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ABSTRACT 
This paper presents the results of a fair comparison between a 
messy GA and a permutation based simple GA as applied to a job 
shop scheduling system. An examination is made at a macro level 
in terms of performance and quality of schedules achieved and 
conclusions are drawn as to the superiority of messy GA or 
otherwise.  

Categories and Subject Descriptors 
I.2 [Artificial Intelligence]  

General Terms 
Algorithms. 

Keywords 
Messy Genetic Algorithms, Repeating Permutation 
Representation, Job Shop Scheduling. 

1. RESULTS 
The following results for the permutation-based system are 
achieved using an implementation of the GALIB library [1], 
which had to be extended greatly to handle permutations with 
repetition. Parameters used are those identified as most suitable by 
Mattfeld [2]. Likewise for the messy GA we implemented the 
source code made available by [3]. This too had to be extended 
and parameters used are those similar to those, which have been 
used in the OMEGA system albeit for a different type of 
scheduling problem. Table 1 lists these parameters. All tests 
involve 50 runs on identical machines running Windows 2000 and 
with a Pentium platform. 
We examine this problem for two fronts. First we examine the 
performance in terms of makespan for 2 benchmark problems: 
ft10 [15] and a 15 x 15 [16] instance from the Taillard benchmark 
sets, given equal population sizing parameters. We then examine 
the performance of the systems given equal processing times. For 
the FT10 benchmark we test both simple and messy GA with 
population sizes 100 & 200 running over 200 generations (Figure 
1 & 2). Other parameters are as in Table 1. Here we see that 
simple GA outperforms mGA in terms of makespan achieved. The 
optimum for this problem is 930, and while simple GA with active 
scheduling often attains scores about 950, we see that mGA never 
scores higher than 990. 

Table 1 Parameters used in each system 
Parameter Simple GA Messy GA 
Pop. Size Varies Varies 
Generations 200 25 
Crossover GOX 0.6 Splice  (0.01) 
Mutation PBM 0.03 0.0 
Era    -------- 4 
Epoch    -------- 2 
Elitism   Yes Yes 
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Figure 1 Makespan achieved for FT10 (population size 100) 
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Figure 2 Makespan achieved for FT10 (population size 200) 
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Figure 3 Average makespan achieved on a Taillard problem 
averaged over 50 runs with population size 100. 
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Figure 4 Average makespan achieved on a Taillard problem 
averaged over 50 runs with population size 200. 
 
Figures 8, 9 0 highlight the performance of both GA systems with 
the Taillard benchmark problem.  The best-known makespan for 
this is 1251. Here active scheduling in the simple GA outperforms 
mGA consistently.  
The t-Test results for the above experiments are presented in 
Tables 4 and 5, and they support the conclusions presented in this 
section. 

Table 2 t-Test results for comparisons of Messy and Simple 
GA systems using an active schedule builder. 

Comparison 2-tailed P-Value 
FT10 (pop 100) 7.87E-164 
FT10 (pop200) 4.173E-15 
Taillard (pop 100) 4.108E-37 
Taillard (pop 200) 2.102E-37 

 
Given that the CPU time is less in messy GA than in simple GA, 
we present the results of tests focusing on whether a Messy GA 
given equal CPU time as a simple GA, can perform as well as the 
latter. We find that though there is improvement with mGA, the 
simple GA outperforms the messy GA consistently. Figure 15 
highlights the performance of mGA and the simple GA given 
equal processing time. The difference between makespans 
achieved narrows only slightly. 
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Figure 5 mGA and simple GA given equal processing time 
with population size 100 
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Figure 6 mGA and Simple GA given equal processing time 
with population size 200 

2. CONCLUSIONS 
From the above comparisons a number of findings are apparent. 
While the messy GA performs better in terms of computation 
time, the quality of its makespans are not as good as those in the 
permutation based GA. When given equal CPU time mGA does 
not improve correspondingly. Also the results indicate that the 
simple GA scales up better in terms of its performance. It seems 
that in terms of job-shop scheduling, that the advances made in 
overcoming the linkage problem with mGA, are not in themselves 
sufficient in helping to tackle JSSP, and that with more difficult 
problems, some further issues have arisen which have limited its 
ability.  
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