 illustrates the results of running
11 different seeded runs with the best results from problem
M-n200-k17. Segmentation packing produces better results
in 6 of the 11 trials, but a Student’s T-test with α = 0.05
reveals that there is not a statistical significance between
the two packing methods. Intuitively, it seems that the seg-
mentation packing method should have produced superior
results, because it does not disrupt the good building blocks.
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Figure 6: Effects of varying two mutation rates while

holding the others constant.

A possible explanation that the two methods are not signif-
icantly different, however, might be that the recombination
operators sufficiently exploit the solution space enough to
compensate for any disrupted building blocks.

Experiment 5: Experiment 2 produced a solution of
value 1348 for problem M-n200-k17 without reinitialization.
Reinitializing with the same random number seed produced
a solution of lower quality in all cases except for one, where
the improvement was negligible. This indicates that ‘good’
partial solutions, when continually exploited, can continue
to improve to some degree by converging to local minima.
Reinitialization disrupts the good building blocks, even though
it provides the opportunity for more of the search space to
be examined. This experiment, like the previous ones, pro-
vides insight into the jaggedness of the search space and the
abundance of local minima. A viable routing algorithm de-
mands a quick high-quality solution, which is most likely
not an optimum solution. Other approaches to improve so-
lution quality should be tried, but in the interim, existing
GVR solutions are still more than adequate for this partic-
ular application.

Experiment 6: The lambda exchange local search did
not improve solution quality for any of the best results ob-
tained from Experiment 2. The most likely reason is because
the fitness landscape is especially treacherous for high qual-

Table 3: Results from vehicle packings
Seed Tight Segmentation
1900 1385 1430
2003 1441 1445
2020 1424 1348

3131 1408 1387
4242 1387 1366
5353 1428 1360
5555 1420 1390
6038 1443 1387
7777 1444 1445
8765 1385 1394
9843 1389 1391

AVERAGE 1414 1394.818182
STD DEV 24.2363364 32.66440932

Table 4: Results from reinitialization.
Seed 2020 Seed 3131 Seed 4242

4000 {8000,12000} 4000 {8000,12000} 4000 {8000,12000}

{5,10,15,20} 1359 1345 1412 1395 1361 1375

ity solutions and the myriad local minima scattered through-
out the space. It is uncertain whether another local search
technique can improve near-optimal VRP solutions for the
general case.
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Figure 7: Reinitializations over time.

5. CONCLUSION & FUTURE WORK
High quality solutions for instances of the Capacitated

Vehicle Routing Problem are obtained with Genetic Algo-
rithms using the Genetic Vehicle Representation (GVR) en-
coding. A previously unmentioned aspect of the search us-
ing GVR–its convergence rate–is especially important to a
priori and dynamic routing, and reveals that the GA ex-
ponentially increases solution quality. Another conclusion
from statistical analysis is that a measure of control in the
crossover and repair operators generally provides superior
results than without it. GVR data encoding is also likely
to perform competitively for VRP instances vulnerable to
schedule changes while vehicles are en route because it expo-
nentially increases solution quality. Real world applications
of Unmanned Aerial Vehicle routing involve, at a minimum,
the need for fast a priori routing schedules and mechanisms
for scheduling changes en route. Analysis and experimenta-
tion validates that a GA using GVR encoding can provide
these characteristics.
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Future work involves extending GVR to solve Dynamic
VRP instances as part of a online UAV routing system;
multi-objective approaches should be considered. This re-
search extends the Air Force Institute of Technology Swarm
Simulator effort in support of the Air Force Research Labo-
ratory Sensors Directorate (AFRL/SNZW), Wright-Patterson
Air Force Base, Ohio.

The views expressed in this article are those of the authors
and do not reflect the official policy of the United States Air
Force, Department of Defense, or the U.S. Government.
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