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ABSTRACT
Particle Swarm Optimisation (PSO) uses a population of
particles that fly over the fitness landscape in search of an
optimal solution. The particles are controlled by forces that
encourage each particle to fly back both towards the best
point sampled by it and towards the swarm’s best point,
while its momentum tries to keep it moving in its current
direction.

Previous research started exploring the possibility of
evolving the force generating equations which control the
particles through the use of genetic programming (GP).

We independently verify the findings of the previous re-
search and then extend it by considering additional mean-
ingful ingredients for the PSO force-generating equations,
such as global measures of dispersion and position of the
swarm. We show that, on a range of problems, GP can
automatically generate new PSO algorithms that outper-
form standard human-generated as well as some previously
evolved ones.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Performance

Keywords
Particle Swarm Optimisation, Swarm Intelligence, Genetic
Programming

1. INTRODUCTION
Researchers use the expression swarm intelligence to refer

to the emergent collective intelligence of groups of simple
agents, of which colonies of social insects such as termites,
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bees and ants are the best-known examples. Swarm intelli-
gence offers a way to design intelligent systems (swarm sys-
tems) in which functions such as autonomy, emergence and
distribution have replaced some less “natural” ones, e.g. con-
trol, programming and centralisation [5].

The class of swarm systems is a rich source of novel com-
putational methods that can solve difficult problems effi-
ciently and reliably. One of the best-developed techniques of
this type is Particle Swarm Optimisation (PSO) [9]. PSOs
use a population of candidate solutions (interacting parti-
cles) that fly over the fitness landscape and, controlled by
forces that encourage each particle to fly back towards both
the best point sampled by it and the swarm best, search for
an optimal solution to a given problem. The forces act to
over come the particle’s momentum, which tries to keep the
particle moving in the same direction at the same speed.

A variety of improvements to the basic form of PSO have
been proposed and tested in the literature. As a result, it is
very hard for a practitioner to decide what is the best PSO
to use to solve a particular problem. This research is part of
a project that aims to systematically categorise PSOs and
explore extensions of particle swarms by including strate-
gies from biology, by extending the physics of the particles
and by providing a solid theoretical and mathematical basis
for the understanding and problem-specific design of new
particle swarm algorithms.

We take a purely computational approach, first pioneered
in [17], where the force generating equations which control
the particles in a PSO are automatically evolved through
the use of genetic programming (GP). Interesting PSOs were
evolved in this way in [17]. However, the exploration was
limited by the use of the same ingredients present in the
original PSO model by Kennedy and Eberhart, namely: the
position and velocity of a particle, the position of the par-
ticle best and the position of the swarm best. The aim of
the research presented here is to independently verify the
findings of [17] and to extend the search by considering ad-
ditional meaningful ingredients for the PSO force-generating
equations, such as global measures of dispersion and posi-
tion of the swarm. These are believed to be very important
so as to provide a way of adapting the nature of the forces
used depending on the current situation of the swarm as a
whole.

Our results indicate that indeed GP can explore this ex-
tended space of possible PSOs, finding update rules that out-
perform human-generated as well as some previously evolved
ones. Naturally, not all PSOs evolved can have be seen as
having a connection with natural swarms, but this is not un-
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usual in computational intelligence. For example, also in the
field of neural networks researchers started from biologically
inspired neurons. However, later research focused on non-
biologically plausible models, such as the back-propagation
rule, because of their interesting and useful properties. We
expect something like this might happen in the field of PSOs.
This paper is part of an effort to extend PSO models beyond
real biology and physics and push the limits of swarm intel-
ligence into the exploration of swarms as they could be.

Section 2 provides a brief review of the work on parti-
cle swarms to date. Since we build on [17], Section 3 de-
scribes in detail [17]’s use of GP to automatically generate
and evolve PSOs tailored to particular tasks. In Section 4
we describe and motivate our variations on [17]’s basic ap-
proach. Section 5 describes our results and compares them
to the performance of previously designed or evolved PSOs.
Finally, Section 6 briefly restates our findings and lists po-
tential future directions for research.

2. PARTICLE SWARM OPTIMISATION
PSO is a method for optimisation of continuous nonlinear

functions, discovered through the simulation of a simplified
social model (particle swarm) [10]. PSO has its roots in two
main component methodologies:

• artificial life (ALife), in particular flocking, schooling
and swarming theory, and

• evolutionary computation (EC).

In PSOs, which are inspired by flocks of birds and shoals of
fish, a number of simple entities (the particles) are placed in
the parameter space of some problem and each evaluates the
fitness at its current location. Unique to the concept of PSO
is “flying” over potential solutions through the hyperspace,
accelerating towards better ones. Each particle determines
its movement through the space by combining some aspect
of the history of its own fitness values with those of one or
more members of the swarm, and then moves through the
parameter space with a velocity determined by the locations
and processed fitness values of those other members, possi-
bly together with some random perturbations. The next
iteration takes place after all particles have been moved.
Eventually the swarm as a whole is likely to move close to
the best location.

More formally, in the case of an N dimensional problem,
each particle’s position, velocity and acceleration, can each
be represented as a vector with N components (one for each
dimension). In the original version of PSO, the equation
controlling the particles is of the form

ai = F (xi, xsi , xpi , vi) (1)

for some function F and where

• ai is the ith component of the acceleration vector a =
(a1, · · · , aN),

• xi is the ith component of the particle’s current loca-
tion x = (x1, · · · , xN ),

• xsi is the ith component of the best point visited by
the swarm xs = (xs1 , · · · , xsN ),

• xpi is the ith component of its personal best xp =
(xp1 , · · · , xpN ), and

• vi is the ith component of the velocity vector v =
(v1, · · · , vN ).

In particular, in the simplest version of PSO, each particle is
moved by two elastic forces, one attracting it with random
magnitude to the fittest location so far encountered by the
particle, and one attracting it with random magnitude to
the best location encountered by any member of the swarm.
More precisely,

ai = φ1R1(xsi − xi) + φ2R2(xpi − xi) (2)

where

• R1 and R2 are two independent random variables uni-
formly distributed in [0, 1], and

• φ1 and φ2 are two learning rates which control the
relative proportion of cognition and social interaction
in the swarm.

The velocity of a particle v and its position x are updated
every time step using the equations:

vi(t) = vi(t − 1) + ai xi(t) = xi(t − 1) + vi(t)

As this system can lead the particles to become unstable,
with their speed increasing without control, the standard
technique to avoid this happening is to bound velocities so
that vi ∈ [−Vmax, +Vmax].

Early variations in PSO techniques involved the addition
of analogues of physical characteristics to the members of
the swarm, such as the “inertia weight” ω [18], where the
velocity update equation is modified as follows:

vi(t) = ωvi(t − 1) + ai (3)

As in vector notation the velocity change can be written as
∆v = a − (1 − ω)v, the constant 1 − ω effectively acts as a
friction coefficient.

Following Kennedy’s graphical examinations of the tra-
jectories of individual particles and their responses to varia-
tions in key parameters [8] the first real attempt at provid-
ing a theoretical understanding of PSO was the “surfing the
waves” model presented by Ozcan [15].

Clerc developed a comprehensive 5-dimensional mathe-
matical analysis of the basic PSO system [7]. A particularly
important contribution of that work was the use and analy-
sis of a modified update rule:

vi(t) = κ(vi(t − 1) + ai)

where the constant κ (the constriction coefficient), if cor-
rectly chosen, guarantees the stability of the PSO without
the need to bound velocities.

Further explorations of physics-based effects in the swarm
have been done in recent years:

• Blackwell has investigated quantum swarms [4] and
charged particles [3]

• Poli and Stephens have proposed a scheme in which
the particles do not “fly above” the fitness landscape,
but actually slide over it [16]

• Krink and collaborators have looked at a range of mod-
ifications to PSO, including ideas from physics (spa-
tially extended particles [12], self-organised critical-
ity [14]) and biology (e.g. division of labour [19])
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• Angeline [1] introducing selection and Brits et al. [6]
exploring niching are two examples of the intersection
between PSOs and evolutionary computing

• Finally, in [17] the possibility of evolving the force gen-
erating equations to control the particles in a PSO
through the use of GP was proposed. We describe this
approach in detail in the next section, since this is the
starting point for the work reported in this paper.

3. EVOLVING PARTICLE SWARMS
As has already been pointed out in the previous sec-

tion, EC paradigms are closely related to the particle swarm
method, as they provide the tools to build intelligent systems
that model intelligent behaviour. One of the methodologies
in the field of EC is genetic programming (GP), which is
a technique used to evolve computer programs using a spe-
cialised representation (tree structures) and genetic opera-
tors, e.g., crossover and mutation, that are especially de-
signed to handle such a representation [11, 2, 13].

As highlighted in Section 2, the equation controlling the
particles in a PSO is of the form ai = F (xi, xsi , xpi , vi). The
approach taken in [17] was to consider the function F as a
program to be evolved using GP so as to maximise some
performance measure. The aim was not to evolve a PSO
that could beat all other PSOs on all possible problems,
which is know to be impossible [20]. Instead, the aim was to
evolve PSOs that could outperform known PSOs on specific
classes of problems of interest.

The F functions evolved in [17] used only the original in-
gredients listed in Equation 1, namely: xi, vi, xpi and xsi .
These were included in the terminal set together with a lim-
ited set of permissible constants (1.0, -1.0, 0.5 and -0.5) and
a uniformly random number generator R, which returned
random numbers in the range [−1, 1]. The function set in-
cluded the standard arithmetic functions +, −, × and the
protected division DIV.1

Since the aim was to obtain extended PSOs (XPSOs)
which could solve a class of problems rather than just one
problem, [17] used a fitness function which, using the pro-
gram evolved by the GP as the function F , evaluated the
performance of an XPSO on a training set of problems taken
from the given class. The two classes of benchmark problems
considered were:

City-block sphere problem class, instances of which have
the form

f(x) =

NX

i=1

|xi − gi|

with a single global optimum at x = (g1, · · · , gN), with
f(x) = 0, and no local optima

Rastrigin’s problem class, instances of which have the
form

f(x) = 10N +
NX

i=1

`
(xi − gi)

2 − 10 cos(2π(xi − gi))
´

with one global optimum at x = (g1, · · · , gN ), with
f(x) = 0, and many local optima

1If |y| <= 0.001 DIV(x, y) = x else DIV(x, y) = x/y.

The fitness function used to evaluate the performances of
the PSO in each of the training cases consisted in measuring
and accumulating the distance between the position of each
particle in the swarm and the global optimum at the end of
each PSO run, i.e.

P
x

P
i |xi − gi|. This particular fitness

function was chosen to encourage the convergence of the
swarm to the global optimum. A mild parsimony pressure
was used to encourage the evolution of a simpler F .

The results of this approach were quite interesting. GP
evolved the following XPSOs:

PSOG1 evolved when the training set was the shifted city-
block sphere functions of dimension N = 2 and had
the following form:

F = (xsi − xi) − (viR)

This was expected to perform well on unimodal ob-
jective functions. It is particularly interesting since it
includes both a deterministic, 100% social component
and a random friction component (cf. Equation 3).

PSOG2 evolved when the training set included shifted city-
block sphere functions of dimension N = 2 and had the
following form:

F = 0.5 ((xsi − xi) + (xpi − xi) − vi)

This is interesting because it is completely determinis-
tic (particles are attracted towards the middle between
swarm best and particle best) and because it includes
standard friction.

PSOG3 evolved when the training set included shifted Ras-
trigin functions of dimension N = 2 and had the fol-
lowing form

F = R1(xsi −xi)−0.75R2R1xix
2
si
−0.25R3R2R1xixsi

This was expected to perform well on highly multi-
modal objective functions. Interestingly, it does not
use information about each particle’s best, probably
because, in a highly multi-modal landscape, particles
should not trust their own observations too much. The
second term tends to push the particles towards the
origin unless the swarm best is near the origin. The
third term appears to be junk code.

In tests with off-sample problem instances PSOG1 re-
sulted to be better than a standard PSO on the unimodal
city-block sphere problem class. On the Rastrigin func-
tion problem class, PSOG3 outperformed all other (hand-
designed and evolved) PSOs by a considerable margin. Also,
PSOG3 (which wasn’t evolved on sphere functions) did bet-
ter than the standard PSO on the sphere problem class,
suggesting PSOG3 may be a good all-rounder.

4. OUR APPROACH
One of our aims was to independently verify the findings

of [17] and to extend the search by considering additional
meaningful ingredients for the PSO force-generating equa-
tions. So, in our work we followed the approach in [17]
summarised in the previous section as closely as possible.

As evolving specialised search algorithms is typically a
heavy computational task, we used a very efficient C imple-
mentation of GP and implemented a minimalist PSO engine,
also in C.
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A limitation of our approach, and of the standard PSO, is
that only very limited information about the global state of
the swarm is provided to particles (via the force generating
equations). Indeed, only the coordinates of the swarm best
are provided. However, it is arguable that better decisions
about which direction to explore next could be made by each
particle if more information about the rest of the swarm was
provided.

So, in addition to the standard ingredients xi, vi, xpi

and xsi , we decided to also give our GP system global mea-
sures of dispersion and position of the swarm. GP was now
allowed to evolve force-generating equations of the form

F ′(xi, xsi , xpi , vi, xci , d), (4)

where xci is the i-th component of the centre of mass of
the swarm and d (dispersion) is the average distance of each
particle from the centre of mass of the swarm.

Of course, the GP may find that using such terms adds
nothing to the efficiency of the PSO (i.e. no such terms would
be included in the evolved force equation). However, if it
does, the final form will provide insight into precisely how
such terms have increased the PSO’s efficiency.

Following [17] we also used the city-block sphere problem
class and the Rastrigin problem class, both of dimensions
N = 2 and N = 10. At the beginning of each GP run,
10 random problems from either the city-block sphere or
the Rastrigin function class were generated by choosing the
values gi uniformly at random from the range [−G, G], where
G = 1.0 and G = 2.0.

The fitness function mentioned in the previous section was
used. During fitness evaluation, in order to limit the com-
putational load of the simulations, PSOs with 10 particles
have been used and they were run for 30 iterations on each
of the 10 problems.

Initial coordinates for the particles were drawn uniformly
at random from the interval [−5, 5], while their initial ve-
locity is set to 0. As the initial configuration of the swarm
is random, the performance of the PSO can vary substan-
tially according to the position of the particles. Thus, as
in [17], for each problem, the PSO was run 5 times with
different initial random configurations, i.e. positions of the
10 particles.

To ensure stability, velocities have been updated using
Clerc’s update rule (see Section 2), using a constriction fac-
tor κ = 0.7, and constrained the components vi of particle
velocities within the range [−2.0, +2.0].

As far as the GP system is concerned, we used steady state
binary tournaments for parent selection and binary negative
tournaments to decide who to remove from the population.
The initial population was created using the grow method
with max depth of 6 levels (the root node being at level 0). A
population of size of 1000 was used, with 90% standard sub-
tree crossover (with uniform random selection of crossover
points) and 10% point mutation with a 2% chance of muta-
tion per tree node.

Runs were terminated either manually, when fitness ap-
peared to be sufficiently good, or automatically at gener-
ation 100. When not stopped prematurely, typically runs
took between 30 minutes and 5 hours to complete on a 3GHz
single CPU Linux PC.

5. RESULTS
Seven new PSOs have been automatically created by GP.

Two (PSOCENTRE1 and PSOCENTRE2) were cre-
ated by GP when it was given the centre of the swarm.
Three more (PSODISP1, PSODISP2 and PSODISP3)
when it was given the spread of the swarm (dispersion). The
last two (PSOCD1 and PSOCD2) evolved when the func-
tion set included both. Apart from PSODISP3, each new
PSO was created using instances of the city-block sphere
problem.

Tables 1 and 2 give the performance of our 7 newly
evolved XPSOs. The tables show on average how close
they came to the global optima, both on new instances of
problems like those on which they were created (e.g. city-
block sphere) and also on instances of different problems
(e.g. shifted Rastrigin). For comparison, both tables also
give results for standard (human designed) PSOs (PSO,
PSOD1, PSOR0 and PSOR1, cf. Equation 2) and PSOs
given in [17] (PSOG1, PSOG2 and PSOG3). The re-
mainder of this section describes the standard and our new
extended PSOs (Section 3 described PSOG1, PSOG2 and
PSOG3). While Section 5.1 analyses them in terms of the
results presented in Tables 1 and 2.

The standard human-designed PSOs (cf. Equation 2) we
used for comparison are:

PSO a version of the standard PSO where φ1 = φ2 = 1.0

F = R1(xsi − xi) + R2(xpi − xi)

PSOD1 a deterministic (no random coefficients) 100% so-
cial version of the standard PSO (i.e. the swarm best
totally dominates individual particle bests, so φ1 = 1,
φ2 = 0)

F = (xsi − xi)

PSOR0 a PSO controlled by random forces

F = 2.0R − 1.0

PSOR1 a 100% social (φ1 = 1, φ2 = 0) version of the stan-
dard PSO

F = R(xsi − xi)

In several GP runs where only the centre of mass was
added to the original primitive set we obtained the following
new functions for controlling the PSO force

PSOCENTRE1 was evolved when the training set in-
cluded two dimensional (N = 2) city-block sphere
functions shifted by random amounts chosen from the
range ±1.0 (i.e. G = 1.0). It is completely determinis-
tic and includes a friction (cf. Equation 3) term

F = (xsi − xi) + (xpi − xi) + xsixci − 0.5vi

When the third term of the equation is zero, e.g. be-
cause the swarm best or the centre of the swarm are
near the origin, the behaviour of the particles is similar
to PSOG2 (cf. Section 3). When xsixci is non-zero,
it tends either to slow or to accelerate the motion of
the particles, according to the positions of the center
of mass and the position of the swarm best. Note how-
ever, unlike the other terms, it is not independent of
co-ordinate transformations. For example the origin of
the co-ordinate system has a special significance which
would change if the co-ordinates where translated.
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PSOCENTRE2 was evolved when the training set in-
cluded the shifted two dimensional (N = 2) city-
block sphere functions but with larger random shifts
(i.e. G = 2.0 rather than 1.0). It is interesting since
it includes both a deterministic component and a ran-
dom friction component

F = (xsi − xi) − xixci − (viR)

When the second term of the equation is zero (e.g. be-
cause either the swarm centre or the individual parti-
cle is close to the origin), this rule (like PSOCEN-
TRE1) becomes PSOG2. When xixci is non-zero
it tends either to slow or to accelerate the motion of
the particles, according to the position of the centre
of mass with respect to the position of the particles.
Note again, unlike the other terms, xixci is dependent
on the co-ordinate system.

In GP runs where only the dispersion around the centre
of mass was added to the primitive set we obtained the fol-
lowing rules

PSODISP1 was evolved when the GP was trained on two
dimension (N = 2) city-block sphere functions ran-
domly shifted by an amount uniformly selected from
−1 . . . + 1 (G = 1.0). The evolved functions con-
tains a random friction component and is 100% social
(i.e. φ1 = 1). However these are dominated by the 1/d
term, which increases the force as the swarm concen-
trates about a point. This may be a good strategy on
multi-modal landscapes where it might prevent prema-
ture convergence to a poor local optima. The constant
term tends to increase particle’s velocities. Perhaps
this is need to counteract the tendency for velocity to
be reduced?

F =
1

d
(xsi − xi − viR) + 1

PSODISP2 was evolved when the GP was trained as
above, except the city-block sphere functions were ran-
domly shifted by twice as much (N = 2 and G = 2.0).
The evolved function is completely deterministic

F = (xsi − xi) + (xpi − xi) − dxi

Should the swarm collapse (in which case the disper-
sion term d would be zero) then this rule would become
the standard (deterministic) PSO. Normally d is non-
zero, so the third component (dxi) tends to push the
swarm towards the origin.

PSODISP3 was evolved when the training set included the
shifted two dimensional (N = 2) Rastrigin functions
with G = 2.0. It is completely deterministic

F = −2xi + xsi (0.75 − 2d)

The first term tends to drive particles towards the ori-
gin however the oscillations about the origin may be
counteracted by the second term, which (if the disper-
sion d > 3/8) tends to concentrate the swarm closer
to its best point.

Finally, in runs where both the centre of mass and the
dispersion were available to GP we evolved the following
PSOs

PSOCD1 was evolved by training the GP on the two di-
mensional shifted city-block sphere functions of dimen-
sion N = 2 and G = 1.0

F = (xsi − xi) − R2

d
vi

The first term is the 100% social term, which tends
to move the swarm closer to its best point. The ran-

dom friction term ( R2

d
vi) is inversely proportional to

swarm’s dispersion d. So when the particles are close
to each other the friction is higher than it is when the
swarm is more spread. This could mean that at the
beginning the search is more rapid while, when the
particles get closer their movement becomes slower.

PSOCD2 was evolved as above but with larger random
shifts of city-block sphere (N = 2 and G = 2.0). We
include it because it is completely deterministic and
includes standard friction as well as the centre and
spread of the swarm.

F = xsi + xpi + d2 xi

xci

+ 0.5vi

5.1 Analysis of results
In order to compare the behaviour of the standard human

designed PSOs and the evolved extended ones, we tested all
of them on 30 random problems taken from the city-block
sphere and Rastrigin function classes for dimension N = 2
and N = 10. The problems were generated by selecting the
components of the global optimum gi uniformly at random
from the interval [−G, +G], with G = 1.0 and G = 2.0. For
each problem instance, 30 independent runs of each PSO
have been performed.

Tables 1 and 2 show the mean (over the 30 runs) and the
standard deviation (in brackets) of the normalised distance
between the best location found by each PSO and the global
optimum, i.e. the average absolute error between the coor-
dinates of the swarm best and the coordinates of the global
optimum,

P
i |xs − gi|/N . This gives an idea of how close

the particles got to the optimum in each dimension.

City-block sphere
Except PSOCD2, all PSOs do quite well on the city-block
sphere problem (see table 1). When the dimension of the
problem is N = 2, PSOG1 and PSOCD1 are both better
than the standard PSO, and PSOCD1 is even better than
PSOG1 when the global optimum is in the range [−2.0, 2.0].
However, for N = 10 and G = 1.0, PSOG3 is the best, even
though it wasn’t evolved on sphere functions. For G = 2.0,
the random PSO PSOR1 is the best, but PSOCD1 is the
second best.

Rastrigin
In this case as well, PSOCD2 is worse than any other in
each configuration of the problem (see table 2). For N = 2,
and both G = 1.0 and G = 2.0, PSOG3 outperforms all
other PSOs. PSODISP2 is a close second best, surpris-
ingly as it has been evolved on the city-block sphere class
of problems. For N = 10 and the same (two) G values,
the situation is reversed, PSODISP2 being the best and
PSOG3 the second best (but still with values very close to
each other). In all four configurations, PSODISP1 is the
third best, with values close to the best ones, while all other
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City-block sphere

N=2 N=2 N=10 N=10
G=1.0 G=2.0 G=1.0 G=2.0

PSO 0.184 0.22 0.826 0.946
(0.248) (0.273) (0.579) (0.548)

PSOD1 0.002 0.002 0.309 0.381
(0.0005) (0.0005) (0.02) (0.04)

PSOR0 0.257 0.28 1.6 1.654
(0.032) (0.032) (0.016) (0.04)

PSOR1 0.003 0.003 0.279 0.315
(0.0005) (0.0005) (0.018) (0.029)

PSOG1 0.0005 0.002 0.455 0.554
(0.0005) (0.002) (0.02) (0.047)

PSOG2 0.048 0.069 0.664 0.797
(0.011) (0.034) (0.031) (0.072)

PSOG3 0.009 0.043 0.183 0.456
(0.004) (0.025) (0.022) (0.101)

PSOCENTRE1 0.124 0.245 0.776 1.026
(0.057) (0.089) (0.046) (0.107)

PSOCENTRE2 0.271 0.297 1.131 1.26
(0.022) (0.042) (0.04) (0.07)

PSODISP1 0.047 0.051 1.212 1.256
(0.005) (0.007) (0.043) (0.076)

PSODISP2 0.003 0.009 0.262 0.545
(0.002) (0.004) (0.029) (0.094)

PSODISP3 0.054 0.239 0.381 0.809
(0.021) (0.1) (0.049) (0.159)

PSOCD1 0.0005 0.0005 0.283 0.353
(0.00) (0.00) (0.019) (0.036)

PSOCD2 0.576 0.611 1.733 1.78
(0.021) (0.038) (0.015) (0.037)

Table 1: Mean (and standard deviation) over 30
runs of normalised distance between swarm best
found by each PSO and the centre of the City-block
sphere. Best PSO in bold.

PSOs (both the hand-designed and the extended ones) are
much less efficient. The fact that PSODISP2 is very good
on Rastrigin problems even though it has been evolved on
the city-block sphere class, suggests that this XPS could be
a good all-rounder.

It is interesting to compare the dynamic behaviour of the
best PSOs found. In particular, the figures visually com-
pare the behaviour of the swarm and how the dispersion
of the swarm around the centre of mass varies in time for
two XPSOs, PSOG3 and PSODISP2, together with the
standard PSO, for the Rastrigin class of problems with di-
mension N = 2 and global optimum in the origin.

PSO (figure 1) and PSODISP2 (figure 2) show typi-
cal behaviour for efficient PSOs, with particle trajectories
rapidly converging to a tight symmetric spiral around the
global optimum, with PSODISP2 doing so more efficiently.
It seems that the dispersion term ensures that the swarm re-
mains in a denser cloud.

PSOG3 (figure 3) behaves differently: the particles still
converge rapidly, but to a point slightly away from the op-
timum. This is still close enough to ensure good GP fitness
values. However the swarm best converges to the optimum
better than all the others, as table 2 confirms.

Rastrigin

N=2 N=2 N=10 N=10
G=1.0 G=2.0 G=1.0 G=2.0

PSO 0.726 0.859 1.336 1.471
(0.322) (0.31) (0.47) (0.382)

PSOD1 0.777 0.896 1.309 1.406
(0.046) (0.108) (0.039) (0.065)

PSOR0 0.778 0.829 1.875 1.901
(0.083) (0.073) (0.044) (0.055)

PSOR1 0.638 0.687 1.332 1.402
(0.076) (0.09) (0.065) (0.06)

PSOG1 0.89 1.058 1.293 1.389
(0.101) (0.1) (0.063) (0.072)

PSOG2 0.701 0.871 1.131 1.267
(0.082) (0.119) (0.045) (0.067)

PSOG3 0.307 0.556 0.578 0.943
(0.078) (0.152) (0.062) (0.119)

PSOCENTRE1 0.885 1.039 1.268 1.458
(0.147) (0.113) (0.057) (0.086)

PSOCENTRE2 0.928 1.048 1.516 1.639
(0.08) (0.107) (0.065) (0.062)

PSODISP1 0.659 0.704 1.895 1.935
(0.082) (0.089) (0.062) (0.072)

PSODISP2 0.326 0.642 0.562 0.943
(0.067) (0.144) (0.077) (0.121)

PSODISP3 0.353 0.795 0.602 0.993
(0.107) (0.233) (0.089) (0.13)

PSOCD1 0.717 0.745 1.326 1.405
(0.089) (0.108) (0.067) (0.082)

PSOCD2 1.131 1.14 1.948 1.994
(0.092) (0.104) (0.036) (0.056)

Table 2: Mean (and standard deviation) over 30
runs of normalised distance between the swarm best
location found by each PSO and the global optimum
of the Rastrigin function. Best PSO in bold.

6. CONCLUSION
We have shown that, through the use of genetic program-

ming (GP), it is possible, in only a few hours, to auto-
matically evolve a variety of new Particle Swarm Optimi-
sation (PSO) algorithms that work at least as well as, and
in some cases considerably better than, the standard ex-
isting human-designed ones. Including information about
the spread of the swarm allows GP to evolve PSODISP2,
which appears to be a good all-rounder. Moreover, through
the analysis of the evolved components, we have suggested
what types of PSOs are best for different landscapes. This
work represents an important step within a new research
trend: using search algorithms to discover new search algo-
rithms.

In future research, we intend to:

1. apply the approach to a variety of real-world problems

2. extend the approach by allowing GP to use more in-
formation on the past history of the swarm to control
the particles

3. explore the effects and benefits of using different per-
formance measures for PSO evolution.
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Figure 1: Prototypical run of PSO on the Rastrigin problem of dimension N = 2 showing, from top to bottom:
(a) Trajectories of the particles, (b) Trajectories of the particle bests, (c) Trajectories of the swarm bests
and of the centre of mass of the swarm, (d) Dispersion of the swarm around the centre of mass
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Figure 2: Prototypical run of PSODISP2 on the Rastrigin problem of dimension N = 2 showing, from top to
bottom: (a) Trajectories of the particles, (b) Trajectories of the particle bests, (c) Trajectories of the swarm
bests and of the centre of mass of the swarm, (d) Dispersion of the swarm around the centre of mass
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Figure 3: Prototypical run of PSOG3 on the Rastrigin problem of dimension N = 2 showing, from top to
bottom: (a) Trajectories of the particles, (b) Trajectories of the particle bests, (c) Trajectories of the swarm
bests and of the centre of mass of the swarm, (d) Dispersion of the swarm around the centre of mass
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