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ABSTRACT
Convergence to correct solutions in Genetic Algorithms de-
pends largely on the fitness function. A fitness function that
captures all goals and constraints can be difficult to find.
This paper gives a mathematical justification for a fitness
function that has previously been demonstrated experimen-
tally to be effective.
Categories and Subject Descriptors: I.2.6 [Artificial
Intelligence]: Learning, D.4.6 [Operating Systems]: Security
and Protection.
General Terms: Algorithms, Security.
Keywords: Genetic Algorithms, Fitness Function, Intru-
sion Detection Systems.

1. INTRODUCTION
This paper focuses on an off-line intrusion detection sys-

tem known as GASSATA [5] that uses a Genetic Algorithm
(GA) to search for matches in the audit trail. Unfortunately
the parameters for the fitness function cannot be tuned to
effectively detect all possible attacks found in an audit trail
while still avoiding false positives (warnings of attacks that
do not exist) and false negatives (failing to detect real intru-
sions). Here we mathematically justify an improved fitness
function independent of parameters.

2. GASSATA& INTRUSION DETECTION
GASSATA [5] is a tool for security audit trail analysis that

performs misuse detection by comparing the user’s behavior
(OV vector) to a matrix of known attacks (AE). GAS-
SATA explains the audit trail data by hypothesizing one
or more attacks (I vector), and uses a heuristic method—
GAs—because explaining the data is an NP-Complete prob-
lem. The fitness function used in GASSATA is:

F (I) = α +

NaX
i=1

Wi ∗ Ii − β ∗ T 2
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where α maintains F (I) > 0, Na is the number of known
attack types, W is a one-dimensional array of length Na

called the weighted vector that gives the risk of each attack, I
is a one dimensional vector of length Na called the hypothesis
vector (Ii = 1 if attack i is present, Ii = 0 otherwise), and
β slopes the penalty function T 2.

To explain the audit trail data by the occurrence of one or
more attacks, GASSATA attempts to find an I that maxi-
mizes W ·I. To evaluate the constraint, the algorithm counts
the number of events of each type generated by all the at-
tacks hypothesized in I. If these numbers are less than or
equal to the number of events OV , then the hypothesis is
realistic but if some of those numbers are greater than the
number of events that occurred, then the hypothesis is pe-
nalized, i.e., if (AE · I)i > OVi, a failure is added [5].

Good results with GASSATA have been reported [5] but
we had poor results when we attempted to duplicate it [1].
We set various values to parameters α, W and β, however
we always obtain many false positives and some false neg-
atives. As an example, we use the fitness function F (I) =

4.0 +
PNa

i=1 Ii − (1/20) ∗ T 2 and obtain 217% false positives
and 20% false negatives—100% corresponds to 4 actual in-
trusions. Further experimental results led us to propose a
new fitness function [2].

3. NEW FITNESS FUNCTION PROPOSED
The term

PNa
i=1 Ii was incorrectly guiding the GA and the

term T 2 was excessively penalizing false positives [2]. So the

solution proposed removes
PNa

i=1 Ii and it uses as a penalty
function T 1, taking into account that if two intrusions re-
late to the same event with an overestimate of the number
of events hypothesized then they should be counted them
twice, and so forth. Call this T ′.

With this in mind and the experience gained with testing,
the fitness function proposed only has the penalty function.
As the number of events is Ne, the new fitness function sug-
gested is F (I) = Ne−T ′. This is paired with a combination
method based on a bitwise logical ‘or’ for alleles at each lo-
cus [2]. With this system there are no false positives and
the number of false negatives decreases dramatically. This
time 70 runs were performed with different data (some data
was downloaded from the Lincoln Laboratory [3]) and only
one time a false negative was present.

While the fitness function suggested here certainly ap-
pears to function well, given the empirical data we have
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obtained, the question remains as to whether this fitness
function can be justified mathematically. The following sec-
tion shows that it can be.

4. MATHEMATICAL JUSTIFICATION
The problem is to find the vector I that maximizes

F (I) = W · I (1)

subject to

(AE · I)i ≤ OVi (2)

and Ii ∈ {0, 1} for 0 ≤ i ≤ Na

We can abbreviate the constraints given in Equation 2 us-
ing polynomials cj in I and ajk ∈ AE, following the notation
suggested by Ham [4] as

cj(I) = aj1I1+aj2I2+···+ajnIn−OVj for 0 ≤ j ≤ Ne (3)

and we can join the objective function in Equation 1 with
constraint in Equation 2 to obtain the energy function [4]

E(I, K) = W · I + K

NeX
j=1

Φ[cj(I)] (4)

where the positive parameter K controls how well the un-
constrained optimization problem in 4 to 6 approximates the
original Linear Problem in 1 to 2

Φ[cj(I)] =


= 0 if cj(I) ≤ 0
> 0 if cj(I) > 0

(5)

Ii ∈ {0, 1} for 0 ≤ i ≤ Na (6)

and as we want to maximize E, Φ(t) must be differentiable
with the property in Equation 5.

For simplicity, the function Φ(t) commonly selected is [4]

Φ(t) =


= 0 for t ≤ 0
= 1

2
t2 for t > 0

(7)

and now finding the partial derivative of E in Equation 4
with respect to I we obtain

∂E(I, K)

∂I
= W + K

NeX
j=1

Ψ[cj(I)]
∂

∂I
[cj(I)] (8)

where Ψ(v) = dΦ(v)
dv

= Φ′(v) = v.

Using Equation 3 to find ∂
∂I

[cj(I)], Equation 8 gives [4]

∂E(I, K)

∂I
= W + K

NeX
j=1

Ψ[cj(I)][aj1 aj2 · · · ajn]T (9)

and as Ψ[cj(I)] = cj(I), substituting in Equation 9 and
equating to 0—we are finding a maximum—we obtain

∂E(I, K)

∂I
= W + K

NeX
j=1

cj(I) ∗ [aj1 aj2 · · · ajn]T = 0. (10)

Then using Equation 3 again we obtain

NeX
j=1

(aj1I1 + aj2I2 + · · ·ajnIn) ∗ [aj1 aj2 · · · ajn]T

= −W
K

+

NeX
j=1

OVj ∗ [aj1 aj2 · · · ajn]T

(11)

Taking vector components in Equation 11 we get for 1 ≤
i ≤ n = Na

NeX
j=1

(aj1I1 + aj2I2 + · · ·ajnIn) ∗ aji

= −Wi
K

+

NeX
j=1

OVj ∗ aji

(12)

that can be written, having in mind that aji corresponds to
AEji, as

NeX
j=1

(AE · I)j ∗ aji = −Wi

K
+

NeX
j=1

OVj ∗ aji (13)

As W , the weighted vector, is such that ∀i Wi ≥ 0 and
K is a parameter that approaches positive infinity [4] then
Equation 14 must be satisfied by a maximum I of Equa-
tion 4.

(AE · I) ·

26664
a1i

a2i

...
aNei

37775 ≤ OV ·

26664
a1i

a2i

...
aNei

37775 (14)

And what we actually did, with the fitness function pro-
posed, was to find I such that

(AE · I)j ≤ OVj , for 1 ≤ j ≤ Na (15)

that clearly satisfies Equation 14, because
aji ≥ 0, for 1 ≤ j ≤ Ne, 1 ≤ i ≤ Na, with aji ∈ AE;
Ii ∈ {0, 1}, for 1 ≤ i ≤ Na, with Ii ∈ I; and
OVj ≥ 0, for 1 ≤ j ≤ Ne, with OVj ∈ OV .
Thus, the fitness function we have proposed is justified

mathematically.

5. CONCLUSIONS & FUTURE WORK
This paper shows some difficulties in providing accurate

values to parameters in the fitness function suggested in
GASSATA [5] and justifies a solution independent of vari-
able parameters, making the fitness function to solve this
problem quite general and independent of the audit trail
data. This paper used, in part, methodology used in the
neural networks field [4] for linear programming with inequal-
ity constraints.
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