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ABSTRACT 
This paper introduces a novel scheme of improving the 
performance of particle swarm optimization (PSO) by a vector 
differential operator borrowed from differential evolution (DE). 
Performance comparisons of the proposed method are provided 
against (a) the original DE, (b) the canonical PSO, and (c) three 
recent, high-performance PSO-variants. The new algorithm is 
shown to be statistically significantly better on a seven-function 
test suite for the following performance measures: solution 
quality, time to find the solution, frequency of finding the 
solution, and scalability. 

Categories and Subject Descriptors 
 I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search --- Heuristic methods; G.1.6 [Numerical 
Analysis]: Optimization --- Global optimization; G.3 --- 
Probabilistic algorithms 

General Terms  
Algorithms  

Keywords 
Particle swarm optimization, differential evolution, evolutionary 
computation 

1. INTRODUCTION 
Particle swarm optimization (PSO) [8] is a stochastic optimization 
technique that draws inspiration from the behavior of a flock of 
birds or the collective intelligence of a group of social insects with 
limited individual capabilities. In this paper we present an 
improved PSO algorithm by proposing a new scheme of adjusting 
the velocities of the particles in PSO with a vector differential 
operator. The canonical PSO updates the velocity of a particle 
using three terms -- a previous velocity term that provides the 
particle with the necessary momentum, a social term that indicates 
how the particle is stochastically drawn towards the globally best 
position found so far by the entire swarm, and a cognitive term 
that reflects the personal thinking of the particle, i.e., how much it 
is drawn towards the best position so far encountered in its own 
course. In the proposed scheme the cognitive term is omitted; 
instead the particle velocities are perturbed by a new term 

containing the weighted difference of the position vectors of any 
two distinct particles randomly chosen from the swarm. A 
survival of the fittest mechanism has also been introduced in the 
swarm.  

2. CANONICAL PSO AND SOME OF ITS 
SHORTCOMINGS  
In PSO a population of particles is initialized with random 
positions Xi and velocities Vi, and a fitness function, f, is 
evaluated, using the particle’s positional coordinates as input 
values. In an n-dimensional search space, Xi = (xi1, xi2, xi3,...,xin) 
and Vi = (vi1, vi2, vi3,...,vin).   Positions and velocities are adjusted, 
and the function is evaluated with the new coordinates at each 
time-step.  The velocity and position update equations for the d-th 
dimension of the i-th particle in the swarm may be given as 
follows:  
Vid (t+1) = ω.Vid (t) + C1. φ1. (Plid -Xid (t)) + C2. φ2. (Pgd-X id(t))                   
                                                                                                               (1)                        
Xid (t+1) = Xid (t) + Vid (t+1) 
 
The variables φ1 and φ2 are random positive numbers, drawn from 
a uniform distribution, and with an upper limit φmax which is a 
parameter of the system. C1 and C2 are called acceleration 
constants, and ω is the inertia weight. Pli is the best solution found 
so far by an individual particle, while Pg represents the fittest 
particle found so far in the entire community. The canonical PSO 
has been subjected to empirical [1], [7], [15] and theoretical [3], 
[13] investigations by several researchers.  In many occasions the 
convergence is premature, especially if the swarm uses a small 
inertia weight ω [15] or constriction coefficient [3]. From 
equations (1), we see that if Vid is small, and if |Plid-Xid| and |Pgd-
Xid| too are small enough, Vid cannot attain a large value in the 
upcoming generations. That would mean a loss of exploration 
power. Such a case can occur even at an early stage of the search 
process, when the particle is the global best, causing both |Plid-Xid| 
and |Pgd-Xid| to be zero, and Vid gets damped quickly with the ratio 
w. Also, the swarm suffers from loss of diversity in later 
generations if Plid and Pgd are close enough [6], [16], [15]. 

3. PROPOSED ALGORITHM 
In an attempt to circumvent the problems mentioned in the 
previous section, we have tightly coupled a differential operator 
(borrowed from differential evolution [12]) with the velocity-
update scheme of PSO. The operator is invoked on the position 
vectors of two randomly chosen particles (population-members), 
not on their individual best positions. Further, unlike the PSO 
scheme, a particle is actually shifted to a new location only if the 
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new location yields a better fitness value, i.e., a selection strategy 
has been incorporated into the swarm dynamics.            
In the proposed algorithm, for each particle i in the swarm two 
other distinct particles, say j and k (i ≠ j ≠ k), are selected 
randomly. The difference between their positional coordinates is 
taken as a difference vector δ: 

jk XX −=δ                                                                   (2) 

Then the d-th velocity component (1 < d < n) of the target particle 
i is updated as  
 Vid (t+1) = ω.Vid (t) + β.δd + C2. φ2. (Pgd-X id(t)),  
                                                                           if randd (0, 1)  <CR 
                = Vid (t),                                             otherwise 
                                                                                                     (3) 
where CR is the crossover probability, δd is the d-th component of 
the difference vector δ defined in (2), and β is a scale factor in [0, 
1]. In essence the cognitive part of the velocity update formula in 
(1) is replaced with the vector differential operator to produce 
some additional exploration capability. Clearly, for CR < 1, some 
of the velocity components will retain their old values. Now, a 
new trial location Tri is created for the particle by adding the 
updated velocity to the previous position Xi: 

    )1()( ++= tVtXTr iii                                     (4)                                                                                                                                               

The particle is placed at this new location only if the coordinates 
of the location yield a better fitness value. Thus if we are seeking 
the minimum of an n-dimensional 
function )(),...,,( 21 Xfxxxf n = , then the target particle is 
relocated as follows: 

ii TrtX =+ )1(                               if ( ))(()( tXfTrf ii < ) 

)()1( tXtX ii =+               otherwise   

                                                                                                      (5) 

Therefore, every time its velocity changes, the particle either 
moves to a better position in the search space or sticks to its 
previous location. The current location of the particle is thus the 
best location it has ever found. In other words, unlike the classical 
PSO, in the present scheme, Plid always equals Xid. So the 
cognitive part involving |Plid-Xid| is automatically eliminated in our 
algorithm. If a particle gets stagnant at any point in the search 
space (i.e., if its location does not change for a predetermined 
number of iterations), then the particle is shifted by a random 
mutation (explained below) to a new location. This technique 
helps escape local minima and also keeps the swarm “moving”: 

If(( ))(....)2())1()( NtXtXtXtX iiii +==+=+=  

and ))))((( *fNtXf i ≠+  then  

for ( r = 1 to n)  Xir(t+N+1) = Xmin + randr(0, 1)*(Xmax-Xmin)     (6)                
where f* is the global minimum of the fitness function, N is the 
maximum number of iterations up to which stagnation can be 
tolerated and (Xmax, Xmin) define the permissible bounds of the 
search space. The pseudocode for this new method, called PSO-
DV (Particle Swarm Optimization with Differentially perturbed 
Velocity), is presented below: 

Procedure PSO-DV 
begin 
 initialize population; 
 while stopping condition not satisfied do 
    for i = 1 to no_of_particles 
      evaluate fitness of particle; 
      update Pgd ; 
      select two other particles j and k (i≠j≠k) randomly; 
      construct the difference vector as 

jk XX −=δ ; 

      for d = 1 to no_of_dimensions 
       if randd (0, 1) < CR  
          Vid (t+1) = ω.Vid (t) + β.δd + C2. φ2. (Pgd-X id(t)); 
       else Vid (t+1) = Vid (t);  
       endif 
      endfor   
      create trial location as )1()( ++= tVtXTr iii

; 
         if ( ))(()( tXfTrf ii < ) then 

ii TrtX =+ )1(  

            else )()1( tXtX ii =+ ;  
          endif 
    endfor   
      for i = 1 to no_of_particles 
        if Xi stagnates for N successive generations                         

for r = 1 to no_of_dimensions  
                      Xir(t+1) = Xmin + randr(0, 1)*(Xmax-Xmin)   
                        end for 
         end if   
       end for 
  end while 
end 

4.  EXPERIMENTAL SETTINGS  
4.1 Benchmarks  
We have used seven well-known benchmarks [17] to evaluate the 
performance of the proposed algorithm. Here the proposed 
algorithm has been tested against the original DE, canonical PSO 
and three other recent variants of PSO. The benchmarks used are 
presented below (n represents the number of dimensions; we used 
up to 30 dimensions for the first five functions): 
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The first two test functions are unimodal, having only one 
minimum. The others are multimodal, with a considerable number 
of local minima in the region of interest. All benchmark functions 
except the f7 function have the global minimum at the origin or 
very near to the origin [11]. For Shekel’s foxholes (f7), the global 
minimum is at (-31.95, -31.95), with f7 (-31.95, -31.95) ≈ 0.998. 

4.2 PSO Variants Used for Comparison  
4.2.1 PSO-TVIW 
Shi and Eberhart [11] improved the performance of the PSO 
method by using a linearly varying inertia weight (ω) (over 
iterations) from a predetermined maximum to a predetermined 
minimum value. They empirically observed that the performance 
could be improved by varying ω from 0.9 at the beginning of the 
search to 0.4 at the end of the search. We use these values while 
implementing their scheme. We call this version PSO-TVIW 
(PSO with Time Varying Inertia Weight). 

4.2.2 HPSO-TVAC 
Ratnaweera et al. [10] have suggested a parameter automation 
strategy for PSO where the cognitive component is reduced and 
the social component increased (by varying the acceleration 
coefficients C1 and C2 in (1)) linearly with time. They suggested 
another modification, named “self-organizing hierarchical particle 
swarm optimizer”, in conjunction with the previously mentioned 
time varying acceleration coefficients (HPSO-TVAC). In this 
method the inertial velocity term is kept at zero and the modulus 
of the velocity vector is reinitialized to a random velocity, known 
as “re-initialization velocity”, whenever the particle gets stagnant 
(Vid = 0) in some region of the search space.  This way, a series of 
particle swarm optimizers are generated automatically inside the 
main particle system according to the behavior of the particles in 
the search space, until some stopping criterion is met. Following 
[10], in the present paper the re-initialization velocity is kept 
proportional to the maximum allowable velocity, Vmax.  

4.2.3 MPSO-TVAC 
In this variant [10] of PSO, the velocity of a randomly selected 
particle is perturbed by a random mutation step-size if the global 
best-so-far solution does not improve for a predetermined number 
of generations. Following [10], we keep the mutation step-size 
proportional to the maximum allowable velocity. The acceleration 
coefficients are made to vary linearly with time here too.  

4.3 Population Initialization 
Since most of the test functions used in this paper have the global 
minimum at or near the origin of the search space, we use the 
asymmetric initialization method proposed by Angeline [1]. In 
this scheme the population is initialized only in a certain portion 
of the search space. The most common dynamic ranges found in 
the literature are used in this paper and all dimensions are 
confined to the same dynamic range [4], [2].  Table 1 shows the 
range of initialization and the range of search for each function. 

Table 1. Initialization and dynamic range of search  

4.4 Simulation Strategy 
Simulations were carried out to obtain a comparative performance 
analysis of the new method with respect to: (a) canonical PSO, (b) 
PSO-TVIW, (c) MPSO-TVAC, (d) HPSO-TVAC, and (e) 
classical DE. Thus a total of six algorithms were considered – one 
new, the other five existing in the literature. All benchmarks 
except Schaffer’s f6 and Shekel’s foxholes were tested with 
dimensions 5 through 30 (in steps of 5). Schaffer’s f6 and Shekel’s 
foxholes are two-dimensional. For a given function of a given 
dimension, fifty independent runs of each of the six algorithms 
were executed, and the average best-of-run value and the standard 
deviation were obtained. Different maximum generations (Gmax) 
were used according to the complexity of the problem. For all 
benchmarks (excluding f6 and f7) the stopping criterion was set as 
reaching a fitness of 0.001. However, for Schaffer’s f6, the widely 
used error limit of 0.00001 [9], [14] was used and for Shekel’s 
foxholes the criterion was 0.998.  

In the case of DE, we chose the crossover constant CR = 0.9 and 
the scale factor R = 0.8. For PSO and its variants it is quite 
common to limit the value of each component of the velocity 
vector of each particle (Vid) to the maximum allowable value. 
Through empirical studies on numerical benchmarks, Eberhart 
and Shi [5] suggested that it is good to limit the maximum 
velocity, Vmax, to the upper limit of the dynamic range of search, 
Xmax.  We used this limit in this investigation. For MPSO-
TVAC, we set the mutation probability to 0.4 and the mutation 
step-size was changed from Vmax to 0.1Vmax during the search. In 
the case of HPSO-TVAC, the re-initialization velocity was set to 
change from Vmax to 0.1Vmax.  For the new algorithm PSO-DV, 
we used β = 0.8. In PSO-DV, the value of the parameter N 
depends on the nature of the test function (see Table 2). 

4.5 Population Size 
It is common practice in DE research to use a population size ten 
times the dimensionality of the search space. We take up the same 
convention here for the DE. Eberhart and Shi [5] showed that the 
population size has hardly any effect on the performance of the  

Function Range of search Range of Initialization 

f1 (-100, 100)n (50, 100)n 
f2 (-50, 50)n (15, 30)n 
f3 (-5.12, 5.12)n (2.56, 5.12)n 
f4 (-600, 600)n (300, 600)n 
f5 (-32, 32)n (15, 32)n 
f6 (-100, 100)2 (15, 30)2 
f7 (-65.536, 65.536)2 (0, 65.536)2 
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Table 2. Average and  standard deviation of the best-of-run solution obtained for 50 runs of each of the six different methods.  
Average 

(Standard Deviation) 

 

F 
 

Dim 
 

 

N 

 

Gmax 

PSO PSO-
TVIW 

MPSO-
TVAC 

HPSO-   
TVAC DE PSO-

DV 

10 50 1000 0.001 0.001 0.001 0.001 0.001 0.001 

20 100 2000 0.001 0.001 0.001 0.001 0.001 0.001 

 
 

f1 
 30 150 4500 0.001 0.001 0.001 0.0001 0.001 0.001 

10 75 3000 21.705 
(40.162) 

16.21 
(14.917) 

1.234 
(4.3232) 

1.921 
(4.330) 

2.263 
(4.487) 

0.0063 
(0.0561) 

20 150 4000 52.21 
(124.32) 

32.53 
(75.309) 

52.432 
(117.178) 

98.749 
(120.175) 

18.934 
(9.453) 

0.0187 
(0.554) 

 
 
 

f2 

30 250 5000 76.87 
(86.136) 

61.56 
(78.923) 

32.222 
(56.944) 

17.134 
(46.945) 

0.0986 
(0.338) 

0.0227 
(0.182) 

10 50 3000 2.334 
(2.297) 

2.1184 
(1.563) 

1.78 
(2.793) 

0.039 
(0.061) 

0.006 
(0.0091) 

0.0014 
(0.0039) 

20 100 4000 13.812 
(3.491) 

16.36 
(4.418) 

11.131 
(0.91) 

0.2351 
(0.1261) 

0.0053 
(0.0032) 

0.0028 
(0.0017) 

 
 
 

f3 

30 150 5000 6.652 
(21.811) 

24.346 
(6.317) 

50.065 
(21.139) 

1.903 
(0.894) 

0.099 
(0.112) 

0.0016 
(0.277) 

10 50 2500 0.1613 
(0.097) 

0.092 
(0.021) 

0.00561 
(0.047) 

0.057 
(0.045) 

0.054 
(0.0287) 

0.024 
(0.180) 

20 100 3500 0.2583 
(0.1232) 

0.1212 
(0.5234) 

0.0348 
(0.127) 

0.018 
(0.0053) 

0.019 
(0.0113) 

0.0032 
(0.0343) 

 
 

f4 

30 150 5000 0.0678 
(0.236) 

0.1486 
(0.124) 

0.0169 
(0.116) 

0.023 
(0.0045) 

0.005 
(0.0035) 

0.0016 
(0.0022) 

10 50 2500 0.406 
(1.422) 

0.238 
(1.812) 

0.169 
(0.772) 

0.0926 
(0.0142) 

0.00312 
(0.0154) 

0.00417 
(0.1032) 

20 100 3500 0.572 
(3.094) 

0.318 
(1.118) 

0.537 
(0.2301) 

0.117 
(0.025) 

0.029 
(0.0067) 

0.0018 
(0.028) 

 
f5 

30 150 5000 1.898 
(2.598) 

0.632 
(2.0651) 

0.369 
(2.735) 

0.068 
(0.014) 

0.0078 
(0.0085) 

0.0016 
(0.0078) 

f6 2 40 1000 0.0059 
(1.672) 

0.0068 
(0.128) 

0.0087 
(0.3215) 

0.00198 
(0.0071) 

0.00065 
(0.0048) 

0.00021 
(0.0015) 

f7 2 40 1000 1.235 
(2.215) 

1.239 
(1.468) 

1.321 
(2.581) 

1.328 
(1.452) 

1.032 
(0.074) 

0.9991 
(0.0002) 

 
PSO method. Van den Bergh and Engelbrecht [14] have shown 
that though there is a slight improvement in the solution quality 
with increasing   swarm sizes, a larger swarm increases the 
number of function evaluations to converge to an error limit. The 
present paper uses the “ten times” rule of population size for all 
the six algorithms. 

5. RESULTS 
The following performance measures are used for our 
comparative study: (a) quality of the final solution, (b) speed of 
convergence towards the optimal solution, (c) success rate 
(frequency of hitting the optimum), and (d) scalability of the 
algorithms against the growth of problem dimensions. Table 2 
compares the algorithms on the quality of the best solution. The 
mean and the standard deviation (within parentheses) of the best-
of-run solution for 50 independent runs of each of the six 
algorithms are presented in Table 2.  Missing values of standard 
deviation in this table indicate a zero standard deviation. The best 
solution in each case has been shown in bold.  Table 3 shows 
results of unpaired t-tests between the best algorithm and the  

 
second best in each case (standard error of difference of the two 
means, 95% confidence interval of this difference, the t value, and 
the two-tailed P value).  For all cases in Table 3, sample size = 50 
and degrees of freedom = 98. It is interesting to see from Tables 2 
and 3 that in most cases the proposed method meets or beats the 
nearest competitor in a statistically meaningful way.  Table 2 
shows that only in two cases is the proposed method’s mean 
numerically larger (i.e., worse) than the mean of the competitor 
(MPSO-TVAC or DE), but as Table 3 shows, this difference is 
not statistically significant. Table 4 shows, for the same set of 
runs as used in Tables 2 and 3, the number of runs (out of 50) that 
managed to find the optimum solution (within the given tolerance) 
and also the average number of generations (in parentheses) 
needed to find that solution. In Figure 1 we have graphically 
presented the rate of convergence of all the methods for all the 
functions.  Figure 2 shows the scalability of the six methods on 
the first five test functions -- how the average time to convergence 
varies with an increase in the dimensionality of the search space.  
These results show that the proposed method leads to significant 
improvements in most cases. 
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(a) Sphere Function 
  

 
                     
 
 
 
 
 
 
 
 

(b) Griewank Function 
  

 
 
 
 
 
 
 
 
 

 
(c) Rosenbrock Function 

  
  

 
 
 
 
 
 
 

 
(d) Schaffer’s f6 function 

 
 
(d) Schaffer’s f6 function 

(d) Schaffer’s f6 function 
 
 
 
 
 

(e) Rastrigin Function 
 
 
 

(e) Rastrigin Function 
 
 
 
 
 
 
 
 

(f) Ackley Function 
 

  
 
 
 
 
 
 
 
 
 

(g) Shekel’s Foxholes Function 
  
 

Figure 1. Variation of the mean best value with time (all the 
graphs are for dimension = 30 except for Schaffer’s f6 and 

Shekel’s Foxholes which are 2D)    
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(a) Sphere Function 

        
(b) Griewank Function 

 
 
 
 
 
 
 
 
 
 
 

(c) Rastrigin Function 
 
 
      
 
  
 
         
 
 

(d) Rosenbrock Function 
 

 

              
(e) Ackley Function 

 
Figure 2. Variation of mean convergence time with increase in 
dimensionality of the search space (the dashed line represents 

the new algorithm).   
 

 
Table 3. Results of unpaired t-tests on the data of Table 2 

 
 
 
 
 

Fn, Dim Std. Err. t 95% Conf. 
Intvl 

Two-
tailed P 

Significance 

f2, 10 0.611 2.0079 (-2.4411, 
-0.0143) 

0.0474 Significant 

f2, 20 1.339 14.1249 (-21.573, 
-16.258) 

< 0.0001 Extremely 
significant 

f2, 30 0.054 1.3981 (-0.1836, 
0.0318) 

0.1653 Not 
significant 

f3, 10 0.001 3.2854 (-0.0074, 
-0.0018) 

0.0014 Very 
significant 

f3, 20 0.001 4.8786 (-0.0035,      
-0.0015) 

< 0.0001 Extremely 
significant 

f3, 30 0.042 2.3051 (-0.1813, 
-0.0135) 

0.0233 Significant 

f4, 10 0.026 0.6990 (-0.0706, 
0.0338) 

0.4862 Not 
significant 

f4, 20 0.005 3.0153 (-0.0245, 
-0.0051) 

0.0033 Very 
significant 

f4, 30 0.001 5.8156 (-0.0046, 
-0.0022) 

< 0.0001 Extremely 
significant 

f5, 10 0.015 0.0712 (-0.0303, 
0.0282) 

0.9434 Not 
significant 

f5, 20 0.004 6.6804 (-0.0353, 
-0.0191) 

< 0.0001 Extremely 
significant 

f5, 30 0.002 3.8002 (-0.0094, 
-0.0030) 

0.0003 Extremely 
significant 

f6, 2 0.001 0.6187 (-0.0019, 
0.0010) 

0.5376 Not 
significant 

f7, 2 0.010 3.1437 (-0.0537, 
-0.0121) 

0.0022 Very 
significant 
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Table 4. Number of runs (out of 50) to optimality and the corresponding mean number of generations 

 
No. of runs converged to the optimality criterion 

(Average number of generations) 

 

 
Fn 

 

Dim 
 

 

     
Gmax 

   PSO PSO-
TVIW 

MPSO-
TVAC 

HPSO-
TVAC DE PSO-DV 

10 1000 50 

(618.4) 

50 

(820.9) 

50 

(667.4) 

50 

(349.7) 

50 

(348.3) 

50 

(267.4) 

20 2000 50 

(2893.8) 

50 

(1353.6) 

50 

(1316.5) 

50 

(443.7) 

50 

(522.3) 

50 

(434.7) 

 

 

f1 

   

30 3000 50 

(2193.5) 

50 

(2600.4) 

50 

(952.5) 

50 

(765.8) 

50 

(911.6) 

50 

(506.9) 

10 3000 0 0 24 

(2852.4) 

18 

(2441.5) 

22 

(2006.7) 

34 

(2981.5) 

20 4000 0 7 

(3345) 

2 

(2331.5) 

10 

(3389.7) 

15 

(4067.3) 

16 

(2213.7) 

 

 

 

f2 

30 5000 0 0 0 10 

(4793.8) 

7 

(5604.3) 

25 

(4198.4) 

10 3000 2 

(3100.5) 

2 

(3082) 

35 

(1296.4) 

40 

(2435.6) 

36 

(2298.2) 

40 

(1675.3) 

20 4000 0 0 

 

34 

(2398.5) 

39 

(5647.9) 

35 

(4655.8) 

43 

(3984.7) 

 

 

 

    
f3 

30 5000 0 0 13 

(4386.8) 

47 

(6124.2) 

43 

(4087.6) 

48 

(4751.4) 

10 2500 0 8 

(2351.5) 

5 

(2393.8) 

19 

(2079) 

12 

(2066.5) 

18 

(2196.5) 

20 3500 13 

(3286) 

18 

(3051.5) 

29 

(3329.7) 

38 

(2385.7) 

35 

(3249.4) 

41 

(3007.8) 

 

 

 

    
f4 

30 5000 34 

(4087) 

25 

(4674.6) 

8 

(4541.5) 

32 

(4256.6) 

46 

(4043.2) 

48 

(2209.4) 

10 2000 16 

(1714.5) 

28 

(1714.3) 

37 

(1226.4) 

40 

(1640.5) 

45 

(1631.5) 

41 

(1582.6) 

20 3500 5 

(3432.4) 

7 

(3284.5) 

13 

(2832.8) 

27 

(3411.0) 

36 

(3132.5) 

47 

(2536.9) 

 

 

f5 

30 5000 0 5 

(4903.6) 

15 

(4448.3) 

26 

(3985.4) 

40 

(4973.6) 

43 

(4956.3) 

      
f6 

2 1000 19 

(625.4) 

12          

(386.5) 

35 

(423.6) 

18 

(344.8) 

36 

(621.5) 

41 

(503.1) 

f7 2 1000 19 

(457.8) 

26 

(892.7) 

33 

(848.3) 

45 

(617.8) 

43 

(756.4) 

48 

(343.1) 
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6. CONCLUSION 
A new, efficient PSO algorithm has been presented and has been 
shown to improve performance in a statistically meaningful way. 
The new method has been compared against (a) the basic DE, (b) 
the PSO, and (c) three best-known PSO-variants, using a seven-
function test suite, on the following performance metrics: (a) 
solution quality, (b) speed of convergence, (c) frequency of hitting 
the optimum, and (d) scalability.   
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