
An Adaptive Pursuit Strategy for Allocating
Operator Probabilities

Dirk Thierens
Department of Computer Science

Utrecht University
The Netherlands

dirk.thierens@cs.uu.nl

ABSTRACT
Learning the optimal probabilities of applying an explo-
ration operator from a set of alternatives can be done by
self-adaptation or by adaptive allocation rules. In this pa-
per we consider the latter option. The allocation strate-
gies discussed in the literature basically belong to the class
of probability matching algorithms. These strategies adapt
the operator probabilities in such a way that they match the
reward distribution. In this paper we introduce an alterna-
tive adaptive allocation strategy, called the adaptive pur-
suit method. We compare this method with the probability
matching approach in a non-stationary environment. Cal-
culations and experimental results show the superior perfor-
mance of the adaptive pursuit algorithm. If the reward dis-
tributions stay stationary for some time, the adaptive pur-
suit method converges rapidly and accurately to an operator
probability distribution that results in a much higher prob-
ability of selecting the current optimal operator and a much
higher average reward than with the probability matching
strategy. Yet most importantly, the adaptive pursuit scheme
remains sensitive to changes in the reward distributions, and
reacts swiftly to non-stationary shifts in the environment.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods
; F.1.1 [Computation by Abstract Devices]: Models of
Computation—Self-modifying machines

General Terms
Algorithms, Performance

Keywords
adaptive operator allocation, adaptive pursuit, non-stationary
operator probabilities, non-stationary environment, multi-
armed bandit

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

1. INTRODUCTION
Genetic algorithms usually apply their exploration opera-

tors with a fixed probability. There are however no general
guidelines to help determine an optimal value for these prob-
ability values. In practice the user simply searches for a rea-
sonable set of values by running a series of trial-and-error
experiments. Clearly, this is a computationally expensive
procedure and since genetic algorithms are often applied to
computational intensive problems, the number of probabil-
ity values tried has to remain limited. To make matters
worse, the problem is compounded by the fact that there is
no optimal fixed set of values for a particular problem in-
stance. Depending on the current state of the search process
the optimal probability values continuously change.
This problem has long been recognized and different adap-

tation methods have been proposed to solve it [4][5][11]. In
general two classes of adaptation methods can be found:

1. Self-adaptation. The values of the operator prob-
abilities are directly encoded in the representation of
the individual solutions. These values basically hitch-
hike with the solutions that are being evolved through
the regular search process. The idea is that the opera-
tor probability values and problem solutions co-evolve
to (near)-optimal settings.

2. Adaptive allocation rule. The values of the op-
erator probabilities are adapted following an ’out-of-
the-evolutionary-loop’ learning rule according to the
quality of new solutions created by the operators.

Self-adaptation is particularly applied within Evolutionary
Strategies and Evolutionary Programming for numerical op-
timization problems. When applied to discrete optimization
or adaptation problems using genetic algorithms, its success
is somewhat limited as compared to the adaptive allocation
rule method. In this paper we will focus on the latter class.
Looking at the literature it becomes clear that most adap-
tive allocation rules used belong to the probability match-
ing type [2][3][6][7][8][9][10][14]. Here we propose an adap-
tive pursuit method as allocation rule and compare it to
the probability matching strategy. Results indicate that the
adaptive pursuit method appears to be a better adaptive op-
erator allocation rule than the traditionally used probability
matching algorithm.
The paper is organized as follows. Section 2 describes

the probability matching method and specifies an implemen-
tation particularly suited for non-stationary environments.

1539

Section 3 introduces the adaptive pursuit algorithm. Sec-
tion 4 shows experimental results of both adaptive allocation
techniques, which is followed by the Conclusion.

2. PROBABILITY MATCHING
An adaptive operator allocation rule is an algorithm that

iteratively chooses one of its operators to apply to an exter-
nal environment [12]. The environment returns a reward -
possibly zero - and the allocation rule uses this reward and
its internal state to adapt the probabilities with which the
operators are chosen. It is crucial to note that the envi-
ronment we consider here is non-stationary, meaning that
the probability distribution according to which a reward
is generated for a given operator changes during the run-
time of the allocation algorithm. Unfortunately the non-
stationarity requirement excludes the use of a large number
of adaptive strategies that have been developed for the well-
known multi-armed bandit problem [1].
Formally, we have a set of K operators A = {a1, . . . , aK},

and a probability vector P(t) = {P1(t), . . . ,PK(t)} (∀t : 0 ≤
Pi(t) ≤ 1;

PK
i=1 Pi(t) = 1). The adaptive allocation rule se-

lects an operator to be executed in proportion to the proba-
bility values specified in P(t). When an operator a is applied
to the environment at time t, a reward Ra(t) is returned.
Each operator has an associated reward, which is a non-
stationary random variable. All rewards are collected in the
reward vector R(t) = {R1(t), . . . ,RK(t)}. In addition to
the operator probability vector P(t) the adaptive allocation
rule maintains a quality vector Q(t) = {Q1(t), . . . ,QK(t)}
that specifies a running estimate of the reward for each oper-
ator. Whenever an operator is executed his current estimate
Qa(t) is adapted. The allocation algorithm is run for a pe-
riod of T time steps. The goal is to maximize the expected
value of the cumulative reward E [R] =

PT
t=1 Ra(t) received

by the adaptive allocation rule. Since the environment is
non-stationary, the estimate of the reward for each operator
is only reliable when the rewards received are not too old.
An elegant, iterative method to compute such a running
estimate is the exponential, recency-weighted average that
updates the current estimate with a fraction of the difference
of the target value and the current estimate:

Qa(t + 1) = Qa(t) + α[Ra(t)−Qa(t)] (1)

with the adaptation rate α : 0 < α ≤ 1. The basic proba-
bility matching allocation rule computes each operator’s se-
lection probability Pa(t) as the proportion of the operator’s
reward estimate Qa(t) to the sum of all reward estimatesPK

i=1 Qi(t). However, this may lead to the loss of some op-
erators. Once a probability Pa(t) becomes equal to 0, the
operator will no longer be selected and its reward estimate
can no longer be updated. This is an unwanted property in a
non-stationary environment because the operator might be-
come valuable again in a future stage of the search process.
We always need to be able to apply any operator and update
its current value estimate. To ensure that no operator gets
lost we enforce a minimal value Pmin : 0 < Pmin < 1 for
each selection probability. As a result the maximum value
any operator can achieve is Pmax = 1− (K − 1)Pmin where
K is the number of operators. The rule for updating the
probability vector Pa(t) now becomes:

Pa(t + 1) = Pmin + (1− K · Pmin)
Qa(t)PK
i=1 Qi(t)

. (2)

It is easy to see in the above equation that when an operator
does not receive any reward for a long time its value estimate
Qa(t) will converge to 0 and its probability of being selected
Pa(t) converges to Pmin. It is also clear that when only one
operator receives a reward during a long period of time -
and all other operators get no reward - then its selection
probability Pa(t) converges to Pmin +1−K ·Pmin = Pmax.
Furthermore, 0 < Pa(t) < 1 and their sum equals 1:

KX

a=1

Pa(t) = K · Pmin +
1− K · PminPK

i=1 Qi(t − 1)

KX

a=1

Qa(t − 1) = 1.

Finally, our probability matching algorithm is specified as:

ProbabilityMatching(P ,Q, K, Pmin, α)
1 for i ← 1 to K
2 do P(i) ← 1

K
;Q(i) ← 1.0

3 while NotTerminated?()
4 do as ← ProportionalSelectOperator(P)
5 Ras(t) ← GetReward(as)
6 Qas(t + 1) = Qas(t) + α[Ras(t)−Qas(t)]
7 for a ← 1 to K
8 do Pa(t + 1) = Pmin + (1− K · Pmin)

Qa(t)
PK

i=1 Qi(t)

The probability matching allocation rule as specified in
equation 2 is able to adapt to non-stationary environments.
Unfortunately, it pays a heavy price for this in terms of re-
ward maximization. This is most obvious when we consider
a non-stationary environment. Suppose we have only two
operators a1 and a2 with constant reward values R1 and
R2. From equation 2 it follows that

P1(t)− Pmin

P2(t)− Pmin
=

R1

R2
.

Assume that R1 > R2. An ideal adaptive allocation rule
should notice in this stationary environment that the opera-
tor a1 has a higher reward than operator a2. The allocation
rule should therefore maximize the probability of applying
operator a1 and only apply a2 with the minimal probabil-
ity Pmin. However, the closer the rewards R1 and R2 are,
the less optimal the probability matching rule behaves. For
instance, when Pmin = 0.1, R1 = 10, and R2 = 9 then
P1 = 0.52 and P2 = 0.48, which is far removed from the
desired values of P1 = 0.9 and P2 = 0.1.
Matching the reward probabilities is not an optimal strat-

egy for allocating operator probabilities in an optimizing
algorithm. In the next section we propose the adaptive pur-
suit strategy as an alternative allocation method that is far
better at maximizing the rewards received while still main-
taining the ability to swiftly react to any changes in a non-
stationary environment.

3. ADAPTIVE PURSUIT ALGORITHM
Pursuit algorithms are a class of rapidly converging algo-

rithms for learning automata proposed by Thathachar and
Sastry [13]. They represent adaptive allocation rules that
adapt the operator probability vector P(t) in such a way
that the algorithm pursues the operator a∗ that currently
has the maximal estimated reward Qa∗(t). To achieve this,
the pursuit method increases the selection probability Pa∗(t)
and decreases all other probabilities Pa(t),∀a = a∗. Pursuit
algorithms originated from the field of learning automata.

1540

However, they are designed for stationary environments for
which it can be proved that they are ε-optimal. The ε-
optimality property means that in every stationary environ-
ment, there exists a learning rate β∗ > 0 and time t0 > 0,
such that for all learning rates 0 < β ≤ β∗ ≤ 1 and for any
δ ∈ [0 . . . 1] and ε ∈ [0 . . . 1]:

Prob[Poptimal
a (t) > 1− ε] > 1− δ , ∀t > t0.

In practice this means that if the the learning rate β is small
enough as a function of the reward distribution correct con-
vergence is assured.
As in the probability matching allocation rule, the pur-

suit algorithm proportionally selects an operator to execute
according to the probability vector P(t), and updates the
corresponding operator’s quality or estimated reward Qa(t).
Subsequently, the current best operator is chosen (ties are
broken at random)1, a∗ = argmaxa[Qa(t+1)] and its selec-
tion probability is increased

Pa∗(t + 1) = (1− β)Pa∗(t) + β,

while the other operators have their selection probability
decreased

∀a = a∗ : Pa(t + 1) = (1− β)Pa(t).

It is clear from (1− β)Pa∗(t) + β = Pa∗(t) + β(1− Pa∗(t))
that if a particular operator is repeatedly the best oper-
ator its selection probability will converge to 1, while the
selection probabilities of the other operators will converge
to 0 and they will no longer be applied. Consequently, the
pursuit algorithm cannot be used in a non-stationary envi-
ronment. To make the method suitable for non-stationary
environments we change the probability updating scheme.
The modified update rule ensures that the probability vector
is still pursuing the current best operator at the same rate
as the standard method, but now the exponential, recency-
weighted averages of the operator probabilities are enforced
to stay within the interval [Pmin . . . Pmax] with 0 < Pmin <
Pmax < 1. Calling a∗ = argmaxa[Qa(t+1)] the current best
operator, we get:

Pa∗(t + 1) = Pa∗(t) + β[Pmax − Pa∗(t)] (3)

and

∀a = a∗ : Pa(t + 1) = Pa(t) + β[Pmin − Pa(t)] (4)

under the constraint:

Pmax = 1− (K − 1)Pmin . (5)

The constraint ensures that if
PK

a=1 Pa(t) = 1 the sum of
the updated probabilities remains equal to 1:

KX

a=1

Pa(t + 1) = 1

⇔ rhs. eqt.(3) + rhs. eqt.(4) = 1

⇔ (1− β)
KX

a=1

Pa(t) + β[Pmax + (K − 1)Pmin] = 1

⇔ Pmax = 1− (K − 1)Pmin.

1The tie breaking ensures that if two operators consistently
receive the same reward, they will also be applied with the
same probability.

Note that since Pmin < Pmax the constraint can only be
fulfilled2 if Pmin < 1

K
. An interesting value for the minimal

probability is Pmin = 1
2K

which results in the maximum

probability Pmax = 1
2
+ 1

2K
. An intuitive appealing way

to look at these values is that the optimal operator will be
selected half the time, while the other half of the time all
operators have an equal probability of being selected.
Finally, we can now specify more formally the adaptive

pursuit algorithm:

AdaptivePursuit(P ,Q, K, Pmin, α, β)
1 Pmax ← 1− (K − 1)Pmin

2 for i ← 1 to K
3 do P(i) ← 1

K
;Q(i) ← 1.0

4 while NotTerminated?()
5 do as ← ProportionalSelectOperator(P)
6 Ras(t) ← GetReward(as)
7 Qas(t + 1) = Qas(t) + α[Ras (t)−Qas(t)]
8 a∗ ← Argmaxa(Qa(t + 1))
9 Pa∗(t + 1) = Pa∗(t) + β[Pmax − Pa∗(t)]
10 for a ← 1 to K
11 do if a = a∗

12 then Pa(t + 1) = Pa(t) + β[Pmin − Pa(t)]

Consider again the 2-operator stationary environment at
the end of the previous section with Pmin = 0.1, R1 = 10,
and R2 = 9. As opposed to the probability matching rule,
the adaptive pursuit method will play the better operator a1

with maximum probability Pmax = 0.9. It also keeps playing
the poorer operator a2 with minimal probability Pmin = 0.1
in order to maintain its ability to adapt to any change in
the reward distribution.

4. EXPERIMENTAL RESULTS
To get an idea of the dynamic behavior of these adaptive

allocation rules we compare the probability matching algo-
rithm, the adaptive pursuit method, and the non-adaptive,
equal-probability strategy, on the following non-stationary
environment. We consider an environment with 5 oper-
ators (or arms in the multi-bandit problem terminology).
Each operator a receives a uniformly distributed reward Ra

between the respective boundaries R5 = U [4 . . . 6],R4 =
U [3 . . . 5],R3 = U [2 . . . 4],R2 = U [1 . . . 3], andR1 = U [0 . . . 2].
After a fixed time interval ∆T these reward distributions
are randomly reassigned to the operators, under the con-
straint that the current best operator-reward association ef-
fectively has to change to a new couple. Specifically, the non-
stationary environment in the simulation switches 10 times
with the following pattern: 01234 → 41203 → 24301 →
12043 → 41230 → 31420 → 04213 → 23104 → 14302 →
40213, where each sequence orders the operators in descend-
ing value of reward. For instance ’41203’ means that opera-
tor a4 receives the highest reward R5, operator a1 receives
the second highest reward R4, operator a2 receives reward
R3, operator a0 receives reward R2, and finally operator
a3 receives the lowest reward R1. If we had full knowledge
of the reward distributions and their switching pattern we

2Strictly speaking, Pmin can be equal to 1
K
. This happens

in the case of only 2 operators (K = 2) and a lower bound
probability of Pmin = 0.5. However, now Pmax also equals
0.5 so there is no adaptation possible.

1541

could always pick the optimal operator a∗ and achieve an
expected reward

E [ROpt] = Ra∗ = 5 .

Clearly, this value can never be obtained by any adaptive
allocation strategy since it always needs to pay a price for
exploring the effects of alternative actions. Nevertheless,
it does represent an upper bound of the expected reward.
When operating in a stationary environment the allocation
strategies converge to a fixed operator probability distribu-
tion. Using this distribution we can compute the maximum
achievable expected reward for each allocation rule, which
is preferably close to the theoretical upper bound. In a
non-stationary environment, we aim to achieve this value
as quick as possible, while still being able to react swiftly
to any change in the reward distributions. In the experi-
ments we have taken the value Pmin = 1

2K
= 0.1 for the

minimum probability each operator will be applied in the
adaptive allocation schemes. For a stationary environment
- this is, when the assignment of reward distributions to the
arms are not switched - we can compute the expected re-
ward and the probability of choosing the optimal operator
once the operator probability vectors have converged.

1. Non-adaptive, equal-probability allocation rule.

This strategy simply selects each operator with equal
probability. The probability of choosing the optimal
operator a∗

F ixed is

Prob[as = a∗
F ixed] =

1

K
= 0.2 .

The expected reward becomes

E [RF ixed] =
KX

a=1

E [Ra]Prob[a
s = a]

=

PK
a=1 E [Ra]

K
= 3 .

2. Probability matching allocation rule.

For the probability matching updating scheme the prob-
ability of choosing the optimal operator a∗

ProbMatch is

Prob[as = a∗
ProbMatch]

= Pmin + (1− K.Pmin)
E [Ra∗]

PK
a=1 E [Ra]

= 0.2666

The expected reward becomes

E [RProbMatch]

=
KX

a=1

E [Ra]Prob[a
s = a]

=

KX

a=1

a[Pmin + (1− K · Pmin)
E [Ra]PK

a=1 E [Ra]
]

= 3.333

3. Adaptive pursuit allocation rule.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500

P
ro

ba
bi

lit
y

op
tim

al
 o

pe
ra

to
r

ap
pl

ie
d

Time steps

Adaptive pursuit
Probability matching

Figure 1: The probability of selecting the optimal
operator at each time step in the non-stationary
environment with switching interval ∆T = 50 time
steps (learning rates α = 0.8; β = 0.8; Pmin =
0.1; K = 5; results are averaged over 100 runs).
The horizontal lines show the expected values for
the non-switching, stationary environment for resp.
adaptive pursuit (0.6), probability matching (0.27),
and random selection (0.2).

For the adaptive pursuit updating scheme the prob-
ability of choosing the optimal operator a∗

AdaPursuit

is

Prob[as = a∗
AdaPursuit] = 1− (K − 1) · Pmin

= 0.6 .

The expected reward becomes

E [RAdaPursuit]

=
KX

a=1

E [Ra]Prob[a
s = a]

= Pmax E [Ra∗] + Pmin

KX

a=1,a �=a∗
E [Ra]

= 4 .

The computed expected rewards and probabilities of apply-
ing the optimal operator show that both adaptive alloca-
tion rules have a better performance than the non-adaptive
strategy that simply selects each operator with equal prob-
ability. More interesting, they also show that - after con-
vergence - the adaptive pursuit algorithm has a significantly
better performance than the probability matching algorithm
in the stationary environment. The probability matching al-
gorithm will apply the optimal operator in only 27% of the
trials while the pursuit algorithm will be optimal in 60% of
the cases. Similarly, the probability matching algorithm has
an expected reward of 3.3 versus an expected reward of 4 for
the pursuit method. Of course, this assumes that both adap-
tive strategies are able to converge correctly and rapidly. For
non-stationary environments it is vital that the adaptive al-
location techniques converge quickly and accurately, and at
the same time maintain the flexibility to swiftly track any

1542

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 r
ew

ar
d

Time steps

Adaptive pursuit
Probability matching

Figure 2: The average reward received at each time
step in the non-stationary environment with switch-
ing interval ∆T = 50 time steps (learning rates
α = 0.8; β = 0.8; Pmin = 0.1; K = 5; results are aver-
aged over 100 runs). The horizontal lines show the
expected values for the non-switching, stationary
environment for resp. adaptive pursuit (4), prob-
ability matching (3.33), and random selection (3).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
ro

ba
bi

lit
y

op
tim

al
 o

pe
ra

to
r

ap
pl

ie
d

Time steps

Adaptive pursuit
Probability matching

Figure 3: The probability of selecting the optimal
operator at each time step in the non-stationary en-
vironment with switching interval ∆T = 200 time
steps (learning rates α = 0.8; β = 0.8; Pmin =
0.1; K = 5; results are averaged over 100 runs).
The horizontal lines show the expected values for
the non-switching, stationary environment for resp.
adaptive pursuit (0.6), probability matching (0.27),
and random selection (0.2).

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

ra
ge

 r
ew

ar
d

Time steps

Adaptive pursuit
Probability matching

Figure 4: The average reward received at each time
step in the non-stationary environment with switch-
ing interval ∆T = 200 time steps (learning rates
α = 0.8; β = 0.8; Pmin = 0.1; K = 5; results are aver-
aged over 100 runs). The horizontal lines show the
expected values for the non-switching, stationary
environment for resp. adaptive pursuit (4), prob-
ability matching (3.33), and random selection (3).

changes in the reward distributions. Experimental results on
the above specified non-stationary environment show that
the adaptive pursuit method does indeed possess these ca-
pabilities. In our first simulation we have taken a switching
interval ∆T = 50 time steps. The results shown are all av-
eraged over 100 independent runs. Figures 1 and 2 clearly
show that the adaptive pursuit algorithm is capable of ac-
curate and fast convergence. At the same time it is very
responsive to changes in the reward distribution. Whenever
the operator-reward associations are reassigned the perfor-
mance of the adaptive pursuit algorithm plunges since it is
now pursuing an operator that is no longer optimal. It does
not take long though for the strategy to correct itself, and
to pursue the current optimal operator again. This is in
contrast with the probability matching algorithm where the
differences between the operator selection probabilities are
much smaller and the changes in the reward distributions
cause only minor adaptations. Of course a more signifi-
cant reaction would be observed for the probability match-
ing method if the rewards would have a much large difference
between them. The key point though is that in practice one
usually will have to deal with reward differences of a few
percent, not an order of magnitude.
In a second experiment we have increased the switching

interval ∆T to 200 times steps (Figures 3 and 4). Given
more time to adapt one can see that both adaptive allocation
strategies approach the values that where computed above
for the stationary environment.
The results in the Figures 1, 2, 3 and 4 were obtained for

a learning rate α = 0.8 when updating Qa(t) in Equation 1,
and a learning rate β = 0.8 when updating Pa(t) in Equa-
tions 3 and 4. These values gave the best performance for
this particular problem instance. Tables 1, 2, 3, and 4 show
the performance for different settings of the learning rates.
For low values of the learning rates the adaptive schemes

1543

do not react swiftly enough to the rapidly changing reward
distributions. Naturally, the high learning rates are only
possible because at each time step an actual reward is given
by the environment. If the rewards would only be given with
a probability less than 1, the learning rates would necessar-
ily be small to ensure meaningful running estimates that are
exponentially, recency-weighted. It should be noted though
that whatever the values of the learning rates the adaptive
pursuit method keeps outperforming the probability match-
ing scheme.

5. CONCLUSION
Adaptive allocation rules are often used for learning the

optimal probability values of applying a fixed set of ex-
ploration operators. Traditionally, the allocation strate-
gies adapt the operator probabilities in such a way that
they match the distribution of the rewards. In this paper,
we have introduced an adaptive pursuit allocation rule and
compared it with the probability matching algorithm in a
non-stationary environment. Calculations and experimental
results show the superior performance of the adaptive pur-
suit method. The strategy converges accurately and rapidly,
yet remains able to swiftly react to any change in the reward
distributions.

6. REFERENCES
[1] P. Auer, N. Cesa-Bianchi, Y. Freund, and R.E.

Schapire. The nonstochastic multiarmed bandit
problem. SIAM j. Computing Vol.32, No.1, pp.48–77,
2002.

[2] D.W. Corne, M.J. Oates, and D.B. Kell. On fitness
distributions and expected fitness gain of mutation
rates in parallel evolutionary algorithms. Proc. 7th
Intern. Conf. on Parallel Problem Solving from
Nature. LNCS Vol. 2439, pp.132–141, 2002.

[3] L. Davis. Adapting operator probabilities in genetic
algorithms. Proc. Third Intern. Conf. on Genetic
Algorithms and their Applications. pp. 61–69, 1989.

[4] A.E. Eiben, R. Hinterding, and Z. Michalewicz.
Parameter control in evolutionary algorithms. IEEE
Transactions on Evolutionary Computation,
3(2):124-141, 1999.

[5] D.E. Goldberg. Probability matching, the magnitude
of reinforcement, and classifier system bidding.
Machine Learning. Vol.5, pp. 407–425, 1990.

[6] T.P. Hong, H.S. Wang, and W.C. Chen.
Simultaneously applying multiple mutation operators
in genetic algorithms. Journal of Heuristics. Vol.6,
pp.439–455, 2000.

[7] C. Igel, and M. Kreutz. Operator adaptation in
evolutionary computation and its application to
structure optimization of neural networks.
Neurocomputing Vol.55, pp.347–361, 2003.

[8] B. Julstrom. What have you done for me lately?
Adapting operator probabilities in a steady-state
genetic algorithm. Proc. Sixth Intern. Conf. on
Genetic Algorithms. pp. 81–87, 1995.

[9] F. G. Lobo, and D. E. Goldberg. Decision making in a
hybrid genetic algorithm. Proc. IEEE Intern. Conf. on
Evolutionary Computation. pp. 122–125, 1997.

[10] D. Schlierkamp-Voosen, and H. Mühlenbein. Strategy
adaptation by competing subpopulations. Proc.
Intern. Conf. of Parallel Problem Solving from Nature
pp.199–208, 1994.

[11] J.E. Smith, and T.C. Fogarty. Operator and
parameter adaptation in genetic algorithms. Soft
Computing No.1, pp.81–87, 1997.

[12] R.S. Sutton, and A.G. Barto. Reinforcement Learning:
an introduction. MIT Press, 1998.

[13] M.A.L. Thathachar, and P.S. Sastry. A Class of
Rapidly Converging Algorithms for Learning
Automata. IEEE Transactions on Systems, Man and
Cybernetics. Vol.SMC-15, pp. 168-175, 1985.

[14] A. Tuson, and P. Ross. Adapting operator settings in
genetic algorithms. Evolutionary Computation Vol.6,
No.2, pp.161–184, 1998.

1544

Probab. Adaptive Pursuit: (β)
α Match. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.10 0.218 0.248 0.272 0.281 0.276 0.290 0.284 0.289 0.288 0.287
0.20 0.229 0.281 0.298 0.315 0.321 0.327 0.329 0.332 0.329 0.340
0.30 0.243 0.313 0.356 0.373 0.381 0.388 0.392 0.386 0.393 0.397
0.40 0.249 0.352 0.401 0.411 0.429 0.427 0.434 0.439 0.436 0.445
0.50 0.254 0.381 0.423 0.443 0.451 0.456 0.448 0.459 0.467 0.471
0.60 0.259 0.392 0.447 0.461 0.474 0.477 0.484 0.484 0.492 0.488
0.70 0.259 0.404 0.448 0.477 0.480 0.490 0.492 0.496 0.496 0.493
0.80 0.257 0.408 0.462 0.478 0.482 0.491 0.495 0.499 0.507 0.502
0.90 0.262 0.404 0.455 0.468 0.476 0.492 0.497 0.493 0.502 0.495

Table 1: The average probability of selecting the optimal operator in the non-stationary environment with
switching interval ∆T = 50 time steps for different adaptation rates α and β (Pmin = 0.1; K = 5; results are
averaged over 100 runs).

Probab. Adaptive Pursuit: (β)
α Match. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.10 3.115 3.269 3.392 3.434 3.442 3.472 3.478 3.489 3.478 3.474
0.20 3.166 3.428 3.515 3.568 3.597 3.607 3.621 3.612 3.625 3.635
0.30 3.221 3.489 3.619 3.669 3.689 3.703 3.713 3.710 3.717 3.730
0.40 3.243 3.553 3.685 3.715 3.746 3.751 3.767 3.777 3.778 3.788
0.50 3.270 3.589 3.715 3.765 3.787 3.791 3.787 3.803 3.812 3.825
0.60 3.276 3.612 3.742 3.791 3.807 3.822 3.831 3.839 3.848 3.844
0.70 3.286 3.634 3.740 3.808 3.815 3.840 3.839 3.856 3.846 3.842
0.80 3.288 3.627 3.758 3.808 3.829 3.830 3.853 3.859 3.871 3.862
0.90 3.308 3.627 3.743 3.789 3.815 3.844 3.845 3.840 3.861 3.851

Table 2: The average reward received in the non-stationary environment with switching interval ∆T = 50
time steps for different adaptation rates α and β (Pmin = 0.1; K = 5; results are averaged over 100 runs).

Probab. Adaptive Pursuit: (β)
α Match. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.10 0.247 0.399 0.414 0.416 0.422 0.423 0.427 0.422 0.423 0.429
0.20 0.257 0.491 0.498 0.508 0.508 0.509 0.515 0.514 0.511 0.516
0.30 0.260 0.520 0.530 0.537 0.537 0.538 0.542 0.540 0.543 0.547
0.40 0.264 0.534 0.546 0.550 0.551 0.554 0.556 0.555 0.559 0.558
0.50 0.265 0.539 0.553 0.557 0.557 0.559 0.559 0.561 0.561 0.562
0.60 0.264 0.537 0.552 0.556 0.558 0.561 0.562 0.565 0.564 0.563
0.70 0.264 0.538 0.552 0.555 0.556 0.560 0.560 0.561 0.560 0.561
0.80 0.267 0.528 0.541 0.549 0.550 0.552 0.557 0.554 0.556 0.560
0.90 0.266 0.521 0.537 0.538 0.546 0.547 0.547 0.549 0.550 0.553

Table 3: The average probability of selecting the optimal operator in the non-stationary environment with
switching interval ∆T = 200 time steps for different adaptation rates α and β (Pmin = 0.1; K = 5; results are
averaged over 100 runs).

1545

Probab. Adaptive Pursuit: (β)
α Match. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.10 3.233 3.719 3.757 3.767 3.768 3.775 3.778 3.780 3.776 3.789
0.20 3.287 3.834 3.853 3.877 3.879 3.879 3.893 3.891 3.887 3.892
0.30 3.302 3.873 3.896 3.916 3.912 3.914 3.922 3.921 3.923 3.934
0.40 3.315 3.886 3.915 3.926 3.932 3.933 3.939 3.942 3.948 3.938
0.50 3.320 3.891 3.925 3.940 3.939 3.945 3.940 3.946 3.946 3.950
0.60 3.323 3.890 3.926 3.936 3.941 3.949 3.947 3.956 3.955 3.951
0.70 3.322 3.894 3.928 3.936 3.943 3.948 3.948 3.947 3.947 3.951
0.80 3.333 3.878 3.912 3.934 3.937 3.934 3.946 3.940 3.945 3.951
0.90 3.329 3.881 3.916 3.913 3.933 3.933 3.933 3.938 3.936 3.944

Table 4: The average reward received in the non-stationary environment with switching interval ∆T = 200
time steps for different adaptation rates α and β (Pmin = 0.1; K = 5; results are averaged over 100 runs).

1546

