
Copyright is held by the author/owner(s).
GECCO’05, June 25-29, 2005, Washington, DC, USA.
ACM 1-59593-010-8/05/0006.

Parameter Sweeps for Exploring GP Parameters
Michael E. Samples, Jason M. Daida, Matthew Byom, Matt Pizzimenti

Center for the Study of Complex Systems and the Department of Atmospheric, Oceanic, and Space Sciences
University of Michigan
Ann Arbor, MI 48109

{msamples, daida}@umich.edu

Categories and Subject Descriptors
I.6.7—Simulation Support Systems Environments; I.2.2—
Automatic Programming Program Synthesis

General Terms
Experimentation, Algorithms, Performance

Keywords
Parameter Sweep, Experiment Management, Evolutionary
Computation, Distributed Computation, Data Reduction.

Invoking a genetic programming (GP) engine to solve a particular
problem can be thought of as performing a search on the sample
space of all programs expressible in a given language of functions
and terminals. Results obtained from such a search are the product
of many low-level nonlinear interactions, the rules of which are
highly dependent on engine configurations. With only slight
changes, different configurations can produce dramatically
different results. It is the experimentalist’s goal to understand how
specific configurations influence results, but it is impossible to
exhaustively test all possible configurations. While small
experiments can lead to knowledge about a given configuration’s
behavior, the results are difficult to other configurations due to
GP’s nonlinear interactions. As a result, empirical knowledge of
GP’s behavior can only be constructed by testing on multiple
classes of configurations. Theories capable of encapsulating the
varied behaviors can then be constructed and used to predict
behavior with untested configurations. Succinctly, this means that
it is critical to test for an observed phenomenon by conducting
multiple trials and changing input parameters. Experimentalists
should be prepared to do this. We call an experiment that
involves the sampling of multiple parameter configurations a
parameter-sweep experiment (PSE). This methodology has often
been practiced in other fields (e.g., agent-based modeling) but is
rarely practiced in our field. We suggest that the number of large
multi-configuration studies is relatively small because PSEs are
often prohibitively difficult for researchers to conduct. We present
Commander – a tool in performing large generic parameter-
sweep experiments in grid and cluster computing environments.
Commander is not a GP system, but rather a software utility
that performs automated experiment management and data
reduction for PSEs.
We identify three tasks that make PSEs difficult to conduct and
explain how Commander approaches their solutions. In presenting
these solutions, emphasis is placed on giving the user necessary
control but hiding unnecessarily tedious tasks.
• Experimental Setup – Small experiments involving a single

configuration class of parameters (i.e. one datapoint) can
easily be conducted by writing a shell script capable of
executing a GP program a number of times with the same

inputs. Increasing the number of datapoints increases the
complexity of the scripts because varied inputs must be sent
to the GP engine. Satisfactory scripts are generally lengthy
and non-portable—meaning that the construction of a new
experiment involves large time-consuming changes to the
script. Competent GP researchers should not need to have
expert skills in writing these scripts. Commander solves this
problem by providing a language for users to describe the
parameters over which to sweep (e.g., popsize =
{100,200,300}; generations = {50,100}). Commander
interprets a user’s experiment description file and
automatically conducts all associated experiments. The
experiment description file is easy to modify, allowing
experimentalists to rapidly define and run complex PSEs.

• Required CPU hours – Evaluating a single combination of
parameters can be quite CPU-intensive, as GP is inherently
nondeterministic and can require the reevaluation of the
same configuration many times for statistically significant
results. PSEs amplify this tendency since they evaluate a
larger number of configurations. Parallel processing can
ameliorate this effect, but increases the complexity of
scripting. These scripts must focus on distribution algorithms
(pairing jobs with available machines), job robustness, and
data collection—requiring skills that competent GP
researchers may not possess. Our Commander provides
transparent support for parallel processing on grid and
cluster networks. This process is described in more detail
below.

• Data Reduction – Single datapoint experiments all produce
the same type of data inasmuch as all data is generated by the
same configuration. As a result, the extraction of relevant
information is a straightforward process. In PSEs, the
extraction of relevant information necessitates the use of
scripts to arrange the data in meaningful ways. Also, when
sweeping across multiple parameters there are complications
in tagging data sets with appropriate configuration labels.
These analysis scripts are difficult to maintain between large
experiments as the configuration spaces change. Commander
automatically applies predefined engine-specific analysis
functions for data reduction and information interpretation.
For example, one analysis function that comes with MGP
(our GP engine), calculates average fitness over a domain of
an arbitrary set of trials. When performing an experiment,
users can select the average fitness analysis function to be
paired with independent variables from the experiment
description file’s parameters. Commander transparently
partitions the results by those variables and constructs graphs
of average fitness as a function of the given independent
variables. This leads to low turn-around time between
experiments and thus is particularly valuable for GP
experimentalists as it helps encapsulate the overwhelming

1791

amounts of information immediately available after a GP
experiment. This gives the user invaluable feedback about
the correctness of the results.

In each of these three stages, Commander separates the tedious
tasks from those that require an experimentalist’s input. Running
an experiment should be as simple and transparent as selecting
parameter-configurations, selecting the format of results, and
waiting for automated data reduction. Although Commander is
not novel in either its ability to perform large parameter-sweep
experiments or its ability to run processes on remote networks, its
automated PSE administration with transparent, robust,
distributed computation is unique. As such, Commander’s design
and architecture is different from previous works.

Unlike previous solutions, Commander relies on no prescribed
Grid technology for distributing jobs. Instead, it operates with a
host and numerous clients, relying on any one of numerous Grid
protocols or cluster scripts merely to remotely launch the client
utility. Commander uses a master-worker architecture in which
the host maintains total knowledge of the experiment and replies
to clients’ requests by sending experiment-specific instructions.
To achieve platform-independence, clients are written in
Python—we regularly run clients on Unix, Linux, and OSX
platforms, simultaneously spread across different Grid
architectures, cluster networks, and individual workstations.

When clients request a job from the host, the host returns a
package with information describing how clients should obtain,
compile, and execute the necessary project source code with a
given set of input parameters. Commander asserts that all project-
specific materials, such as source code, configuration/compilation
scripts, and data validation scripts must be kept in a version

control system to which clients can connect and download
necessary items.

After the client runs a trial, optional validation scripts check data
integrity. If the data passes the tests, it is returned to the host for
analysis and archiving. Clients continue the cycle of check out,
configure, execute, test, check in until no more packages remain.
When the host determines that all job packages have been
successfully evaluated, it applies the user-selected analysis
functions to perform automated data reduction. 2D and 3D graphs
are automatically generated with independent axes corresponding
to swept parameters and the dependent axes corresponding to
analysis functions. All trial data is archived in a long-term storage
location, where it is available for later more-detailed analysis.

Although parameter sweeps are difficult to conduct, they are
useful for experimentalists who want to see a more complete view
of GP dynamics. Commander is our solution to a generic
parameter sweep engine for experimentalists. Commander is
designed to automate as much of the experimentation process as
possible by alleviating tedious tasks, providing robust remote trial
distribution, and ensuring validity in data collection. Through
simple interfaces, Commander allows researchers to quickly
define new experiments, run them, and use included analysis
functions to see the results. This low turnaround time means that
experimentalists can be more productive with their experiments.
Data can be interpreted, questions can be asked, and science can
be achieved in a more productive and responsive fashion. It is our
hope that software packages like Commander will encourage the
GP community to conduct these valuable experiments more
frequently. Commander can be found online at
http://www.lattice.umich.edu/commander

Figure 1. Commander architectural and processes diagram showing Host, Client, and Subversion server.

1792

