
Normalization for Neural Network
in Genetic Search

Jung-Hwan Kim
School of Computer Science

and Engineering
Seoul National University
Shilim-dong, Kwanak-gu,

Seoul, 151-742 Korea

aram@soar.snu.ac.kr

Sung-Soon Choi
School of Computer Science

and Engineering
Seoul National University
Shilim-dong, Kwanak-gu,

Seoul, 151-742 Korea

sschoi@soar.snu.ac.kr

Byung-Ro Moon
School of Computer Science

and Engineering
Seoul National University
Shilim-dong, Kwanak-gu,

Seoul, 151-742 Korea

moon@soar.snu.ac.kr

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Genetic Algorithms

Keywords
Neural network, Isomorphism, Transformation, Normaliza-
tion, Distance measure

1. INTRODUCTION
Genetic algorithms (GAs) are heavily used in neural net-

work (NN) modeling for the evolution of connection weights,
network architectures, learning rules, and control parame-
ters of networks. The effectiveness of an evolutionary method
for the neural network optimization highly depends on the
genotype coding of neural networks.

An arbitrary neural network has a number of functionally
equivalent other networks. This causes redundancy in ge-
netic representation of neural networks, which considerably
undermines the merit of crossover in GAs. This problem
has received considerable attention in the past and has also
been called the “competing conventions” problem [1, 2]. If
the functional equivalence or redundant topological repre-
sentation of the network is not considered in the genetic
framework, it is hard to overcome the poor search capabil-
ity of the neural network.

A typical multilayer neural network consists of input, out-
put, and hidden layers. The neurons in the hidden layer
enable the network to learn complex tasks by progressively
extracting more meaningful features from the input patterns
and to form the rules classifying the input patterns. Us-
ing a GA requires to define a genotype coding of neural
networks: The weights of a neural network can be repre-
sented by a 2D matrix and thus they are intrinsically suit-
able for two-dimensional encoding. In this paper, we use a
two-dimensional encoding for the genetic representation and
employ 2D geographic crossover which demonstrated good
performance for the neural network optimization problem

Copyright is held by the author/owner.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
ACM 1-59593-010-8/05/0006.

and the graph partitioning problem. Once the structure of
the neural network is fixed and a neural network is rep-
resented by a 2D encoding, the genotype of a neural net-
work depends on the order of neurons in the structure. All
the hidden neurons are identical when only the connections
(without weights) are considered. They become different
only after they start having weights in the connections.

Some hidden neurons have stronger relationships than
those between ordinary pairs of hidden neurons. However,
the relationship among the hidden neurons has little to do
with neurons’ physical placements. Since the indices of hid-
den neurons are assigned before they start having weights,
there is no guarantee that strongly related neurons are as-
signed close indices one another. This may cause high-
quality schemata to have scattered specific symbols and,
consequently, not to survive well.

In this paper, we transform each neural network to an
isomorphic neural network to maximize the genotypic con-
sistency between two parents. We will show that the trans-
formation can be done in polynomial time or is NP-hard de-
pending on the distance measures between neural networks.
We aim to develop a better genetic algorithm for neural net-
work optimization by helping crossover better inherit com-
mon functional characteristics of the two parents. This is
achieved by protecting “phenotypic” consistency and, conse-
quently, preserving building blocks with promising schemata.
We will show the experimental results with well known med-
ical datasets for classification.

2. ISOMORPHISM AND NORMALIZATION
Given a neural network, let Ni, Nh, and No be the num-

bers of input neurons, hidden neurons, and output neurons
in the network, respectively. And let N = Ni + Nh + No

be the total number of the neurons in the neural network.
We assume that Nh is not too small relative to N , more for-
mally, Nh = Θ(N). We denote a neural network � by � =
{h1, . . . ,hJ}, where hj = [wi

j1, . . . , w
i
jNi

, wh
1j , . . . , w

h
Nhj , w

o
1j ,

. . . , wo
Noj ]

T and wi
jk, wh

kj , and wo
kj are the synaptic weights

from input neuron k to hidden neuron j, from hidden neuron
j to hidden neuron k, and from hidden neuron j to output
neuron k, respectively. Let SJ be the set of all the per-
mutations of the set {1, . . . , J} where J is the number of
hidden neurons. We define the neural network isomorphism
as follows:

1581



inputs inputs

output output

1 2 12

0.138

0.1380.427

0.427

−0.392

−0.3920.016

0.016

−0.035 −0.0350.802 0.802

�A �B

Figure 1: Two isomorphic neural networks

Normalize(�,�′)
{

do {
Q ← ∅;
�

′
0 ← �

′;
for i ← 1 to Nh/2 {

choose a, b ∈ {1, 2, . . . , Nh} −Q
such that �(�,�′

i−1[a, b]) is minimal;
Q ← Q ∪ {a, b};
�

′
i ← �

′
i−1[a, b];

}
choose k ∈ {0, 1, . . . , Nh/2}

such that �(�,�′
k) is minimal;

�
′ ← �

′
k;

} until (there is no improvement);
return �′;

}

Figure 2: The KL-style heuristic for the normaliza-
tion based on the measure �

Definition 1. For two neural networks � = {h1, . . . ,hJ}
and �′ = {h′

1, . . . ,h
′
J}, � is isomorphic to �′ (� � �′)

if and only if there exists a permutation p ∈ SJ such that
hp(j) = h′

j ∀j = 1, . . . , J .

From the definition, two isomorphic neural networks are con-
structed essentially in the same way. In other words, a neu-
ral network can be transformed to another isomorphic neural
network by appropriate permutation of the hidden neurons.

In Figure 1, two neural networks �A and �B look dif-
ferent from each other. In other words, they have different
representations. However, they are isomorphic because of
their equivalent functionality; they output the exactly same
value with respect to the same input vector.

If we perform crossover with two functionally similar solu-
tions with significantly different shapes, the offspring will be
significantly different from both parents. If we crossover the
two solutions as they stand in appearance, the common se-
mantic characteristics of the two neural networks are prone
to be broken in the process of crossover. From a parent’s
point of view, the crossover is like too strong a mutation.
We minimize this “visual inconsistency” before crossover.

We transform one of the parents in relation to the other
so that high-quality schemata are well preserved and com-
bined. We call such a transformation normalization. More

Table 1: Comparison of Normalization Methods
WBCD CHDD TDD

Base 96.47 (96.91) 80.61 (82.74) 94.54 (94.72)
�1 2Opt 96.78 (97.42) 82.03 (85.79) 95.19 (96.44)
�1 KL 96.72 (97.42) 82.16 (84.26) 95.16 (96.47)
�2 HM 96.89 (97.42) 82.07 (83.82) 94.83 (94.97)
�3 2Opt 97.03 (97.43) 83.36 (85.15) 95.65 (96.53)
�3 KL 97.21 (97.60) 84.26 (85.83) 95.77 (96.85)

formally, let � be the set of the neural networks and ��
be the set of the networks that are isomorphic to a network
� ∈ �. Suppose a distance measure � : �×�→ � defined
on a pair of networks that measures the genotypic distance of
the two networks. Given parents �,� ∈ �, the normaliza-
tion operator transforms� to�′ ∈ �� such that �(�,�′)
is minimal among all the networks in ��. Selecting a suit-
able measure is crucial in the normalization operator design
since the difficulty of the problem with respect to genetic
algorithms considerably depends on the distance measure.
It is important to design the measure so that high-quality
schemata are well preserved and combined.

Figure 2 describes the heuristic for the normalization. In
general, evaluating the distance �(�,�′) between given two
networks � and �′ consumes Θ(N2) time from the defini-
tions of the measures. By considering only the gains in the
distance and updating the gains deliberately in the search
process, we have the time complexity O(N3

h) for a pass of
the outermost loop. Here we assumed Ni + No = O(Nh).
We observed that the number of iterations of the outermost
loop is bounded by a small constant. Thus the typical com-
plexity of the heuristic is O(N3

h).
Table 1 shows the classification results. In the table,

“Base” represents the results of the neuro-genetic hybrid
without normalization. �i B denotes the neuro-genetic hy-
brid with normalization by B on distance measure �i. The
two values in each experiment show the mean and the best
classification results, respectively, from 50 trials. The nor-
malization methods for the neural network overall showed
improvement over the one without normalization. Among
the five methods of normalization, the method �3 KL showed
the best results. This tendency was consistent in all of the
three test problems. The results also showed that the learn-
ing degrees are more informative than the weights them-
selves.

Acknowledgment
This work was supported by grant No. (R01-2003-000-10879-
0) from the Basic Research Program of the Korea Science
and Engineering Foundation. This was also partly sup-
ported by the Brain Korea 21 Project. The ICT at Seoul Na-
tional University provided research facilities for this study.

3. REFERENCES
[1] N. J. Radcliffe. Genetic set recombination and its

application to neural network topology optimization.
Neural Computing and Applications, 1:67–90, 1993.

[2] D. Thierens. Non-redundant genetic coding of neural
networks. In IEEE International Conference on
Evolutionary Computation, pages 571–575, 1996.

1582


