
Dormant Program Nodes and the Efficiency of Genetic 
Programming 

David Jackson 
Dept. of Computer Science 

University of Liverpool 
Liverpool L69 3BX, United Kingdom 

Tel. +44 151 794 3678 

d.jackson@csc.liv.ac.uk 
 
 

 
 
 

ABSTRACT 
In genetic programming, there is a tendency for individuals in a 
population to accumulate fragments of code – often called introns 
– which are redundant in the fitness evaluation of those 
individuals. Crossover at the sites of certain classes of intron 
cannot produce a different fitness in the offspring, but the cost of 
identifying such sites may be high. We have therefore focused our 
attention on one particular class of non-contributory node that can 
be easily identified without sophisticated analysis. 
Experimentation shows that, for certain problem types, the 
presence of such dormant nodes can be extensive. We have 
therefore devised a technique that can use this information to 
reduce the number of fitness evaluations performed, leading to 
substantial savings in execution time without affecting the results 
obtained.   

Categories and Subject Descriptors 
D.1.2 [Programming Techniques]: Automatic Programming; 
I.2.2 [Artificial Intelligence] Automatic Programming – program 
synthesis; I.2.6 [Artificial Intelligence] Learning – induction. 

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Genetic programming, efficiency, intron, dormant node, fitness-
preserving crossover. 

1. INTRODUCTION 
In genetic programming, many members of the evolving 
population will contain sequences of program code which make 
no contribution to the fitness of those individuals. These code 
fragments are commonly called introns, although there are 
researchers who dislike the term [6]. Introns have come under 
intense research scrutiny, in particular for the role they might play 

in the phenomenon of code bloat – the undesired increase in code 
size during evolution (e.g. [7,8,10-13]), but also for other reasons 
such as their impact on the effectiveness of genetic programming 
systems at finding solutions [2,9]. 
For certain types of intron, crossover that takes place at the site of 
the non-contributing code cannot alter the fitness that is 
propagated to the generated offspring. In a paper on the genetic 
programming of data structures, Langdon [5] pointed out that it 
might even be possible to avoid invoking the fitness function used 
to evaluate those offspring, possibly resulting in considerable 
savings in execution time. The remark was made almost as an 
aside, and Langdon presented no experiments or results to support 
the idea. 
A difficulty with this suggestion is that the computational costs 
associated with identifying the introns in the first place can render 
such an approach impractical. For genetic programming problems 
involving, say, loops or recursion, the analysis required may be 
intractable [3,13]. For other problems, such as the evolution of a 
multiplexer, where individuals can be exhaustively tested with all 
combinations of inputs, it may be possible to identify introns by 
systematically replacing each sub-tree with a nullifying or 
negating operation to see if the fitness value alters [1,7]. Such an 
approach may be feasible but computationally highly expensive. 
In this paper, we explain how the costs of identification can be 
minimised by restricting ourselves to a subset of the possible 
intron types. We describe a simple implementation method for 
identifying such program nodes, and then investigate how 
widespread this limited category of nodes really is in a 
population. Exploitation of these results leads us to a mechanism 
for reducing the number of fitness evaluations that are necessary, 
as per Langdon’s suggestion, and we present results for the 
effectiveness of the technique. 

2. DORMANT NODES 
Although the term intron has been widely used in the genetic 
programming literature to denote pieces of program code that 
make no contribution to the fitness of an individual, the term is 
often imprecisely defined. Nordin et al [9] addressed this by 
defining five main categories of intron. Type 1 introns, for 
example, are code segments in which crossover never changes the 
behaviour of the program for any input in the problem domain, 
while Type 2 introns are code segments where crossover never 
changes the behaviour of the program for any of the fitness cases. 
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Soule and others [6,13] abandoned the use of the word intron in 
their own categorisation defining the viability and operability of 
program nodes and sub-trees. In their usage, an inoperative node 
is one in which replacement of the sub-tree rooted at that node by 
a null operation (no-op) will not change the program’s output. 
Similarly, a node is said to be inviable if there does not exist a 
sub-tree which will change the program’s output when substituted 
for that node. 
For our own purposes, the key information we require is whether 
a node is executed or not for the set of test cases used to evaluate 
a program. We are less interested in making broader statements 
regarding the potential contribution of such nodes. Indeed, it is 
not always clear that a simple division of nodes into executed and 
non-executed camps sits comfortably with existing taxonomies. 
Nodes that are not executed during a fitness evaluation are 
certainly of the Type 2 variety as defined by Nordin et al, but 
many may also be of the Type 1 variety. In other words, the 
reason a node is not executed may be either because the test cases 
are not sufficient, or because the node is unreachable in all 
circumstances. Similarly, the categorisation of Soule et al seems 
to be defined in terms of the problem domain, rather than in terms 
of specific execution cases. Inviable code is often unexecuted 
code, but the two are not synonymous. 
For these reasons, we introduce a new terminology as follows: 
 

Definition: A dormant node is a program node that is not 
executed for any of the cases involved in evaluating the fitness of 
the individual. A non-dormant node is said to be active. It follows 
from this that if the root node of a sub-tree is dormant, then the 
whole sub-tree is dormant, i.e. none of the nodes in that sub-tree 
is executed. 

 
From this definition, it will be realised that the decision as to 
whether a node is denoted dormant or active can be based purely 
on information gathered dynamically, and requires no 
sophisticated analysis of the containing program. To record this 
information, we adopt a marking method similar to that used by 
Blickle and Thiele [1]. In their work, Blickle and Thiele used 
marking as a means for approximating the amount of 
‘redundancy’ present in a program. They were interested in the 
effects of avoiding redundant crossovers, and so presented no 
timings for the costs and savings involved when these crossovers 
are allowed to proceed. 
Since we need to record possible dormancy for all nodes of all 
trees present in the genetic programming population, every 
individual is allocated what we call a visit tree. This is of the 
same length and structure of the individual’s code tree. When an 
individual is presented to the fitness function for evaluation, all of 
the nodes in its visit tree are initialised to a pre-defined NOT-
VISITED value. Whenever the fitness function causes a node of 
the program tree to be evaluated, the corresponding node of the 
visit tree is set to VISITED. To implement this we use a visit tree 
pointer that mirrors the navigation of the code tree pointer as the 
individual’s program tree is traversed. Care must be taken to 
ensure that the visit tree pointer is properly updated when sub-tree 
arguments are skipped during, for example, the evaluation of an 
IF-THEN-ELSE node. 

Since each visit tree node records only binary information (visited 
or not), then it would be possible to encode it as a single bit. This 
was, in fact, the suggestion made by Blickle and Thiele. However, 
although it is certainly more memory efficient, the bit 
manipulation and testing operations it necessitates make it far less 
time efficient, and so we settled on the use of a complete byte per 
tree node. 

3. DORMANCY PREVALENCE 
Once the visit tree is in place and functioning, it is a simple matter 
to build up information about the amount of dormant and active 
nodes present in a population as it evolves. To illustrate this, we 
will make use of a maze navigation problem. One of the reasons 
for choosing this particular problem is that it has already been 
used as the subject for intron research by Soule et al [6,13]. 
 

                    

                    

                    

                    

                    

                   

                    

                    

                    

                    

                    

 

Fig. 1. Pre-defined maze used in the maze navigation problem 
 
In our slightly adapted version of the maze problem, the objective 
is to navigate successfully not one but a number of mazes (we 
used twenty). One of these mazes has a pre-defined topology; the 
others are generated at random. The pre-defined maze is shown in 
Figure 1; this is identical to the maze used by Soule et al, except 
for the addition of a single exit square in the right-hand wall. The 
initial position and orientation of the entity to be guided through 
the maze is indicated by the arrow. 

The other parameters for the problem are presented in Table 1. 
The agent can turn left or right, move forward or backward, and 
test whether there is a wall ahead or not. A no-op terminal does 
nothing except to expend an instruction cycle. Decision making is 
via an if-then-else function, whilst iteration is achieved via a 
while function, which repeatedly evaluates the second sub-tree 
argument whilst the first argument evaluates to true. The 
PROGN2 function is simply a connective which evaluates each of 
its two arguments in turn. For a given maze, program fitness is 
measured in terms of how close the agent gets to the exit: zero 
fitness indicates escape from the maze. Navigation continues until 
a maze is successfully completed, or an upper bound of 3000 
instruction cycles is reached. 
Given the nature of the function set, there is the potential for 
dormancy to be present in the population. Even over the 
completion of all twenty mazes, the possibility remains that there 
are branches of if-then-else clauses that do not get executed, or 
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while loops for which the predicates always evaluate to false. The 
first thing to determine is how far-reaching this dormancy is. 
 

Table 1. Tableau for the maze navigation problem 

Objective To navigate a set of mazes 

Terminal set forward, back, left, right, no-op, 
wall-ahead, no-wall-ahead 

Function set if-then-else, while, progn2 

Initial 
population 

Ramped half-and-half, no duplicates 

Evolutionar
y process 

Steady-state; 5-candidate tournament 
selection 

Fitness cases 20 mazes: 1 pre-defined, 19 random 

Fitness Closest distance to exit (0-18), summed over 
all mazes 

Restrictions Programs timed-out after 3000 instructions 

Success 
predicate 

Zero fitness (all mazes navigated) 

Other 
parameters 

Pop size=500; Gens=51; prob. crossover=0.9; 
no mutation; prob. internal node used as 
crossover point=0.9 

 
Figure 2 depicts a graph showing the total number of nodes 
present in the population as it evolves during a typical run, 
together with the total number of active (non-dormant) nodes. The 
expected phenomenon of code bloat is evident, with the 
population size rising from 12,000 to 1.5 million nodes in just 17 
generations, and a more gentle ascent to 2.4 million nodes 
thereafter. By comparison, the number of active nodes seems to 
reach a ceiling after generation 17, hovering at just above the 
500,000 node level. The amount of dormancy present in the 
population is therefore extensive: by generation fifty, 76% of all 
nodes are dormant; that is, the population contains roughly 1.8 
million nodes that are never executed and so make no 
contribution to fitness. 

Fig. 2. Total and active nodes in population for one run of 
maze problem 

The given run profile is not an extreme example. Figure 3 shows 
the percentage of dormancy present in the population at the end of 
each of a sequence of 20 runs. Solutions were obtained in two of 
the runs: run 3 and run 18. In run 3, a solution was not found until 
generation 49, but in run 18 a solution was found somewhat 
earlier at generation 34. The termination of the run at that point 
may account for the lower level of dormancy built up in the 
reduced time. In general, however, the amount of dormancy is 
extensive, in some cases accounting for more than 80% of all 
nodes. 
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Fig. 3. Percentage of dormancy in 20 runs of maze problem 

The marking method we have described makes it easy to 
determine when crossover cannot possibly lead to a change in 
fitness for the newly-created offspring. During crossover, a sub-
tree of parent P1 is replaced by a selected sub-tree of parent P2 to 
create a new child. If P1’s sub-tree is known to be dormant, then 
the newly-inserted sub-tree must also be dormant, and so fitness 
cannot alter. This is true even if the transplanted sub-tree was 
active in the original parent P2, and perhaps even of immense 
operative value there. Note that the converse can also happen in 
crossover, with ‘sleeping’ nodes being awakened upon transfer to 
another individual. Indeed, one of the reasons the term ‘dormant’ 
was chosen was to reflect this context-dependency. 
We use the term fitness-preserving crossover (FPC) to denote the 
situation in which crossover is made at a dormant node and which 
therefore cannot affect fitness. This is to distinguish it from the 
more commonly used term neutral crossover, which refers to the 
creation of a child which, upon evaluation, is found to have the 
same fitness as its parent. By contrast, FPCs are determined prior 
to (and, as we shall see, obviate) any fitness evaluation. 
Moreover, there may be crossovers which do not take place at 
dormant nodes and yet still lead to equivalent fitness; in other 
words, FPCs are a subset of neutral crossovers. It should also be 
noted that saying FPCs do not alter fitness is not the same as 
saying that they are worthless: they may play a valuable role in 
propagating useful genetic material. 
Since dormancy has been shown to be so prevalent, it might also 
be expected that FPCs occur frequently during evolution. This is 
borne out in Figure 4, which shows the growth in the percentage 
of FPCs taking place during the typical run we referred to earlier. 
In generation fifty, 74% of all crossovers are FPCs. Over the 
whole run, 64% of all crossovers are FPCs. As before, we can 
widen the picture to our sequence of 20 runs (Figure 5). Again, 
solutions were obtained in runs 3 and 18. In all but two of the 
other runs, the FPC count is above 50%, and in one run reaches 
higher than 80%. 

0

250000

500000

750000

1000000

1250000

1500000

1750000

2000000

2250000

2500000

0 5 10 15 20 25 30 35 40 45 50

Generation

N
o.

 n
od

es

No. nodes Active nodes

1747



 

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30 35 40 45 50

Generation

%
 o

f F
PC

s

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Run

FP
C

s 
%

 
 
 
 
 

 
 
 

Fig. 6. Manipulation of visit trees during crossover 
 

4. EVALUATION AVOIDANCE 
Since the fact that a crossover is fitness-preserving is known in 
advance of fitness evaluation, an obvious question is whether the 
evaluation need be performed at all. Clearly, the child can simply 
be assigned the same fitness as its parent. However, this leaves us 
with a problem: without evaluation, how can a visit tree be 
created for the new individual which is useful for future 
determination of FPCs?  

The solution lies in the recognition that, like the individual’s code 
tree, its visit tree can also be created via an analogous crossover 
operation. Figure 6 shows how this works.  
In this particular crossover, node g of Parent 1’s code tree is 
replaced by the sub-tree n-o-p of Parent 2 to create the child on 
the right. However, the flattened form of the visit tree for Parent 1 
shows that node g is a dormant node, and this is therefore an FPC. 
The new visit tree for the child can be derived from its parent visit 
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trees simply by replacing the appropriate nodes with a new 
sequence that is of the same length of the sub-tree brought in from 
Parent 2. Moreover, since the new sub-tree must be dormant, all 
of the nodes in the inserted sequence can and should be initialised 
to dormant (zero in the diagram), rather than copied from Parent 
2. 
This operation is obviously an overhead, and is in addition to the 
overheads of visit tree creation, initialisation and maintenance 
already described. The next question is whether these overheads 
are outweighed by the savings that can be achieved through non-
evaluation of individuals created via FPC. Table 2 shows the 
elapsed times for 20 runs of our maze navigation problem, using 
both conventional fitness evaluation and evaluation for non-FPC 
individuals only. In both cases, the genetic programming system 
was initialised with the same random number seed, to ensure that 
the evolutionary process and the results obtained in terms of best 
programs etc. were identical. The timings were performed on a 
PC with a 2.8GHz Pentium 4 processor and 512MB dual DDR 
RAM. 
 

Table 2. Execution times for conventional and non-FPC 
evaluation approaches in maze problem 

 

Fitness evaluation 
performed 

Elapsed time for 20 runs 
(secs) 

Conventional 250 

Non-FPC only 113 

 
It can be seen from the table that the evaluation avoidance 
technique we have described leads to a 55% saving in elapsed 
execution time. 

5. OTHER PROBLEMS 
The technique described in this paper has been applied to a 
number of problem domains, with similar significant results. To 
take another example, consider the well-known Santa Fe trail 
problem, in which an artificial ant must be guided along a trail of 
food particles [4]. Table 3 gives the parameters for this problem. 
Although this problem has an IF-THEN-ELSE statement, it does 
not contain any explicit loops or other constructs in which code 
can remain unexecuted. It might be presumed, therefore, that the 
scope for dormancy is limited. Experimental investigation reveals, 
however, that dormancy is in fact more extensive than it is in the 
maze problem, as can be seen in the single run depicted in Figure 
7, and in the sequence of runs shown in Figure 8. 
In the majority of runs, dormancy exceeds 80%, and sometimes 
reaches the mid-nineties. As with the maze problem, the number 
of active nodes in the population as a whole tends to reach a 
plateau while the population size continues to climb. Figure 9 
shows how the number of fitness preserving crossovers for one 
run of this problem climbs steadily until it reaches 93% in 
generation fifty, while Figure 10 shows the total number of FPCs 
in each of a sequence of 20 runs of this problem. 
 
 

 
 

Table 3. Tableau for the artificial ant problem 

Objective To evolve a program that guides an ant along 
a trail of food particles 

Terminal set left, right, move 

Function set if-food-ahead, progn2, progn3 

Initial 
population 

Ramped half-and-half, no duplicates 

Evolutionar
y process 

Steady-state; 5-candidate tournament 
selection 

Fitness cases One: the Santa Fe trail 

Fitness Number of food pellets (0-89) not found by 
the ant 

Restrictions Programs timed-out after 600 steps (left, right 
or move) 

Success 
predicate 

Zero fitness (all food found) 

Other 
parameters 

Pop size=500; Gens=51; prob. crossover=0.9; 
no mutation; prob. internal node used as 
crossover point=0.9 

 
 

Fig. 7. Level of dormancy in one run of the ant problem 
 
Table 4 gives the timings for the Santa Fe problem, taken over 
200 runs. Coincidentally, the time for 200 runs of this problem is 
the same as that taken for 20 runs of the maze navigation 
problem, but the time for the non-FPC approach is lower. This 
latter figure represents a 62% saving in execution time. 
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Fig. 8. Total dormancy levels in 20 runs of the ant problem 
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Fig. 9.  Percentage of fitness preserving crossovers in one run 

of the Santa Fe artificial ant problem 

 

Fig. 10. Percentage of FPCs in 20 successive runs of the ant 
problem. 

 
 

Table 4. Execution times for conventional and non-FPC 
evaluation approaches in Santa Fe problem 

Fitness evaluation 
performed 

Elapsed time for 200 runs 
(secs) 

Conventional 250 

Non-FPC only 95 

 
 

6. CONCLUSIONS 
Although dormant nodes do not equate to the full range of 
possible intron types that be present in a population, we have 
shown that they are certainly highly prevalent in certain classes of 
genetic programming problem. These problems are ones which 
make use of constructs, such as if statements and while loops, that 
permit the possibility of non-traversed paths in the program tree. 
It would seem that the presence of only one such construct in the 
function set is sufficient to entail significant dormancy. 
Where dormancy is so prevalent, then so too are fitness-
preserving crossovers. The mechanisms we have described for 
detecting when these occur, and the subsequent visit tree 
crossovers required to avoid fitness evaluation, are easily 
implemented. As we have demonstrated, the efficiency payoff can 
be substantial. Since program tree crossovers are not prevented, 
the results obtained remain unaffected. In the experiments 
described here, the only difference to the observer is an execution 
time that is less than half of that obtained using conventional 
techniques. 
Future work will consist of further investigations into the role 
played by dormant nodes, with regard to performance, efficiency 
and code size in a variety of problem domains. 
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