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ABSTRACT
This paper proposes a novel technique for a program evolu-
tion based on probabilistic models. In the proposed method,
two probabilistic distribution models with probabilistic de-
pendencies between variables are used together. We empir-
ically comfirm that our proposed method has higher search
performance. Thereafter, we discuss the effectiveness of its
distribution models.

Categories and Subject Descriptors: G.1.6 [Numeri-
cal Analysis]: Optimization; G.3 [Probability and Statis-
tics]: Probabilistic Algorithms; I.2.6 [Artificial Intelligence]:
Learning

General Terms: Algorithms

Keywords: Genetic Programming, Program Evolution, Evo-
lutionary Computing, Estimation of Distribution Algorithm,
Probabilistic Model-Building Genetic Algorithm

1. INTRODUCTION
In this paper, we propose Extended Estimation of Dis-

tribution Programming (XEDP), which can be viewed as
an extension of EDP [4]. A program population is evolved
by the repetition of the estimation of distribution and the
program generation without any crossover and mutation,
similar to other EDA-based GPs. This paper applies XEDP
to standard problems of GP and conducts comparative ex-
periments. According to experimental results, we discuss
the effectiveness of XEDP’s distribution models.

2. METHOD
The steps of the XEDP algorithm are as follows:

Step 1: Generate an initial population.

Step 2: Estimate individuals and assign fitness value to each.

Step 3: Terminate if termination criterion is satisfied.

Step 4: Learn the probabilistic distribution.

Step 5: Copy elite individuals to a new population.

Step 6: Generate individuals using the acquired distribution.

Step 7: Replace the old population with a new one.

The proposed technique uses the following two probabilis-
tic distribution models together: Conditional Probabil-
ity Tree and Recursive Distribution. The conditional
probability tree estimates global structure of a program,
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Figure 1: Estimation of the recursive distribution.

while the recursive distribution estimates useful substruc-
tures.

As the conditional probability tree, Bayesian Network of
a tree structure is used. Each probabilistic variable on the
Bayesian Network corresponds with a node in the same posi-
tion in a program tree. The probability of a symbol depends
only on the symbol of its parent node. Accordingly, each
probabilistic variable of the conditional probability tree has
only one dependent variable, which represents the symbol
of the parent node. This is based on the assumption that a
probabilistic dependency is strong between the parent node
and its child nodes.

For a recursive distribution, the following conditional prob-
ability is used as a distribution model.

P(Y1, Y2, · · · , Yamax |Y, Yp) (1)

Y1, Y2, · · · , Yamax are probabilistic variables of child nodes of
Y , and Yp is probabilistic variables of the parent node of Y .
Thus, the recursive distribution represents the conditional
joint probability of child nodes given the node symbols of
its immediate parent and grand parent. For instance, there
are four substructures that match the shape of the recursive
distribution in the program tree, as shown in Figure 1.

Individuals are generated as follows:
Step 1: Generate a program T using the conditional proba-
bility tree.
Step 2: Generate subtree S recursively using the recursive
distribution.
Step 3: Replace the arbitrary subtree of T with S.

3. EXPERIMENTAL STUDY
As for the well-known benchmark problems such as the

Max problem, the Multiplexer problem, and the Wall-following

1775



20 40 60 80 100
Generation

0.2

0.4

0.6

0.8

1

Possibility

of Success

XEDP

GP(crossover)

Type A

Figure 2: Cumulative probability

of success for the Max problem.
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Figure 3: Cumulative probability

of success for the Boolean 6-bit mul-

tiplexer problem.
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Figure 4: Cumulative probabil-

ity of success for the Wall-following

problem.

problem, comparative experiments of XEDP and GP were
carried out.

In order to investigate the features of XEDP, a compara-
tive experiment was also conducted for methods that partly
use XEDP operators: Type A generates a program using
only the conditional probability tree; Type B generates a
program using only the recursive distribution; Type C gen-
erates a program T using the conditional probability tree
and replaces the arbitrary subtree of T with a randomly
generated tree; Type D uses a tree-like model in which
probabilistic variables are independent ,instead of the con-
ditional probability tree.

Figure 2, 3, and 4 show the cumulative probability of
success for each generation. Thease graphs indicate that
XEDP is better than GP and other methods in any problem.
As seen from Figure 2, XEDP obtained the optimum solu-
tion until the 66th generation in every run, while GP with
crossover shows a low success probability of 8% even at the
100th generation. GP with mutation has never produced
the optimum solution till the 100th generation. Search with
Type A (Prep = 0) was also successful. This means that
program generation using the conditional probability tree is
effective regarding the Max problem. [3] reports that GMPE
required 13590 evaluations to achieve the success rate 60%.
On the other hand, XEDP needed only 13200 evaluations
(= 200 × 66) for 100% success rate, which means XEDP
has higher search performance than GMPE as for the Max
problem.

In the wall-following problem, the cumulative probabili-
ties of success with XEDP got better during the latter half of
evolution. Then probability of success of XEDP at the 50th
generation is higher than that of GP. On the other hand,
GP with crossover shows no fluctuation after the 40th gen-
eration.

4. DISCUSSION
As for the Max problem, the Multiplexer problem, and

the Wall-following problem, XEDP marked as high search
performance as or higher than GP. PIPE [1] is available
only for the search problem of real value function. Besides,
eCGP [2] and GMPE do not show significant search perfor-
mance regarding the problems for which GP search is effec-
tive. On the other hand, XEDP marked higher performance
than GMPE as with the Max problem. XEDP is considered
to be a higher general-purpose technique than PIPE, eCGP,
and GMPE. XEDP turned out to be effective for evolution of

robot program too. In general, XEDP seems highly effective
as a technique for program search.

Search by Type B was the worst on the Boolean 6-bit mul-
tiplexer problem. Therefore, estimating global structure of
a program by the conditional probability tree turns out to
be essential. Besides, the search performance of Type C is
worse than that of XEDP on the Boolean 6-bit multiplexer
problem. This means that generation by the recursive distri-
bution is not random generation. Thus, it is considered that
the recursive distribution could extract useful substructures
for a good program from a population. From what has been
discussed above, we can conclude that combination of the
conditional probability tree and the recursive distribution is
effective for program evolution.

Search by Type A is successful regarding the Max prob-
lem, which implies that generation using the conditional
probability tree has a function to widen the redion where
search is possible. It can be presumed that this function
led to the higher performance of XEDP than that of GP
regarding the Boolean 6-bit multiplexer problem and the
Wall-following problem.

Type D can estimate both global structure and substruc-
tures of a program. However, Type D can not deal with
probabilistic dependencies between nodes in a program tree
when estimating global structure, while XEDP can involve
probabilistic dependencies by the conditional probability
tree. Search by Type D also failed and therefore the prob-
abilistic dependencies between variables in the conditional
probability tree is thought to play an important role in pro-
gram search.
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