
A Comparison of Messy GA and Permutation based GA
for Job Shop Scheduling

Pio Fenton
Cork Institute of Technology

Cork
Ireland

+353863814019
pfenton@cit.ie

Paul Walsh
Cork Institute of Technology

Cork
Ireland

+353871348353
pwalsh@cit.ie

ABSTRACT
This paper presents the results of a fair comparison between a
messy GA and a permutation based simple GA as applied to a job
shop scheduling system. An examination is made at a macro level
in terms of performance and quality of schedules achieved and
conclusions are drawn as to the superiority of messy GA or
otherwise.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]

General Terms
Algorithms.

Keywords
Messy Genetic Algorithms, Repeating Permutation
Representation, Job Shop Scheduling.

1. RESULTS
The following results for the permutation-based system are
achieved using an implementation of the GALIB library [1],
which had to be extended greatly to handle permutations with
repetition. Parameters used are those identified as most suitable by
Mattfeld [2]. Likewise for the messy GA we implemented the
source code made available by [3]. This too had to be extended
and parameters used are those similar to those, which have been
used in the OMEGA system albeit for a different type of
scheduling problem. Table 1 lists these parameters. All tests
involve 50 runs on identical machines running Windows 2000 and
with a Pentium platform.
We examine this problem for two fronts. First we examine the
performance in terms of makespan for 2 benchmark problems:
ft10 [15] and a 15 x 15 [16] instance from the Taillard benchmark
sets, given equal population sizing parameters. We then examine
the performance of the systems given equal processing times. For
the FT10 benchmark we test both simple and messy GA with
population sizes 100 & 200 running over 200 generations (Figure
1 & 2). Other parameters are as in Table 1. Here we see that
simple GA outperforms mGA in terms of makespan achieved. The
optimum for this problem is 930, and while simple GA with active
scheduling often attains scores about 950, we see that mGA never
scores higher than 990.

Table 1 Parameters used in each system
Parameter Simple GA Messy GA
Pop. Size Varies Varies
Generations 200 25
Crossover GOX 0.6 Splice (0.01)
Mutation PBM 0.03 0.0
Era -------- 4
Epoch -------- 2
Elitism Yes Yes

1000.00
1080.00
1160.00

1240.00
1320.00
1400.00
1480.00

10
0

22
00

50
00

77
00

10
60

0
13

20
0

16
90

0
Evaluations

M
ak

es
pa

n

Active Simple Active Messy
SA Simple SA Messy

Figure 1 Makespan achieved for FT10 (population size 100)

980.00
1030.00
1080.00
1130.00
1180.00
1230.00
1280.00
1330.00

10
0

10
00

22
00

35
00

50
00

63
00

77
00

93
00

10
60

0

11
90

0

13
20

0

15
20

0

Evaluations

M
ak

es
pa

n

Active Simple Active Messy
SA Simple SA Messy

Figure 2 Makespan achieved for FT10 (population size 200)

Copyright is held by the author/owner(s).
GECCO’05, June 25-29, 2005, Washington, DC, USA.
ACM 1-59593-010-8/05/0006.

1593

1350.00
1400.00
1450.00
1500.00
1550.00
1600.00
1650.00
1700.00
1750.00
1800.00
1850.00

10
0

22
00

50
00

77
00

10
60

0
13

20
0

16
90

0

Evaluations

M
ak

es
pa

n

Active Simple Active Messy
SA Simple SA Messy

Figure 3 Average makespan achieved on a Taillard problem
averaged over 50 runs with population size 100.

1380.00
1430.00
1480.00
1530.00
1580.00
1630.00
1680.00
1730.00
1780.00

10
0

22
00

50
00

77
00

10
60

0
13

20
0

16
90

0

Evaluations

M
ak

es
pa

n

Active Simple Active Messy
SA Simple SA Messy

Figure 4 Average makespan achieved on a Taillard problem
averaged over 50 runs with population size 200.

Figures 8, 9 0 highlight the performance of both GA systems with
the Taillard benchmark problem. The best-known makespan for
this is 1251. Here active scheduling in the simple GA outperforms
mGA consistently.
The t-Test results for the above experiments are presented in
Tables 4 and 5, and they support the conclusions presented in this
section.

Table 2 t-Test results for comparisons of Messy and Simple
GA systems using an active schedule builder.

Comparison 2-tailed P-Value
FT10 (pop 100) 7.87E-164
FT10 (pop200) 4.173E-15
Taillard (pop 100) 4.108E-37
Taillard (pop 200) 2.102E-37

Given that the CPU time is less in messy GA than in simple GA,
we present the results of tests focusing on whether a Messy GA
given equal CPU time as a simple GA, can perform as well as the
latter. We find that though there is improvement with mGA, the
simple GA outperforms the messy GA consistently. Figure 15
highlights the performance of mGA and the simple GA given
equal processing time. The difference between makespans
achieved narrows only slightly.

940
960
980

1000
1020
1040
1060
1080
1100
1120
1140

18
.35

6

12
2.5

96

22
6.5

95

33
7.4

65

43
7.4

08

55
3.7

96

65
0.1

54

77
3.0

31

87
4.9

88

99
5.5

61

10
96

.97

CPU (s)

M
ak

es
pa

n

Messy Simple

Figure 5 mGA and simple GA given equal processing time
with population size 100

940
960
980

1000
1020
1040
1060
1080
1100
1120

20
.45

9

24
1.3

87

55
4.3

27

78
0.9

93

10
69

.24

13
70

.71

15
86

.66

19
00

.28

21
39

.7

23
86

.42

27
42

.42

CPU TIme (s)

M
ak

es
pa

n

Messy Simple

Figure 6 mGA and Simple GA given equal processing time
with population size 200

2. CONCLUSIONS
From the above comparisons a number of findings are apparent.
While the messy GA performs better in terms of computation
time, the quality of its makespans are not as good as those in the
permutation based GA. When given equal CPU time mGA does
not improve correspondingly. Also the results indicate that the
simple GA scales up better in terms of its performance. It seems
that in terms of job-shop scheduling, that the advances made in
overcoming the linkage problem with mGA, are not in themselves
sufficient in helping to tackle JSSP, and that with more difficult
problems, some further issues have arisen which have limited its
ability.

References

1. www.lancet.mit.edu/ga (accessed 10-January-2005)
2. Dirk Christian Mattfeld, “Evolutionary Search and the

Job-Shop: Investigations on Genetic Algorithms for
Production Scheduling”1995 Spinger- Verlag

3. Dimitri Knjazew “OmeGa: A competent Genetic
Algorithm for Solving Permutation and Scheduling
Problems” 2001, Kluwer Academic Press.

4. Muth, J. F. and Thompson, G. L., eds., Industrial
Scheduling, Englewood Cliffs, N. J.: Prentice-Hall, Inc.,
1963.

5. ta01-ta80 are from É. D. Taillard (1993), “Benchmarks
for basic scheduling problems”, European Journal of
Operational Research 64, Pages 278-28

1594

