
Exploiting Disruption Aversion to Control Code Bloat

Jason Stevens
University of Idaho

Moscow, Idaho, USA

stev0931@uidaho.edu

Robert B. Heckendorn
University of Idaho

Moscow, Idaho, USA

heckendo@uidaho.com

Terry Soule
University of Idaho

Moscow, Idaho, USA

tsoule@uidaho.com

ABSTRACT
The authors employ multiple crossovers as a novel natural
extension to crossovers as a mixing operator. They use this as
a framework to explore the ideas of code growth. Empirical
support is given for popular theories for mechanisms of code
growth. Three specific algorithms for multiple crossovers
are compared with classic methods for performance in terms
of fitness and genome size. The details of the performance
of these algorithms is examined in detail for both practical
value and theoretical implications. The authors conclude
that multiple crossovers is a practical scheme for containing
code growth without a significant loss of fitness.

Categories and Subject Descriptors
Genetic Programming []

General Terms
Algorithms, Experimentation, Performance, Theory

Keywords
code bloat, code growth, effective fitness

1. INTRODUCTION
Code growth (or bloat) is the tendency of variable-length

individuals undergoing simulated evolution to grow pro-
gressively larger without corresponding improvements in
fitness. The increase typically consists of genetic informa-
tion that has little or no functional value. Code growth was
originally observed in genetic programming models - hence
the term code growth - but current research suggests that it
can occur in any variable-length evolutionary model [7, 12].
Code growth can cause a number of serious problems for
evolutionary optimization. Larger individuals often require
significantly more memory for storage. They also use sig-
nificantly more computational time for evaluation and ma-
nipulation of the data structures. Finally, changes to larger

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

individuals (e.g. crossover and mutation) are less likely to
have functional effect, potentially stalling the evolutionary
process. Thus, fully understanding the causes of growth
and finding effective and efficient solutions to prevent code
growth that does not interfere with the discovery of better in-
dividuals is an important goal. This research hopes to make
progress in these directions.

A leading explanation of code growth is that the growth
occurs to protect individuals against the destructive effects of
crossover, thereby making them more resilient [1,7,9]. By re-
silient individuals, we mean individuals whose children are
more likely than average to have the same or better fitness
than their parent. It has recently been suggested that code
growth should only be evolutionarily favored when the in-
creased growth actually leads to increased resiliency and fur-
ther that it generally depends on how the variation operators
(e.g. crossover and mutation) are applied [14]. In particular,
it was hypothesized that, for operators applied with a per-
individual probability, larger programs will be more resilient
and growth will be encouraged; whereas, for operators ap-
plied with a per-site probability, larger programs will not be
more resilient and code growth will not be encouraged [14].
As an example of this difference, crossover is typically ap-
plied with a probability (often 1) per individual, encourag-
ing code growth, while mutation is typically applied with a
probability per site. This means, even with per site mutation,
code growth will occur.

The results presented in this paper have both theoretical
and practical ramifications. Theoretically, they support the
popular hypotheses that code growth does not occur when
crossover is applied at a per-site basis (e.g. longer individu-
als are subjected to more crossovers), provided that mutation
is also on a per-site basis. They support that code growth is
protective and that, in some cases, the active code (exons) of
the genome can be encouraged to decrease in size. From a
practical standpoint, these results suggest that code growth
can be controlled by changing the way in which the proba-
bility of applying the mixing operators is computed.

2. BACKGROUND
The tendency of programs generated using genetic pro-

gramming (GP) to grow without corresponding increases
in fitness (code bloat) is well documented in the GP litera-
ture [1,2,6,7,9,12,16,19]. Growth has also been demonstrated
in non-tree based evolutionary paradigms [8–10,14]. Current
research on code growth in GP strongly suggests that it will
occur in any evolutionary technique which uses variable-size

1605

representations [7, 12] and Langdon has shown that growth
can occur in non-population based search techniques [3].

In roughly-equivalent theories, Nordin and Banzhaf,
McPhee and Miller, and Blickle and Thiele have argued that
code growth occurs to protect programs against the destruc-
tive effects of crossover [1, 7, 9]. Very generally, the the-
ory is that, as the ratio of the size of the functionally im-
portant regions (exons) to total genome length decreases,
the probability that a crossover will affect (and in particu-
lar damage) functionally important regions also decreases.
Several studies have confirmed that crossover is much more
likely to decrease fitness than to increase fitness (destructive
crossovers) [5, 11, 17, 19] and, in most evolutionary models,
different regions within an individual’s ‘genome’ have differ-
ent functional importance. The extreme example is inviable
regions [13, 15]: regions that, even if changed, can not have
an effect on the individual’s fitness. There is generally a limit
to how small the functionally important regions of a genome
can get without harming fitness. So, in variable-length in-
dividuals, the ratio is manipulated primarily by increasing
the length of regions of the genome that are functionally less
important.

However, a decrease in the ratio of the size of functionally
important regions to total genomic length is only protective
if the probability of changing any given site in the genome
(e.g. bit in a binary GA, node in a tree based GP, etc.) is
independent of the overall genome length. On the contrary, if
the probability of changing a particular site is proportional to
the length of the genome, then adding less important regions
simply increases the overall probability of change.

In particular, in an evolutionary system, mutations are typ-
ically applied with a per-site probability. Thus, the probabil-
ity of changing a functionally important site is independent
of the overall length of the genome. It has been confirmed
that mutations applied with a per-site probability do not en-
courage growth and can even discourage it [14]. However,
if the number of mutations per individual is fixed, mean-
ing that as the individual grows longer the probability of any
specific site being mutated decreases, then growth is encour-
aged [17].

Similarly, in tree-based GP, crossover encourages growth
because the probability of a node being affected by crossover
decreases as the size of the tree increases. Each individual
is subjected to one crossover per generation or iteration re-
gardless of the individual’s size and the average size of the
crossed branches (i.e. the average number of nodes affected
by crossover) is generally independent of the individual’s
size. It has been shown that, in models where the number
of sites affected by crossover is a function of the individual’s
size, growth is not encouraged [14].

Previous experiments have explored adjusting mutation
rates with size but have not adjusted crossover rates with
size. If larger individuals would be subjected to more
crossovers, eliminating the protective resilience of a large to-
tal genome size, code growth might not occur. Previous work
reviewed above suggests that, in this case, growth will not be
encouraged.

The experiments in this paper are designed to explore this
hypothesis. In addition to examining a significant question
regarding the causes of code growth, the results of these
experiments may demonstrate a novel, and in some sense,
more natural solution to the problem of code growth.

More specifically, the fact that code bloat may be a reaction

to disruptive pressures suggests that we may be able to use
this reaction to contain code bloat. Since it is not possible to
remove the disruptive features of crossover and mutation, it
might be possible to have the algorithm avoid bloated entries
if disruption increases by length. Therefore, we propose to
vary the intensity of disruption by varying the number of
crossovers in order to control growth but remain with useful
GP.

1. We hypothesize that, if we increase disruption with
size, that the code will reach a balance between defense
and allowable disruption.

2. Furthermore, we hypothesize that, if the solutions can
be found in the set of solutions whose length produces
only relatively low disruption, the algorithm perfor-
mance will not be hurt and answer quality in terms of
length will improve.

In the next section, we will explain the test problems and
algorithms we will use. This will be followed by a section
discussing our results for each problem and some general ob-
servations.

3. THE TEST PROBLEMS
To test our hypotheses, we use two test problems and

four different approaches to increase the disruptive affects
of crossover with size of the genome. The test problems use
radically-different representations, but both allow variable-
size genomes. The four approaches include three ways to
increase disruption and a fourth as a control.

The first problem is the 0-1-4’s problem [18]. This problem
is an idealized problem designed to easily test the insertion
of introns represented by 0’s. The gene is a variable-length
string of 0’s, 1’s and 4’s. The fitness is how close the sum of
the values in the string comes to a given fixed value. In our
case, the value was 100.

The second problem is a general, tree-based GP function
regression problem. This provides an opportunity for a prac-
tical demonstration of code growth control. This is a more
practical test problem than the first and can, in conjunction
with the first, be used to suggest that the behaviors we doc-
ument represent a general rule rather than just an artifact of
a specific problem.

In our experiments, we will try four different approaches
to increase the disruptive pressure on the population (also
referred to as destructive crossover). In all cases, but the con-
trol, the total number of crossovers occurring during the mix-
ing phase between two selected parents is dependent on the
sum of the sizes of the parents involved. No attempt is made
to prevent the areas altered by previous crossovers from be-
ing selected for alteration again in the same pairing. While
the use of multiple crossovers may seem strange at first, it
is a natural extension of a single crossover and is similar to
the way mutation is used. To some degree, this simulates the
varying number of crossover points that may occur by ran-
dom processes in biological crossover.

In the HardEdge approach, a size parameter P and a cross-
over parameter
 are used. If the average size of the two par-
ents is � then the total number of crossovers performed, N
,
is N
 = � 1 if � � P1 +
 otherwise

1606

For a pressure point P = 30 and
 = 2, one crossover would
be performed when the average size of the parents was less
than or equal to 30, while 3 crossovers would be performed
if the average size was larger. Table 1 shows the number of
crossovers by average size for a typical set of parameters P
and
.

In the SoftEdge approach, a size parameter called the
granularity G and a constant
 are used. The total number
of crossovers performed is:N
 = � 1 if � < G
b�=G
 otherwise

As the length increases for the 0-1-4’s problem(and as the
number of nodes increases for the symbolic regression prob-
lem), a steadily-increasing signal of disruption is applied.

The MultiEdge approach is a cross between the soft and
HardEdge. Parameters G, P , and
 are chosen. The total
number of crossovers performed is:N
 = � 1 if � � P
b�=G
 otherwise

Table 1 shows some typical values of N
 for various example
parameter settings and crossover schemes. In all non-control
cases, the disruptive pressure can be increased by reducing
the size of parameters P and G, where applicable, and in-
creasing the size of
.
Table 1: The Number of Crossovers, N
, Dictated by Hard-
Edge (P = 40;
 = 2), SoftEdge (G = 20;
 = 1), MultiEdge(P = 60; G = 20;
 = 2)

Size HardEdge SoftEdge MultiEdge
10 1 1 1
20 1 1 1
30 1 1 1
40 1 2 1
50 3 2 1
60 3 3 1
70 3 3 6
80 3 4 8
90 3 4 8

100 3 5 10

4. RESULTS
We first present the results from the experiments on the0-1-4’s problem. Then, we present the GP problem and com-

pare them.

4.1 The 0-1-4’s Problem
In this problem, we have a variable-length gene composed

of a string of 0’s, 1’s and 4’s. The fitness function is:

fitness = 100� j100� Xx2 gene

xj
The goal is to maximize the fitness. The maximum fitness is100. This problem has the nice feature that the 0’s are clearly
introns, the 4’s are an optimal choice for compact code, and
the 1’s allow for smaller steps in fitness so that the loss of a 1
is not as bad as a loss of a 4. For a control, we ran a GA on the
problem with a single 2-point crossover for each mating. The

details of the algorithm are described in the tableau in Table
2. It is important to note that the size of the crossover seg-
ment size for constant crossover is strongly biased to short
lengths. This makes the average size of the crossover essen-
tially a small constant and makes the amount of disruption
similar, within a constant, in size to that seen in tree-based
crossover.

For all the graphs that follow, the median of the popula-
tion was chosen as the measure. We believe that this best
removes aspects of outliers and allowed us to collect quartile
statistics. However, the use of mean instead does not alter
the appearance of the graphs to any great degree.

Figure 2 shows both the median size and fitness of the pop-
ulations averaged over 100 runs for the 0-1-4’s problem. Our
control cases correspond to the work of Soule et al. [18]. We
find, as did Soule et al., that crossovers that averaged a con-
stant size encouraged code growth, while crossovers whose
crossover segment grew proportionally showed little code
growth. We also see that the rapidly growing code could af-
ford to maintain a fitness close to maximum throughout the
population, while damage from the proportional crossover
caused less than perfect fitness in the populations.

SoftEdge, HardEdge, and MultiEdge algorithms were also
run on the same problem with all the same conditions as
for constant crossover, except that multiple crossovers were
performed as described in the previous section. This in-
creases the damage done, while preserving the exchange of
genetic material as the mechanism. The parameters control
the strength of the size-relative disruptive pressure. Figure 2
shows that, in all three cases, the size is limited to just below
the size boundary where the increased number of crossovers
begins, although SoftEdge had the unexpected property that
individuals would go beyond a soft edge when it was not re-
quired to achieve good fitness only to return to that edge at
some later point. That is, individuals would often approach
a soft edge, pass it, and suddenly come back to it later.

On average, all three methods performed statistically bet-
ter at limiting size than the proportional crossover control
algorithm. The corresponding fitness graph in the same fig-
ure shows that fitness for the three methods is, on average,
better in the population than with the proportional crossover.
The data supports this as a true difference (the error bars do
not intersect as the graph approaches 100 generations for GP
or 2000 generations for GA); however, error bars are not in-
cluded so that the graphs can remain readable.

In most trials, we ran with sufficient pressure to signifi-
cantly slow growth. For SoftEdge and MultiEdge, the growth
was stopped by the first increase (edge) in the number of
crossovers, but occasionally the population moved beyond
the first edge to the second edge before being forced back to
the first edge. The result is that some runs have populations
with a median size that is between the first and second in-
crease in the number of crossovers.

For the 0-1-4’s problem, the punishment in terms of num-
bers of extra crossovers necessary to control code growth was
small. A
 value of 2 or more was effective for HardEdge,
while a
 value of 1 or more was effective for SoftEdge and
MultiEdge. In both fitness and code size, SoftEdge was less
effective than either HardEdge or MultiEdge.

One of the more surprising results of these experiments
relates to the concept of resilience, or effective fitness [9].
Effective fitness is the idea that, under the pressures of de-
structive operators, individuals are more fit if they have a

1607

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000

M
e

d
ia

n
 N

u
m

b
e

r
o

f
F

o
u

rs

Generation

25

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000

M
e

d
ia

n
 N

u
m

b
e

r
o

f
F

o
u

rs

Generation

25
Cntl Const 4’s

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000

M
e

d
ia

n
 N

u
m

b
e

r
o

f
F

o
u

rs

Generation

25
Cntl Const 4’s
Cntl Prop 4’s

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000

M
e

d
ia

n
 N

u
m

b
e

r
o

f
F

o
u

rs

Generation

25
Cntl Const 4’s
Cntl Prop 4’s

SoftEdge Heavy 4’s

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000

M
e

d
ia

n
 N

u
m

b
e

r
o

f
F

o
u

rs

Generation

25
Cntl Const 4’s
Cntl Prop 4’s

SoftEdge Heavy 4’s
SoftEdge Medium 4’s

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000

M
e

d
ia

n
 N

u
m

b
e

r
o

f
F

o
u

rs

Generation

25
Cntl Const 4’s
Cntl Prop 4’s

SoftEdge Heavy 4’s
SoftEdge Medium 4’s

SoftEdge Light 4’s

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000

M
e

d
ia

n
 N

u
m

b
e

r
o

f
F

o
u

rs

Generation

25
Cntl Const 4’s
Cntl Prop 4’s

SoftEdge Heavy 4’s
SoftEdge Medium 4’s

SoftEdge Light 4’s
MultiEdge Heavy 4’s

Figure 1: Average median (the average of the medians)
number of 4’s of individuals over 100 runs of the 0-1-4’s
problem. SoftEdge(G = 5;
 = 1), SoftEdge(G = 25;
 = 1),
SoftEdge(G = 50;
 = 1), MultiEdge(P = 30; G = 20;
 =1).
“higher chance of reproducing accurately” [4]. There are two
processes that can improve effective fitness. The first is inser-
tion of introns, or inactive code, which has a protective ben-
efit for the exons. The second is the reduction in either the
number of exons or the size of the active-code region. This
is referred to as active-code compression [4]. In Figure 3, we
see graphs of the average median number of 1s and 0s that
make up the individuals in 100 sample run populations. No-
tice that, with moderate to heavy application of disruptive
pressure, not only are the introns in the form of 0s removed,
but so are the 1s which only increase the size of the active-
code region of the individual. That is, we see a strong push
for active code compression. Figure 1 shows the correspond-
ing increase in 4s to create the needed fitness. All of this is
in strong contrast to the fact that no such compression occurs
for the control algorithms as we see in Figure 3.

We found that the parameters selected for destructive
crossover are critical to the effectiveness of the GA. With pa-
rameters that apply too much pressure, we saw that the fit-
ness is sacrificed to some degree in order to minimize size.
With HardEdge, a pressure point set low to where individu-
als must pass it to achieve maximum fitness does not retard
code bloat, since individuals simply pass the edge in order to
achieve optimum fitness (once the hard edge about the pres-
sure point is passed, there are no more edges to retard code
bloat). Fortunately, the range of parameters that work well
for this problem is large. Even using less-than-optimal pa-
rameters, we still see good results.

We also experimented with increasing the destructive
crossover pressure by changing the parameters gradually
during execution. We found the effects most encouraging.
By gradually increasing pressure, we were able to completely
remove all introns (0s) from populations when poor choices
were made for initial parameters. From these results, we be-
lieve that destructive crossover may have practical applica-
tions for compressing solutions in addition to retarding code
bloat.

We have seen in this section that with the 0-1-4’s problem
not only is code growth severely retarded while maintaining

fitness, but that active code compression is observed. This
problem had nice diagnostic features, but will this work in
a classic genetic programming environment? In the next sec-
tion, we pick a problem whose encoding and optimization al-
gorithm are quite different to see if these observations might
have general applicability.

4.2 The GP Problem
For this problem, we use a symbolic regression problem.

The goal is to use a tree based GP to estimate a function
based on a set of sample points. The function we targeted
was f(x) = x2�3x+2 with sample points S = f�4; �3; �2; �1; 0; 1; 2; 3; 4g. Each gene maps directly to an estimat-

ing function, bf over the same domain as the target function,f . The fitness is defined as:

fitness = Xx2S(f(x)� bf(x))2
The goal is to minimize the fitness. The minimum fitness is0. Double-precision constants were used and crossover was
the only evolutionary operator. We believe that it is the lack
of mutation that accounts for why the GP was not able to
do better for fitness (without mutations, the GP must manip-
ulate available high-precision, non-integer constants to ap-
proximate integer constants).

Our control algorithm is a tree-based GP with a population
size of 64. Crossover is a subtree exchange where the root of
the subtree is uniformly selected from all nodes but the root.
It is important to see that, in the majority of cases, the subtree
is very small. This is comparable to the strong bias for short
crossover segments in our constant crossover algorithm in
the previous problem. The details of the GP implementation
can be found in the tableau in Table 3. Finally, for practical
reasons, we control runaway code bloat with a 64; 000 node
allocation limit for the population. This is an average of 1000
nodes per individual. We will indicate in the text where this
affects our results.

In Figure 4, we see that the control algorithm using a sin-
gle crossover operation results in the expected runaway code
growth. The SoftEdge algorithm, which produces a mild but
ever-increasing resistance to code growth, seems to actually
accelerate code growth! We noticed many occasions where
light but increasing pressure appears to accelerates growth.
We will investigate this more thoroughly in future work. The
apparent flattening of these two curves in later generations
is due to the node allocation clipping. In fact these curves,
when unbounded, rapidly stall the program with huge trees.

For HardEdge and MultiEdge we see that code growth
is contained and asymptotic to the edge imposed by theP = 150 for these tests. The accompanying fitness graph
shows that, except for SoftEdge, the average median of the
population is the same. Error bars would reinforce this idea,
but were left off for clarity. The performance of SoftEdge is
not as good on average.

Picking a strong enough disruptive pressure was impor-
tant in getting the code growth contained in GP. This is
demonstrated in Figure 5(Right). Here, we see the HardEdge
algorithm applied with varying degrees of punishment. The
more rapid the rise in number of crossovers with size, the
stronger the disruptive pressure. Both algorithms which had
insufficient pressure demonstrated strong growth. (The flat-
tening of the highest curves is again due to the node allo-
cation limit.) The curves for medium and heavy destruc-

1608

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 500 1000 1500 2000

G
A

 M
e

d
ia

n
 S

iz
e

Generation

50

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 500 1000 1500 2000

G
A

 M
e

d
ia

n
 S

iz
e

Generation

50
Control Const

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 500 1000 1500 2000

G
A

 M
e

d
ia

n
 S

iz
e

Generation

50
Control Const
Control Prop

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 500 1000 1500 2000

G
A

 M
e

d
ia

n
 S

iz
e

Generation

50
Control Const
Control Prop

SoftEdge

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 500 1000 1500 2000

G
A

 M
e

d
ia

n
 S

iz
e

Generation

50
Control Const
Control Prop

SoftEdge
HardEdge

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 500 1000 1500 2000

G
A

 M
e

d
ia

n
 S

iz
e

Generation

50
Control Const
Control Prop

SoftEdge
HardEdge
MultiEdge

 85

 90

 95

 100

 105

 0 500 1000 1500 2000

G
A

 M
e

d
ia

n
 F

it
n

e
s
s

Generation

Control Const

 85

 90

 95

 100

 105

 0 500 1000 1500 2000

G
A

 M
e

d
ia

n
 F

it
n

e
s
s

Generation

Control Const
Control Prop

 85

 90

 95

 100

 105

 0 500 1000 1500 2000

G
A

 M
e

d
ia

n
 F

it
n

e
s
s

Generation

Control Const
Control Prop

SoftEdge

 85

 90

 95

 100

 105

 0 500 1000 1500 2000

G
A

 M
e

d
ia

n
 F

it
n

e
s
s

Generation

Control Const
Control Prop

SoftEdge
HardEdge

 85

 90

 95

 100

 105

 0 500 1000 1500 2000

G
A

 M
e

d
ia

n
 F

it
n

e
s
s

Generation

Control Const
Control Prop

SoftEdge
HardEdge
MultiEdge

Figure 2: Average median size and fitness over 100 runs of individuals for the 0-1-4’s problem. SoftEdge(G = 50;
 = 1),
HardEdge(P = 50;
 = 4), MultiEdge(P = 50; G = 25;
 = 1).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000

M
e

d
ia

n
 N

u
m

b
e

r
o

f
O

n
e

s

Generation

Cntl Const 1’s

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000

M
e

d
ia

n
 N

u
m

b
e

r
o

f
O

n
e

s

Generation

Cntl Const 1’s
Cntl Prop 1’s

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000

M
e

d
ia

n
 N

u
m

b
e

r
o

f
O

n
e

s

Generation

Cntl Const 1’s
Cntl Prop 1’s

SoftEdge Heavy 1’s

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000

M
e

d
ia

n
 N

u
m

b
e

r
o

f
O

n
e

s

Generation

Cntl Const 1’s
Cntl Prop 1’s

SoftEdge Heavy 1’s
SoftEdge Medium 1’s

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000

M
e

d
ia

n
 N

u
m

b
e

r
o

f
O

n
e

s

Generation

Cntl Const 1’s
Cntl Prop 1’s

SoftEdge Heavy 1’s
SoftEdge Medium 1’s

SoftEdge Light 1’s

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000

M
e

d
ia

n
 N

u
m

b
e

r
o

f
O

n
e

s

Generation

Cntl Const 1’s
Cntl Prop 1’s

SoftEdge Heavy 1’s
SoftEdge Medium 1’s

SoftEdge Light 1’s
MultiEdge Heavy 1’s

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000

M
e

d
ia

n
 N

u
m

b
e

r
o

f
Z

e
ro

s

Generation

Cntl Const 0’s

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000

M
e

d
ia

n
 N

u
m

b
e

r
o

f
Z

e
ro

s

Generation

Cntl Const 0’s
Cntl Prop 0’s

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000

M
e

d
ia

n
 N

u
m

b
e

r
o

f
Z

e
ro

s

Generation

Cntl Const 0’s
Cntl Prop 0’s

SoftEdge Heavy 0’s

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000

M
e

d
ia

n
 N

u
m

b
e

r
o

f
Z

e
ro

s

Generation

Cntl Const 0’s
Cntl Prop 0’s

SoftEdge Heavy 0’s
SoftEdge Medium 0’s

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000

M
e

d
ia

n
 N

u
m

b
e

r
o

f
Z

e
ro

s

Generation

Cntl Const 0’s
Cntl Prop 0’s

SoftEdge Heavy 0’s
SoftEdge Medium 0’s

SoftEdge Light 0’s

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000

M
e

d
ia

n
 N

u
m

b
e

r
o

f
Z

e
ro

s

Generation

Cntl Const 0’s
Cntl Prop 0’s

SoftEdge Heavy 0’s
SoftEdge Medium 0’s

SoftEdge Light 0’s
MultiEdge Heavy 0’s

Figure 3: Average median number of ones (Left) and zeros (Right) of individuals over 100 runs of the 0-1-4’s problem.
SoftEdge(G = 5;
 = 1), SoftEdge(G = 25;
 = 1), SoftEdge(G = 50;
 = 1), MultiEdge(P = 30; G = 20;
 = 1).

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

G
P

 M
e

d
ia

n
 S

iz
e

Generation

150

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

G
P

 M
e

d
ia

n
 S

iz
e

Generation

150
Control Const

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

G
P

 M
e

d
ia

n
 S

iz
e

Generation

150
Control Const

SoftEdge

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

G
P

 M
e

d
ia

n
 S

iz
e

Generation

150
Control Const

SoftEdge
HardEdge

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

G
P

 M
e

d
ia

n
 S

iz
e

Generation

150
Control Const

SoftEdge
HardEdge
MultiEdge

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100

G
P

 M
e

d
ia

n
 F

it
n

e
s
s

Generation

Control Const

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100

G
P

 M
e

d
ia

n
 F

it
n

e
s
s

Generation

Control Const
SoftEdge

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100

G
P

 M
e

d
ia

n
 F

it
n

e
s
s

Generation

Control Const
SoftEdge

HardEdge

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100

G
P

 M
e

d
ia

n
 F

it
n

e
s
s

Generation

Control Const
SoftEdge

HardEdge
MultiEdge

Figure 4: Average median size and fitness of individuals over 100 runs of the function regression problem. SoftEdge(G =100;
 = 1), HardEdge(P = 150;
 = 14), HardEdge(P = 150; G = 15;
 = 1). Note that average median fitness is approxi-
mately average best fitness.

1609

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100

G
P

 M
e

d
ia

n
 S

iz
e

Generation

150

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100

G
P

 M
e

d
ia

n
 S

iz
e

Generation

150
Hard Edge Light

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100

G
P

 M
e

d
ia

n
 S

iz
e

Generation

150
Hard Edge Light

Hard Edge Medium

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100

G
P

 M
e

d
ia

n
 S

iz
e

Generation

150
Hard Edge Light

Hard Edge Medium
Hard Edge Heavy

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100

M
e

d
ia

n
 S

iz
e

Generation

150

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100

M
e

d
ia

n
 S

iz
e

Generation

150
HardEdge Light

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100

M
e

d
ia

n
 S

iz
e

Generation

150
HardEdge Light

HardEdge Medium

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100

M
e

d
ia

n
 S

iz
e

Generation

150
HardEdge Light

HardEdge Medium
HardEdge Heavy

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100

M
e

d
ia

n
 S

iz
e

Generation

150
HardEdge Light

HardEdge Medium
HardEdge Heavy

MultiEdge Light

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100

M
e

d
ia

n
 S

iz
e

Generation

150
HardEdge Light

HardEdge Medium
HardEdge Heavy

MultiEdge Light
MultiEdge Medium

Figure 5: Left: Average median size of individuals in the population over 100 example runs of HardEdge Light(P = 150;
 =4), HardEdge Medium (P = 150;
 = 9), HardEdge Heavy (P = 150;
 = 14). Right: Average median size of the population
over 100 runs under various disruptive pressures. All with a P = 150. HardEdge Light (P = 150;
 = 4), HardEdge Medium(P = 150;
 = 9), HardEdge Heavy (P = 150;
 = 14), MultiEdge Light (P = 150; G = 50;
 = 4), MultiEdge Medium(P = 150; G = 15;
 = 9).
tive pressure, as described by the parameters in the caption
for the figure, are clearly bounded by the edge induced byP = 150.

An example of several individual runs that exemplify the
size curves of light, medium, and heavy disruptive pressure
is presented in 5(Left). In Figure 5(Left), we see in this one
example that applying too little pressure may result in ex-
cessive growth. When enough pressure is applied, growth is
contained. In general for this problem, it was found that aG � P=10 was required for MultiEdge to control the growth.
As in the 0-1-4’s problem if too little pressure is applied, this
may actually encourage code growth! We suspect this is an
adaptive protection mechanism.

For GP, SoftEdge did not supply a strong enough signal
to halt the growth of the trees. We speculate that SoftEdge
is prone to providing a signal that essentially herds the ge-
nomes to larger sizes. We are investigating the details of this
accelerated growth mechanism.

Error bars also demonstrate that, in Figure 4, the fitness
for HardEdge is better than the control and the fitness for
SoftEdge is worse than the control. These results were un-
expected and should be studied further. This may indicate
that the parameters selected for destructive crossover could
be manipulated to increase the fitness achieved.

The parameters selected for the destructive crossover are,
once again, critical. Unlike the GA, we observed accelerated
code bloat with parameters that applied too little pressure.
There was a ”sweet spot,” where the pressure was not too
low as to cause accelerated code bloat, but not high enough
to sacrifice fitness or GP performance.

4.3 General Observations
Although these graphs powerfully demonstrate the con-

trol of the size of individuals in the 0-1-4’s problem, the
choices of parameters cannot be made completely arbitrarily
and are dependent on the destructiveness of the crossover

operators. For HardEdge, a P set too low for individuals to
achieve an optimum fitness resulted in the individuals pass-
ing P in size and increased code bloat. For SoftEdge, a G set
too low also resulted in increased code bloat. For MultiEdge,
problems only occurred when both P and Gwere set too low.
A
 value of 10 or more was required for HardEdge without
elitism while more pressure seemed to be required for elitism
(another unexpected observation).

In general, it appeared from our experiments that the GP
problem required more pressure than the 0-1-4’s problem.
We speculate that this may be because of two factors. First,
the number of nodes disrupted by GP crossover was less
than half of the number of loci disrupted by the GA cross-
over. And second, the hierarchical nature of the GP tree
tended to better protect the phenotype from crossover affects
than the set-like representation in the GA.

5. CONCLUSIONS
We used two very different problems: a variable-length

linear genome and a tree GP to explore the use of multiple
crossovers as a natural means to contain code growth. We
compared three similar multicrossover algorithms to a pair
of control algorithms testing for both size and fitness of the
populations.

Our experiments support the hypothesis that code growth
is a protective response to disruption of crossover. They sup-
port the idea that code growth can be controlled by adjusting
the number of crossovers that occur in a mixing operation.
They demonstrated that, in some cases, active code compres-
sion can be encouraged. We showed that, with sufficient dis-
ruptive pressure, individuals can be encouraged to remain
smaller than a given size, but that, if insufficient disruptive
pressure is applied, it can actually encourage code growth.
Additionally, the experiments seem to indicate that better fit-
ness (as well as worse fitness) can be achieved in special cir-
cumstances using destructive crossover.

Of the three new algorithms, MultiEdge and HardEdge
implementations appear to be the best choices for contain-
ment of code growth. These implementations have been able

1610

Table 2: 0s1s4s Parameters
Representation Strings of length n composed of 0s, 1s, and 4s.
Recombination constant crossover: 2-Point crossover with a crossover with a random segment length from

the distribution: 50% chance of length 2, 25% chance of length 4, 12:5% chance of length8, etc.) proportional crossover: 2-Point crossover with a crossover segment length propor-
tional to string length

Recombination Probability 100%
Mutation Probability No mutation
Parent selection Uniform random
Survival selection Truncation selection, a new population of 48 was generated and the best 16 selected from

the 48. No elitism.
Population Size 16
Initialization Random. Size uniformly distributed from 10 to 20

Table 3: GP Regression
Representation Binary trees
Terminals Constant values (double precision), the variable x
Operators +, �, �, =
Recombination Nodes selected uniformly beneath the root.
Recombination Probability 100%
Mutation None
Parent selection Tournament, size 5
Survival selection Generational
Population Size 64
Initialization Random (random depth, number of nodes, and node distribution in the tree)

to consistently eliminate code bloat with proper values forP ,G, and
 without harming the fitness.
This work has a lot of potential as a practical means of code

growth containment without sacrificing performance; how-
ever, there were also many unexpected observations, such as
the accelerated code bloat seen in the GP for SoftEdge.

This research provides many opportunities for future
work. Key questions for future study include:

1. How does destructive crossover compare with other
methods that control code bloat (in particular, parsi-
mony pressure)?

2. By expanding the set of test problems, can we confirm
the general conclusions we are attempting to make?

3. How is fitness affected (and how can it be affected)
by destructive crossover? Can destructive crossover be
used to improve the fitness in a population?

4. How is robustness affected for solutions that have been
compressed by destructive crossover?

5. Why wasn’t SoftEdge effective for GP?

6. What is the range of good (or effective) parameters for
an arbitrary problem? (Is it going to be prohibitively
difficult to select good parameters for an arbitrary
problem?)

7. How does the relative size of P vs. the smallest good
solution affect performance for HardEdge?

8. Why did GP with elitism appear to require more pres-
sure (insufficient testing was conducted to be certain
that elitism does require more pressure)?

9. Can we evolve the parameters for destructive cross-
over?

In general, our goal will be to continue to examine the
mechanisms of both containment and the unexpected accel-
erated code growth to better understand how code disrup-
tion affects evolutionary processes.

6. ACKNOWLEDGMENTS
This publication was made possible by NIH Grant Num-

ber P20 RR16448 from the COBRE Program of the National
Center for Research Resources.

7. REFERENCES
[1] T. Blickle and L. Thiele. Genetic programming and

redundancy. In J. Hopf, editor, Genetic Algorithms within
the Framework of Evolutionary Computation, pages 33 –
38. Saarbrucken, Germany: Max-Planck-Institut fur
Informatik, 1994.

[2] J. R. Koza. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. Cambridge,
MA: The MIT Press, 1992.

[3] W. B. Langdon. Fitness causes bloat: Simulated
annealing, hill climbing and populations. Technical
Report CSRP-97-22, The University of Birmingham,
Birmingham, UK, 1997.

[4] W. B. Langdon and R. Poli. Foundations of Genetic
Programming. Springer-Verlag, Berlin, Germany, 1998.

[5] W. B. Langdon, T. Soule, R. Poli, and J. A. Foster. The
evolution of size and shape. In L. Spector, W. B.
Langdon, U.-M. O’Reilly, and P. J. Angeline, editors,
Advances in Genetic Programming III, pages 163–190.
Cambridge, MA: The MIT Press, 1999.

1611

[6] S. Luke. Code growth is not caused by introns. In Late
Breaking Papers, Proceedings of the Genetic and
Evolutionary Computation Conference 2000, pages
228–235, 2000.

[7] N. F. McPhee and J. D. Miller. Accurate replication in
genetic programming. In L. J. Eshelman, editor,
Proceedings of the Sixth International Conference on Genetic
Algorithms, pages 303–309. San Francisco, CA: Morgan
Kaufmann, 1995.

[8] P. Nordin. Evolutionary Program Induction of Binary
Machine Code and its Application. Muenster: Krehl
Verlag, 1997.

[9] P. Nordin and W. Banzhaf. Complexity compression
and evolution. In L. J. Eshelman, editor, Proceedings of
the Sixth International Conference on Genetic Algorithms,
pages 310–317. San Francisco, CA: Morgan Kaufmann,
1995.

[10] P. Nordin, W. Banzhaf, and F. D. Francone. Introns in
nature and in simulated structure evolution. In
D. Lundh, B. Olsson, and A. Narayanan, editors,
Proceedings Bio-Computing and Emergent Computation,
pages 22–35. Springer, 1997.

[11] P. Nordin, F. Francone, and W. Banzhaf. Explicitly
defined introns and destructive crossover in genetic
programming. In P. Angeline and J. Kenneth
E. Kinnear, editors, Advances in Genetic Programming II,
pages 111 – 134. Cambridge, MA: The MIT Press, 1996.

[12] T. Soule. Code Growth in Genetic Programming. PhD
thesis, University of Idaho, University of Idaho, 1998.

[13] T. Soule. Exons and code growth in genetic
programming. In J. A. Foster, E. Lutton, J. F. Miller,
C. Ryan, and A. Tettamanzi, editors, Genetic
Programming, 5th European Conference, EuroGP 2002,
pages 142–151, 2002.

[14] T. Soule. Operator choice and the evolution of robust
solutions. In R. Riolo and B. Worzel, editors, Genetic
Programming Theory and Practice, pages 257–270, 2003.

[15] T. Soule and J. A. Foster. Removal bias: a new cause of
code growth in tree based evolutionary programming.
In ICEC 98: IEEE International Conference on Evolutionary
Computation 1998, pages 781–786. IEEE Press, 1998.

[16] T. Soule, J. A. Foster, and J. Dickinson. Code growth in
genetic programming. In J. R. Koza, D. E. Goldberg,
D. B. Fogel, and R. R. Riolo, editors, Genetic
Programming 1996: Proceedings of the First Annual
Conference, pages 215–223. Cambridge, MA: MIT Press,
1996.

[17] T. Soule and R. Heckendorn. An analysis of the causes
of code growth in genetic programmin. Genetic
Programming and Evolvable Machines, 3:283–309, 2002.

[18] T. Soule, R. Heckendorn, and J. Shen. Solution stability
in evolutonary computation. In I. Cicekli, N. K. Cicekli,
and E. Gelenbe, editors, Proceedings of the 17th
International Symposium on Computer and Information
Systems, pages 237–241, 2002.

[19] M. J. Streeter. The root causes of code growth in genetic
programming. In C. Ryan, T. Soule, M. Keijzer,
E. Tsang, R. Poli, and E. Costa, editors, Genetic
Programming, 6th European Conference, EuroGP 2003,
pages 443–454, 2002.

1612

