
Dormant Program Nodes and the Efficiency of Genetic
Programming

David Jackson
Dept. of Computer Science

University of Liverpool
Liverpool L69 3BX, United Kingdom

Tel. +44 151 794 3678

d.jackson@csc.liv.ac.uk

ABSTRACT
In genetic programming, there is a tendency for individuals in a
population to accumulate fragments of code – often called introns
– which are redundant in the fitness evaluation of those
individuals. Crossover at the sites of certain classes of intron
cannot produce a different fitness in the offspring, but the cost of
identifying such sites may be high. We have therefore focused our
attention on one particular class of non-contributory node that can
be easily identified without sophisticated analysis.
Experimentation shows that, for certain problem types, the
presence of such dormant nodes can be extensive. We have
therefore devised a technique that can use this information to
reduce the number of fitness evaluations performed, leading to
substantial savings in execution time without affecting the results
obtained.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic Programming;
I.2.2 [Artificial Intelligence] Automatic Programming – program
synthesis; I.2.6 [Artificial Intelligence] Learning – induction.

General Terms
Algorithms, Performance, Experimentation.

Keywords
Genetic programming, efficiency, intron, dormant node, fitness-
preserving crossover.

1. INTRODUCTION
In genetic programming, many members of the evolving
population will contain sequences of program code which make
no contribution to the fitness of those individuals. These code
fragments are commonly called introns, although there are
researchers who dislike the term [6]. Introns have come under
intense research scrutiny, in particular for the role they might play

in the phenomenon of code bloat – the undesired increase in code
size during evolution (e.g. [7,8,10-13]), but also for other reasons
such as their impact on the effectiveness of genetic programming
systems at finding solutions [2,9].
For certain types of intron, crossover that takes place at the site of
the non-contributing code cannot alter the fitness that is
propagated to the generated offspring. In a paper on the genetic
programming of data structures, Langdon [5] pointed out that it
might even be possible to avoid invoking the fitness function used
to evaluate those offspring, possibly resulting in considerable
savings in execution time. The remark was made almost as an
aside, and Langdon presented no experiments or results to support
the idea.
A difficulty with this suggestion is that the computational costs
associated with identifying the introns in the first place can render
such an approach impractical. For genetic programming problems
involving, say, loops or recursion, the analysis required may be
intractable [3,13]. For other problems, such as the evolution of a
multiplexer, where individuals can be exhaustively tested with all
combinations of inputs, it may be possible to identify introns by
systematically replacing each sub-tree with a nullifying or
negating operation to see if the fitness value alters [1,7]. Such an
approach may be feasible but computationally highly expensive.
In this paper, we explain how the costs of identification can be
minimised by restricting ourselves to a subset of the possible
intron types. We describe a simple implementation method for
identifying such program nodes, and then investigate how
widespread this limited category of nodes really is in a
population. Exploitation of these results leads us to a mechanism
for reducing the number of fitness evaluations that are necessary,
as per Langdon’s suggestion, and we present results for the
effectiveness of the technique.

2. DORMANT NODES
Although the term intron has been widely used in the genetic
programming literature to denote pieces of program code that
make no contribution to the fitness of an individual, the term is
often imprecisely defined. Nordin et al [9] addressed this by
defining five main categories of intron. Type 1 introns, for
example, are code segments in which crossover never changes the
behaviour of the program for any input in the problem domain,
while Type 2 introns are code segments where crossover never
changes the behaviour of the program for any of the fitness cases.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’05, June 25-29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006…$5.00.

1745

Soule and others [6,13] abandoned the use of the word intron in
their own categorisation defining the viability and operability of
program nodes and sub-trees. In their usage, an inoperative node
is one in which replacement of the sub-tree rooted at that node by
a null operation (no-op) will not change the program’s output.
Similarly, a node is said to be inviable if there does not exist a
sub-tree which will change the program’s output when substituted
for that node.
For our own purposes, the key information we require is whether
a node is executed or not for the set of test cases used to evaluate
a program. We are less interested in making broader statements
regarding the potential contribution of such nodes. Indeed, it is
not always clear that a simple division of nodes into executed and
non-executed camps sits comfortably with existing taxonomies.
Nodes that are not executed during a fitness evaluation are
certainly of the Type 2 variety as defined by Nordin et al, but
many may also be of the Type 1 variety. In other words, the
reason a node is not executed may be either because the test cases
are not sufficient, or because the node is unreachable in all
circumstances. Similarly, the categorisation of Soule et al seems
to be defined in terms of the problem domain, rather than in terms
of specific execution cases. Inviable code is often unexecuted
code, but the two are not synonymous.
For these reasons, we introduce a new terminology as follows:

Definition: A dormant node is a program node that is not
executed for any of the cases involved in evaluating the fitness of
the individual. A non-dormant node is said to be active. It follows
from this that if the root node of a sub-tree is dormant, then the
whole sub-tree is dormant, i.e. none of the nodes in that sub-tree
is executed.

From this definition, it will be realised that the decision as to
whether a node is denoted dormant or active can be based purely
on information gathered dynamically, and requires no
sophisticated analysis of the containing program. To record this
information, we adopt a marking method similar to that used by
Blickle and Thiele [1]. In their work, Blickle and Thiele used
marking as a means for approximating the amount of
‘redundancy’ present in a program. They were interested in the
effects of avoiding redundant crossovers, and so presented no
timings for the costs and savings involved when these crossovers
are allowed to proceed.
Since we need to record possible dormancy for all nodes of all
trees present in the genetic programming population, every
individual is allocated what we call a visit tree. This is of the
same length and structure of the individual’s code tree. When an
individual is presented to the fitness function for evaluation, all of
the nodes in its visit tree are initialised to a pre-defined NOT-
VISITED value. Whenever the fitness function causes a node of
the program tree to be evaluated, the corresponding node of the
visit tree is set to VISITED. To implement this we use a visit tree
pointer that mirrors the navigation of the code tree pointer as the
individual’s program tree is traversed. Care must be taken to
ensure that the visit tree pointer is properly updated when sub-tree
arguments are skipped during, for example, the evaluation of an
IF-THEN-ELSE node.

Since each visit tree node records only binary information (visited
or not), then it would be possible to encode it as a single bit. This
was, in fact, the suggestion made by Blickle and Thiele. However,
although it is certainly more memory efficient, the bit
manipulation and testing operations it necessitates make it far less
time efficient, and so we settled on the use of a complete byte per
tree node.

3. DORMANCY PREVALENCE
Once the visit tree is in place and functioning, it is a simple matter
to build up information about the amount of dormant and active
nodes present in a population as it evolves. To illustrate this, we
will make use of a maze navigation problem. One of the reasons
for choosing this particular problem is that it has already been
used as the subject for intron research by Soule et al [6,13].

Fig. 1. Pre-defined maze used in the maze navigation problem

In our slightly adapted version of the maze problem, the objective
is to navigate successfully not one but a number of mazes (we
used twenty). One of these mazes has a pre-defined topology; the
others are generated at random. The pre-defined maze is shown in
Figure 1; this is identical to the maze used by Soule et al, except
for the addition of a single exit square in the right-hand wall. The
initial position and orientation of the entity to be guided through
the maze is indicated by the arrow.

The other parameters for the problem are presented in Table 1.
The agent can turn left or right, move forward or backward, and
test whether there is a wall ahead or not. A no-op terminal does
nothing except to expend an instruction cycle. Decision making is
via an if-then-else function, whilst iteration is achieved via a
while function, which repeatedly evaluates the second sub-tree
argument whilst the first argument evaluates to true. The
PROGN2 function is simply a connective which evaluates each of
its two arguments in turn. For a given maze, program fitness is
measured in terms of how close the agent gets to the exit: zero
fitness indicates escape from the maze. Navigation continues until
a maze is successfully completed, or an upper bound of 3000
instruction cycles is reached.
Given the nature of the function set, there is the potential for
dormancy to be present in the population. Even over the
completion of all twenty mazes, the possibility remains that there
are branches of if-then-else clauses that do not get executed, or

1746

while loops for which the predicates always evaluate to false. The
first thing to determine is how far-reaching this dormancy is.

Table 1. Tableau for the maze navigation problem

Objective To navigate a set of mazes

Terminal set forward, back, left, right, no-op,
wall-ahead, no-wall-ahead

Function set if-then-else, while, progn2

Initial
population

Ramped half-and-half, no duplicates

Evolutionar
y process

Steady-state; 5-candidate tournament
selection

Fitness cases 20 mazes: 1 pre-defined, 19 random

Fitness Closest distance to exit (0-18), summed over
all mazes

Restrictions Programs timed-out after 3000 instructions

Success
predicate

Zero fitness (all mazes navigated)

Other
parameters

Pop size=500; Gens=51; prob. crossover=0.9;
no mutation; prob. internal node used as
crossover point=0.9

Figure 2 depicts a graph showing the total number of nodes
present in the population as it evolves during a typical run,
together with the total number of active (non-dormant) nodes. The
expected phenomenon of code bloat is evident, with the
population size rising from 12,000 to 1.5 million nodes in just 17
generations, and a more gentle ascent to 2.4 million nodes
thereafter. By comparison, the number of active nodes seems to
reach a ceiling after generation 17, hovering at just above the
500,000 node level. The amount of dormancy present in the
population is therefore extensive: by generation fifty, 76% of all
nodes are dormant; that is, the population contains roughly 1.8
million nodes that are never executed and so make no
contribution to fitness.

Fig. 2. Total and active nodes in population for one run of
maze problem

The given run profile is not an extreme example. Figure 3 shows
the percentage of dormancy present in the population at the end of
each of a sequence of 20 runs. Solutions were obtained in two of
the runs: run 3 and run 18. In run 3, a solution was not found until
generation 49, but in run 18 a solution was found somewhat
earlier at generation 34. The termination of the run at that point
may account for the lower level of dormancy built up in the
reduced time. In general, however, the amount of dormancy is
extensive, in some cases accounting for more than 80% of all
nodes.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Run

D
or

m
an

cy
 %

Fig. 3. Percentage of dormancy in 20 runs of maze problem

The marking method we have described makes it easy to
determine when crossover cannot possibly lead to a change in
fitness for the newly-created offspring. During crossover, a sub-
tree of parent P1 is replaced by a selected sub-tree of parent P2 to
create a new child. If P1’s sub-tree is known to be dormant, then
the newly-inserted sub-tree must also be dormant, and so fitness
cannot alter. This is true even if the transplanted sub-tree was
active in the original parent P2, and perhaps even of immense
operative value there. Note that the converse can also happen in
crossover, with ‘sleeping’ nodes being awakened upon transfer to
another individual. Indeed, one of the reasons the term ‘dormant’
was chosen was to reflect this context-dependency.
We use the term fitness-preserving crossover (FPC) to denote the
situation in which crossover is made at a dormant node and which
therefore cannot affect fitness. This is to distinguish it from the
more commonly used term neutral crossover, which refers to the
creation of a child which, upon evaluation, is found to have the
same fitness as its parent. By contrast, FPCs are determined prior
to (and, as we shall see, obviate) any fitness evaluation.
Moreover, there may be crossovers which do not take place at
dormant nodes and yet still lead to equivalent fitness; in other
words, FPCs are a subset of neutral crossovers. It should also be
noted that saying FPCs do not alter fitness is not the same as
saying that they are worthless: they may play a valuable role in
propagating useful genetic material.
Since dormancy has been shown to be so prevalent, it might also
be expected that FPCs occur frequently during evolution. This is
borne out in Figure 4, which shows the growth in the percentage
of FPCs taking place during the typical run we referred to earlier.
In generation fifty, 74% of all crossovers are FPCs. Over the
whole run, 64% of all crossovers are FPCs. As before, we can
widen the picture to our sequence of 20 runs (Figure 5). Again,
solutions were obtained in runs 3 and 18. In all but two of the
other runs, the FPC count is above 50%, and in one run reaches
higher than 80%.

0

250000

500000

750000

1000000

1250000

1500000

1750000

2000000

2250000

2500000

0 5 10 15 20 25 30 35 40 45 50

Generation

N
o.

 n
od

es

No. nodes Active nodes

1747

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30 35 40 45 50

Generation

%
 o

f F
PC

s

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Run

FP
C

s
%

Fig. 6. Manipulation of visit trees during crossover

4. EVALUATION AVOIDANCE
Since the fact that a crossover is fitness-preserving is known in
advance of fitness evaluation, an obvious question is whether the
evaluation need be performed at all. Clearly, the child can simply
be assigned the same fitness as its parent. However, this leaves us
with a problem: without evaluation, how can a visit tree be
created for the new individual which is useful for future
determination of FPCs?

The solution lies in the recognition that, like the individual’s code
tree, its visit tree can also be created via an analogous crossover
operation. Figure 6 shows how this works.
In this particular crossover, node g of Parent 1’s code tree is
replaced by the sub-tree n-o-p of Parent 2 to create the child on
the right. However, the flattened form of the visit tree for Parent 1
shows that node g is a dormant node, and this is therefore an FPC.
The new visit tree for the child can be derived from its parent visit

a

b c

d g h

e f

m

n q

o p

Code tree: a b c d e f g h
Visit tree: 1 0 1 1 0 1 0 1

m n o p q
1 1 1 1 0

a

b c

d h

e f

n

o p

a b c d e f n o p h
1 0 1 1 0 1 0 0 0 1

Parent 1 Parent 2 Child

Fig. 4. Percentage of fitness-preserving crossovers
in single run of the maze problem

Fig. 5. Percentage of fitness-preserving
crossovers in 20 runs of maze problem

1748

trees simply by replacing the appropriate nodes with a new
sequence that is of the same length of the sub-tree brought in from
Parent 2. Moreover, since the new sub-tree must be dormant, all
of the nodes in the inserted sequence can and should be initialised
to dormant (zero in the diagram), rather than copied from Parent
2.
This operation is obviously an overhead, and is in addition to the
overheads of visit tree creation, initialisation and maintenance
already described. The next question is whether these overheads
are outweighed by the savings that can be achieved through non-
evaluation of individuals created via FPC. Table 2 shows the
elapsed times for 20 runs of our maze navigation problem, using
both conventional fitness evaluation and evaluation for non-FPC
individuals only. In both cases, the genetic programming system
was initialised with the same random number seed, to ensure that
the evolutionary process and the results obtained in terms of best
programs etc. were identical. The timings were performed on a
PC with a 2.8GHz Pentium 4 processor and 512MB dual DDR
RAM.

Table 2. Execution times for conventional and non-FPC
evaluation approaches in maze problem

Fitness evaluation
performed

Elapsed time for 20 runs
(secs)

Conventional 250

Non-FPC only 113

It can be seen from the table that the evaluation avoidance
technique we have described leads to a 55% saving in elapsed
execution time.

5. OTHER PROBLEMS
The technique described in this paper has been applied to a
number of problem domains, with similar significant results. To
take another example, consider the well-known Santa Fe trail
problem, in which an artificial ant must be guided along a trail of
food particles [4]. Table 3 gives the parameters for this problem.
Although this problem has an IF-THEN-ELSE statement, it does
not contain any explicit loops or other constructs in which code
can remain unexecuted. It might be presumed, therefore, that the
scope for dormancy is limited. Experimental investigation reveals,
however, that dormancy is in fact more extensive than it is in the
maze problem, as can be seen in the single run depicted in Figure
7, and in the sequence of runs shown in Figure 8.
In the majority of runs, dormancy exceeds 80%, and sometimes
reaches the mid-nineties. As with the maze problem, the number
of active nodes in the population as a whole tends to reach a
plateau while the population size continues to climb. Figure 9
shows how the number of fitness preserving crossovers for one
run of this problem climbs steadily until it reaches 93% in
generation fifty, while Figure 10 shows the total number of FPCs
in each of a sequence of 20 runs of this problem.

Table 3. Tableau for the artificial ant problem

Objective To evolve a program that guides an ant along
a trail of food particles

Terminal set left, right, move

Function set if-food-ahead, progn2, progn3

Initial
population

Ramped half-and-half, no duplicates

Evolutionar
y process

Steady-state; 5-candidate tournament
selection

Fitness cases One: the Santa Fe trail

Fitness Number of food pellets (0-89) not found by
the ant

Restrictions Programs timed-out after 600 steps (left, right
or move)

Success
predicate

Zero fitness (all food found)

Other
parameters

Pop size=500; Gens=51; prob. crossover=0.9;
no mutation; prob. internal node used as
crossover point=0.9

Fig. 7. Level of dormancy in one run of the ant problem

Table 4 gives the timings for the Santa Fe problem, taken over
200 runs. Coincidentally, the time for 200 runs of this problem is
the same as that taken for 20 runs of the maze navigation
problem, but the time for the non-FPC approach is lower. This
latter figure represents a 62% saving in execution time.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

220000

0 5 10 15 20 25 30 35 40 45 50

Generation

N
o.

 n
od

es

Total nodes Active nodes

1749

Fig. 8. Total dormancy levels in 20 runs of the ant problem

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30 35 40 45 50

Generation

%
 o

f F
PC

s

Fig. 9. Percentage of fitness preserving crossovers in one run

of the Santa Fe artificial ant problem

Fig. 10. Percentage of FPCs in 20 successive runs of the ant
problem.

Table 4. Execution times for conventional and non-FPC
evaluation approaches in Santa Fe problem

Fitness evaluation
performed

Elapsed time for 200 runs
(secs)

Conventional 250

Non-FPC only 95

6. CONCLUSIONS
Although dormant nodes do not equate to the full range of
possible intron types that be present in a population, we have
shown that they are certainly highly prevalent in certain classes of
genetic programming problem. These problems are ones which
make use of constructs, such as if statements and while loops, that
permit the possibility of non-traversed paths in the program tree.
It would seem that the presence of only one such construct in the
function set is sufficient to entail significant dormancy.
Where dormancy is so prevalent, then so too are fitness-
preserving crossovers. The mechanisms we have described for
detecting when these occur, and the subsequent visit tree
crossovers required to avoid fitness evaluation, are easily
implemented. As we have demonstrated, the efficiency payoff can
be substantial. Since program tree crossovers are not prevented,
the results obtained remain unaffected. In the experiments
described here, the only difference to the observer is an execution
time that is less than half of that obtained using conventional
techniques.
Future work will consist of further investigations into the role
played by dormant nodes, with regard to performance, efficiency
and code size in a variety of problem domains.

7. REFERENCES
[1] Blickle, T. and Thiele, L. Genetic Programming and

Redundancy. In Genetic Algorithms within the Framework of
Evolutionary Computation (Workshop at KI-94), Hopf, J.
(ed), Saarbrücken, 1994, 33-38.

[2] Carbajal, S. and Martinez, F. Evolutive Introns: A Non-
Costly Method of Using Introns in GP. Genetic
Programming and Evolvable Machines 2, 2 (June 2001) 111-
122.

[3] Iba, H. and Terao, M. Controlling Effective Introns for
Multi-Agent Learning by Genetic Programming. In Proc.
Genetic and Evolutionary Computation Conf. (GECCO),
2000, 419-426.

[4] Koza, J.R. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT Press,
Cambridge, MA, 1992.

[5] Langdon, W.B. Data Structures and Genetic Programming.
In Advances in Genetic Programming, vol. 2, Angeline, P.J.
and Kinnear, K.E. (eds), MIT Press, Cambridge, MA, 1996,
395-414.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Run

D
or

m
an

cy
 %

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Run

FP
C

s
%

1750

[6] Langdon, W.B., Soule, T., Poli, R. and Foster, J.A. The
Evolution of Size and Shape. In Advances in genetic
programming, vol. 3, Spector, L. et al (eds), MIT Press,
Cambridge, MA, 1999, 163-190.

[7] Luke, S. Code Growth is Not Caused by Introns. In Late
Breaking Papers, Proc. Genetic and Evolutionary
Computation Conf. (GECCO), 2000, 228-235.

[8] Miller, J. What Bloat? Cartesian Genetic Programming on
Boolean Problems. In Late Breaking Papers, Proc. Genetic
and Evolutionary Computation Conf. (GECCO), 2001, 295-
302.

[9] Nordin, P., Francone, F., and Banzhaf, W. Explicitly Defined
Introns and Destructive Crossover in Genetic Programming.
In Advances in Genetic Programming, vol. 2, Angeline, P.J.
and Kinnear, K.E. (eds), MIT Press, Cambridge, MA, 1996,
111-134.

[10] Smith, P. and Harries, K. Code Growth, Explicitly Defined
Introns and Alternative Selection Schemes. Evolutionary
Computation 6, 4 (1998) 339-360.

[11] Soule, T. Exons and Code Growth in Genetic Programming.
In EuroGP 2002, Lecture Notes in Computer Science vol.
2278, Foster, J.A. et al (eds), Springer-Verlag, Berlin
Heidelberg, 2002, 142-151.

[12] Soule, T., Foster, J.A., and Dickinson, J. Code Growth in
Genetic Programming. In Genetic Programming 1996:
Proceedings of the First Annual Conference, Koza, J.R. et al
(eds), MIT Press, Cambridge, MA, 1996, 215-223.

[13] Soule, T. Code Growth in Genetic Programming. PhD
Thesis, University of Idaho, 1998.

1751

