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ABSTRACT 
In order to overcome the low convergence speed and prematurity 
of classical genetic algorithm, an improved method named 
directional self-learning of genetic algorithm (DSLGA) is 
proposed in this paper. Through the self-learning operator 
directional information was introduced in local search process. 
The search direction was guided by the false derivative of the 
function fitness. Using the four operators among the individuals, 
the best solution was updated continuously. In experiments, 
DSLGA was tested on 4 unconstrained benchmark problems, and 
the results were compared with the algorithms presented recently. 
It showed that DSLGA performs much better than the other 
algorithms both in the quality of the solutions and in the 
computational complexity. 
Categories and Subject Descriptors:  
G.1.6 [numerical analysis]: Optimization. Global optimization, 
Unconstrained optimization.  

General Terms:  
Algorithms, Measurement, Performance Design 

Keywords: genetic algorithm directional self-learning 
numerical optimization evolutionary computation. 

1. INTRODUCTION 
GAs are adaptive heuristic search algorithm premised on the 
evolutionary ideas of natural selection and genetic. The major 
drawback of GAs is that although they may be efficient in locating 
the basins of the optima, they are often unable to explore these 
basins effectively and quickly in order to find the exact global 
optimization with a high degree of accuracy and within a small 
number of generations. To cope with this inefficiency, several 
hybrid genetic schemes have been suggested, such as 
microgenetic algorithm(MGA) [1], orthogonal genetic 
algorithm(OGA/Q) [2], multiagent genetic algorithm(MAGA) [3], 
fast evolutionary programming(FEP) [4], and so on. These 
algorithms proved to be effective and boosted the development of 
genetic algorithms. 

In recent years, researchers have realized that the combination of 
GAs with local search techniques can improve the quality of the 

solving problems on numerical optimizations. There are many 
methods on local search techniques. Reference [1] introduced an 
application of microgenetic algorithm and obtained better 
performance. Enlightened by them, this paper integrates 
microgenetic algorithm with GAs to form a new algorithm, 
directional self-learning of genetic algorithm (DSLGA), for 
solving the global numerical optimization problems.  

2. THE CONSTRUCTION OF THE 
DIRECT-IONAL FALSE DERIVATIVE 
In GAs, the crossover strategy will make the candidate solutions 
in the random position, the search speed decreased accordingly. 
The directional false derivative is presented which uses the linear 
function to approximate the search direction. The global 
numerical optimization can be formulated as the following 
objective function 

1 2min ( ), ( , , , )nf x x x x x S= ∈L                     (1) 

where nS R⊆  defines the search space which is an n-
dimensional space bounded by the parametric 
constraints , 1,2, ,i i ix x x i n≤ ≤ = L . Thus, [ , ]S x x= , where 

1 2( , , , )nx x x x= L  and 1 2( , , , )nx x x x= L . Under the condition of 
without prior knowledge, we can use the fitness values to estimate 
the search direction.  
If the search direction can be approximated using the linear 
function, the normal search direction can be showed that 

( ( ) (min )) / ( )i i id fit x fit fit x= −                           (2) 
where (min )ifit  and ( )ifit x  are the minimum fitness and the 
individual fitness respectively. 

3. THE DIRECTIONAL SELF-LEARNING 
OPERATOR 
Hill-climbing operators in GAs are employed in [5], [6] for 
solving the continuous variable problems. Self-learning operator 
realizes its local search in the micro population genetic algorithm. 
In the self-learning operator, first of all, the self-learning 
population, L , is generated. The size of the L  is sizeL , and all the 
individuals, ,1 ,2 ,( , , , )i i i i nL L L L= L , 1,2, , sizei L= L  where n  is the 
dimension of the function, are generated according to 
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where 
,1 ,2 ,( , , , )i i i i nNew e e e= L  is determine by the equation as 

follows. 
, , (1 ,1 )i k i ke x U sradius sradius= ⋅ − +                       (4) 

where [0,1]sradius ∈  represents the search radius. 
Let 1 2( , , , )i nMax m m m= L  is the maximum fitness individual 

among L , namely, a L∀ ∈  ( ) ( )ifit a fit Max≤ . If iL  satisfies 
(5), it is a winner; otherwise it is a loser. 

( ) ( )i ifit L fit Max>                                     (5) 
If 

iL  is a winner, it can still live in the population. If iL  is a loser, 
it must die, and it will be occupied by iMax . iMax  has two 

strategies to occupy the iL , and it select them with probability
0p . 

If ( ) 00,1U p< , occupying strategy 1 is selected; otherwise 
occupying strategy 2 is selected. In the two occupying strategies, 

iMax  first generates a new individual, 1 1 1 1
,1 ,2 ,( , , , )i i i i nNew e e e= L , and 

then 1
iN ew  is used to occupy the iL . 

In occupying strategy 1, using the linear approximate direction d  
can direct to find better solutions and shorten the search time to 
improve the convergence speed. 1

iNew  is determined by, 
1
, , , ,*( )    k=1,2, ,ni k i k i k i ke m d m L= + − L                      (6) 

In occupying strategy 2, 1
iNew  is first mapped on [0,1]  according 

to the equation (7). 
( ) ( )' /           1,2, ,i im m x x x i n= − − = L                  (7) 

Then ' ' ' '
,1 ,2 ,( , , , )i i i i nNew e e e= L  is determined by 

( )
1 2 2 1 1 2 2

' ' ' ' ' ' ' ' ' ' '
1 2 1 1 1 1 2, , , , , , , , , , , ,i i i i i i i i nNew m m m m m m m m m m− − + + += L L L         (8) 

where 1 2 1 21 ,1 ,i n i n i i< < < < < . Finally, 1
iNew  is obtained by 

mapping 1
iNew  back to [ ],x x  according to 

( )1 '
, ,          1,2, ,i k i ke x e x x k n= + ⋅ − = L                          (9) 

Then the new mutation individual, 2 2 2 2
,1 ,2 ,( , , , )i i i i nNew e e e= L , is 

obtained according to the follows. 
2 1
, , (0,1/ ) i k i ke e G t= +                                       (10) 

where (0,1/ )G t  is a Gaussian random number generator, and t  is 

the evolution generation. Then, ix  is replaced by 2
iNew . 

4. EXPERIMENTAL STUDIES ON 
GLOBAL NUMERICAL OPTIMIZATION 
Here some benchmark functions are adopted to test the 
performance of DSLGA. 
F1 Minimize 1 2 2 2
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x*=(420.9687, 420.9687, …, 420.9687),  f(x*)=-12569.5. 
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f(x*)=0. 
The experiment studies the performance of DSLGA on functions 
with 30 dimensions. The termination criterion of DSLGA is one 
of the objectives, minbestf f ε− < , is achieved, where 

bestf  and minf  
represent the best solution found until the current generation and 
the global optimum, respectively. To consistent, 310ε −=  and the 
maximum generation being 2000 are used for all functions. In the 
following experiments, the parameter settings are: N=100, pc=0.9, 
pm=0.1, sLsize=10, p0=0.2, sradius=0.2, sgen=10. 

Table 1. The comparisons between FEP and DSLGA 
Mean value 

(standard deviation) Mean function value f fmin 
FEP DSLGA FEP DSLGA 

F1 0 5.06 
5.87 

5.395×10-4 
(3.187×10-4) 2 000000 111 635 

F2 -12569.5 -12554.5 
(52.6) 

-12569.46 
(8.784×10-3) 900 000 124 481 

F3 0 9.2×10-6 
(3.6×10-6) 

7.825×10-7 
(2.505×10-7) 150 000 38 402 

F4 0 1.6×10-4 
(7.3×10-5) 

7.820×10-5 
(2.515×10-5) 150 000 12 388 

5. CONCLUSION 
An improved genetic algorithm based on directional self-learning 
operator was proposed in this paper. It can obtain the optimization 
by competition, cooperation and self-learning operators. In 
experiments, benchmark problems are used to test the 
performance of DSLGA and the results compared with FEP. The 
comparison results show that the method presented in this paper 
has not only global but also local search abilities and can avoid 
prematurity while maintain the diversity of the population. 
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