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ABSTRACT
Existing Recurrent Neural Networks (RNNs) are limited in
their ability to model dynamical systems with nonlinearities
and hidden internal states. Here we use our general frame-
work for sequence learning, EVOlution of recurrent systems
with LINear Outputs (Evolino), to discover good RNN hid-
den node weights through evolution, while using linear re-
gression to compute an optimal linear mapping from hidden
state to output. Using the Long Short-Term Memory RNN
Architecture, Evolino outperforms previous state-of-the-art
methods on several tasks: 1) context-sensitive languages, 2)
multiple superimposed sine waves.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Connectionism
and neural nets

General Terms
Experimentation, Performance, Algorithms

Keywords
Time-series prediction, Recurrent Neural Networks, Evolu-
tion and Learning

1. INTRODUCTION
The kinds of sophisticated behaviors we would like arti-

ficial agents to perform in the the future will require them
to build predictive models of their environment. For exam-
ple, imagine an active-vision-based robot trying to locate an
object in a cluttered space. The robot receives a sequence
(time-series) of sensory images from which it decides the
most profitable place to look next. To solve this task effi-
ciently, the robot must anticipate the location of the object
based on some kind of short-term memory or internal state
that helps it determine where it is and where it has been,
both spatially and in the sequence sub-goals necessary for
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accomplishing the task. Otherwise, if the robot does not
maintain a useful representation of past experience, it will
waste time taking actions that provide no new information
about the target object’s likely location.

Artificial neural networks are a popular class of models for
making predictions from time-series because they are theo-
retically capable of approximating any continuous mapping
with arbitrary precision [4]. Normally, networks are trained
using gradient descent, but recently evolutionary computa-
tion has been used to either evolve the network structure
and then learn the weights via gradient descent (e.g. for
Multi-Layer perceptrons [25, 5, 13], and Radial Basis Func-
tion Networks (RBF) [21]), or to bypass learning altogether
by evolving weight values as well [26]. However, because
these methods use feedforward architectures, none of them
implement general sequence predictors. That is, predictors
that can detect temporal dependencies in the input data
that span an arbitrary number of time steps. The Mackey-
Glass time-series that is often used to test these methods
[21, 25, 3, 5, 13], for instance, can be predicted very accu-
rately using a feedforward network with a relatively short
time-delay window on the input.

Recurrent Neural Networks (RNNs; [20, 18, 23]) can po-
tentially implement general predictors by using feedback
connections to maintain internal state. Unfortunately, RNNs
are notoriously difficult to train, even using evolution, when
the desired network output is a complex function of poten-
tially the entire input history. In this paper, we demon-
strate a method called EVOlution of recurrent systems with
LINear Outputs (Evolino; [19]), for automatically design-
ing general sequence predictors. The method combines the
evolution of RNNs with analytical methods for computing
optimal linear mappings. The approach is demonstrated on
two tasks that cannot be solved using a finite set of previous
inputs (i.e. using feedforward networks): context-sensitive
languages, and superimposed sine wave functions.

The next section provides some background on the state
of the art in sequence prediction using recurrent neural net-
works. Section 3 outlines the Evolino algorithm and de-
scribes the specific implementation components in more de-
tail. Section 4 present our experiments in the two domains
described above, and sections 5 and 6 discuss the approach
in a broader context and summarize our conclusions.

2. RECURRENT NEURAL SEQUENCE
PREDICTION

Training RNNs with standard gradient descent algorithms
such as Backpropagation Through Time and Real Time Re-
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current Learning is only practical when a short time window
(less than 10 time-steps) is sufficient to predict the correct
system output. For longer temporal dependencies, the gra-
dient vanishes as the error signal is propagated back through
time so that network weights are never adjusted correctly to
account for events far in the past [2, 9].

Echo State Networks (ESNs; [10]) deal with temporal de-
pendencies by simply ignoring the gradients associated with
hidden neurons. Composed primarily of a large pool of neu-
rons (typically hundreds or thousands) with fixed random
weights, ESNs are trained by computing a set of weights
analytically from the pool to the output units using fast,
linear regression. The idea is that with so many random
hidden units, the pool is capable of very rich dynamics that
just need to be correctly “tapped” by adjusting the output
weights. This simple approach is currently the title holder in
the Mackey-Glass time-series benchmark, improving on the
accuracy of all other methods by as much as three orders of
magnitude [10].

The drawback of ESNs, of course, is that the only truly
computationally powerful, nonlinear part of the net does
not learn at all. This means that on some seemingly simple
tasks, such as generating multiple superimposed sine waves,
the method fails. According to our experience, it is also not
able to solve a simple context-sensitive grammar task [6].
Moreover, because ESNs use such a large number of pro-
cessing units, they are prone to overfitting, i.e. poor gener-
alization.

One method that adapts all weights and succeeds in us-
ing gradient information to learn long-term dependencies is
Long Short-Term Memory (LSTM; [9, 7]). LSTM uses a
specialized network architecture that includes memory cells
that can sustain their internal activation indefinitely. The
cells have input and output gates that learn to open and
close at appropriate times either to let in new information
from outside and change the state of the cell, or to let acti-
vation out to potentially affect other cells or the network’s
output. The cell structure enables LSTM to use gradient
descent to learn dependencies across almost arbitrarily long
time spans. However, in cases where gradient information is
of little use due to numerous local minima, LSTM becomes
less competitive.

An alternative approach to training RNNs is neuroevo-
lution [24]. Instead of using a single neural network, the
space of network parameters is searched in parallel using
evolutionary computation. This approach has been very ef-
fective in solving continuous, partially observable reinforce-
ment learning tasks where the gradient is not directly avail-
able, outperforming conventional methods (e.g. Q-learning,
SARSA) on several difficult learning benchmarks [15, 8].
However, neuroevolution is rarely used for supervised learn-
ing tasks such as time series prediction because it has diffi-
culty fine-tuning solution parameters (e.g. network weights),
and because of the prevailing maxim that gradient informa-
tion should be used when it is available.

Next we describe the Evolino algorithm, which combines
elements of the three methods discussed in this section, to
address the disadvantages of each.

3. THE EVOLINO ALGORITHM
Evolino is a general framework for temporal sequence pre-

diction that combines neuroevolution and traditional meth-
ods for computing optimal linear mappings, such as linear

Evolino Network Evaluation(net)
Phase 1

reset net
for each training sequence u

for each time step t
φ(t)← activate net with input u(t)
store φ(t) in Φ

compute linear mapping W from Φ to targets D
Phase 2

reset net
error ← 0
for each training sequence u

for each time step t
φ(t)← activate net with input u(t)
compute outputs y(t) ←Wφ(t)
error ← error + (y(t) − d(t))2

return fitness← −error

Figure 1: Evolino Network Evaluation. Evolino net-

works are evaluated in two phases. In the first, the net-

work is fed the training sequences, and the activation

pattern of the network is saved at each time step. At

this point the network does not have connections to its

outputs with which to make predictions. Once the entire

training set has been seen, the output weights are calcu-

lated analytically, and the training set is seen again, but

now the network produces outputs. The error between

these predictions and the correct (target) values is used

as a fitness score to be minimized by genetic search.

regression. The underlying principle of Evolino is that often
a linear model can account for a large number of properties
of a problem. The non-linear properties that are not pre-
dicted by the linear model, are then dealt with by evolution.

An Evolino network consists of two parts: (1) a non-linear
recurrent subnetwork that receives external input, and (2)
a linear layer that maps the state of the subnetwork to the
output units. The weights of recurrent part of the network
are evolved, while the weights of the output layer are com-
puted analytically when the recurrent subnetwork is eval-
uated during evolution. This procedure generalizes ideas
from Maillard [12], in which a similar hybrid approach was
used train feedforward networks of radial basis functions.

Network evaluation proceeds in two phases (figure 1). In
the first phase, a training set of sequences obtained from the
system, {ui, di}, i = 1..k, each of length li, is presented to
the network. For each sequence ui, starting at time t = 0,
each input pattern ui(t) is successively propagated through
the recurrent subnetwork to produce a vector φi(t) that is

stored in a n×
Pk

i
li matrix Φ. Associated with each φi(t), is

a target vector di in D containing the correct output values
for each time step. Once all k sequences have been seen, the
output weights W are computed using linear regression from
Φ to D. The vectors in Φ (i.e. the values of each of the n

outputs over the entire training set) form a non-orthogonal
basis that is combined linearly by W to approximate D.

In the second phase, the training set is presented to the
network again, but now the inputs are propagated through
the recurrent subnetwork and the newly computed output
connections to produce predictions y(t). The error in the
prediction or the residual error is then used as the fitness
measure to be minimized by evolution.
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Figure 2: Enforced SubPopulations (ESP). ESP evolves neurons instead of full networks. Neurons are segregated

into subpopulations, and networks are formed by randomly selecting one neuron from each subpopulation. A neuron

accumulates a fitness score by adding the fitness of each network in which it participated. The best neurons within

each subpopulation are mated to form new neurons. The network shown here is an LSTM network with four memory

cells. In Evolino, only the connection weights in the recurrent part of the network are evolved. The weights to the

output units are computed analytically during each evaluation.

Neuroevolution is normally applied to reinforcement learn-
ing tasks where correct network outputs (i.e. targets) are not
known a priori. Here we use neuroevolution for supervised
learning to circumvent the problem of vanishing gradient. In
order to obtain the precision required for time-series predic-
tion, we do not try to evolve a network that makes predic-
tions directly. Instead, the network outputs a set of vectors
that form a basis for linear regression. The intuition is that
finding a sufficiently good basis is easier than trying to find
a network that models the system accurately on its own.

The next sections describe the particular instantiation of
Evolino used in this study.

3.1 Enforced SubPopulations
Enforced SubPopulations differs from standard neuroevo-

lution methods in that instead of evolving complete net-
works, it coevolves separate subpopulations of network com-
ponents or neurons (figure 2). Evolution in ESP proceeds
as follows:

1. Initialization. The number of hidden units H in the
networks that will be evolved is specified and a subpop-
ulation of n neuron chromosomes is created for each
hidden unit. Each chromosome encodes a neuron’s in-
put, output, and recurrent connection weights with a
string of random real numbers.

2. Evaluation. A neuron is selected at random from each
of the H subpopulations, and combined to form a re-
current network. The network is evaluated on the task
and awarded a fitness score. The score is added to the
cumulative fitness of each neuron that participated in
the network.

3. Recombination. For each subpopulation the neurons
are ranked by fitness, and the top quartile is recom-
bined using 1-point crossover and mutated using Cauchy

distributed noise to create new neurons that replace
the lowest-ranking half of the subpopulation.

4. Repeat the Evaluation–Recombination cycle until a
sufficiently fit network is found.

ESP searches the space of networks indirectly by sampling
the possible networks that can be constructed from the sub-
populations of neurons. Network evaluations serve to pro-
vide a fitness statistic that is used to produce better neurons
that can eventually be combined to form a successful net-
work. This cooperative coevolutionary approach is an exten-
sion to Symbiotic, Adaptive Neuroevolution (SANE; [15])
which also evolves neurons, but in a single population. By
using separate subpopulations, ESP accelerates the special-
ization of neurons into different sub-functions needed to
form good networks because members of different evolving
sub-function types are prevented from mating. Subpopula-
tions also reduce noise in the neuron fitness measure because
each evolving neuron type is guaranteed to be represented
in every network that is formed. This allows ESP to evolve
recurrent networks, where SANE could not.

If the performance of ESP does not improve for a pre-
determined number of generations, a technique called burst
mutation is used. The idea is to search for good modifi-
cations of the current best solution. When performance
has stagnated for a predetermined number of generations,
new subpopulations are created by adding noise to each of
the neurons in the best solution. Each new subpopulation
contains neurons that represent differences from the best
solution. Evolution then resumes, but now searching the
space in a “neighborhood” around the best previous solu-
tion. Burst mutation can be applied multiple times, with
successive invocations representing differences to the previ-
ous best solution. Assuming the best solution already has
some competence in the task, most of its weights will not
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Figure 3: Long Short-Term Memory. The figure shows

an LSTM network with one external input (lower-most

circle), one output (uppermost circle), and two memory

cells (two triangular regions). Each cell has an internal

state S together with a forget gate (GF ) that determines

how much the state is attenuated at each time step. The

input gate (GI) controls access to the state by the ex-

ternal inputs and the output of other cells which are

summed into each Σ unit, and the output gate (GO) con-

trols when and how much the cell fires. Small dark nodes

represent the multiplication function.

need to be changed radically. To ensure that most changes
are small while allowing for larger changes to some weights,
ESP uses the Cauchy distribution to generate noise:

f(x) =
α

π(α2 + x2)
(1)

With this distribution 50% of the values will fall within the
interval ±α and 99.9% within the interval 318.3 ± α. This
technique of “recharging” the subpopulations keeps diversity
in the population so that ESP can continue to make progress
toward a solution even in prolonged evolution.

Burst mutation is similar to the Delta-Coding technique of
Whitley [22] which was developed to improve the precision
of genetic algorithms for numerical optimization problems.

3.2 Long Short-Term Memory
LSTM is a recurrent neural network purposely designed

to learn long-term dependencies via gradient descent. The
unique feature of the LSTM architecture is the memory cell
that is capable of maintaining its activation indefinitely (fig-
ure 3). Memory cells consist of a linear unit which holds the
state of the cell, and three gates that can open or close over
time. The input gate “protects” a neuron from its input:
only when the gate is open, can inputs affect the internal
state of the neuron. The output gate lets the internal state
out to other parts of the network, and the forget gate enables
the state to “leak” activity when it is no longer useful. The
gates also receive inputs from neurons, and a function over
their input (usually the sigmoid function) decides whether
they open or close.

The amount each gate gi of memory cell i is open or closed
at time t is calculated by:

g
in
i (t) = σ(

X

j

w
in
ij cj(t − 1) +

X

k

w
in
ik uk(t)), (2)

g
forget
i (t) = σ(

X

j

w
forget
ij cj(t − 1) +

X

k

w
forget
ik uk(t)),(3)

g
out
i (t) = σ(

X

j

w
out
ij cj(t − 1) +

X

k

w
out
ik uk(t)). (4)

where w
{in,out,forget}
ij is the weight from the output cj of cell

j to gate i, w
{in,out,forget}
ik is the weight from external input

uk to the gate i, and σ is the standard sigmoid function.
The external inputs to the cell (indicated by the Σs in

figure 3) are added up in neti(t):

neti(t) = h(
X

j

w
cell
ij cj(t − 1) +

X

k

w
cell
ik uk(t)), (5)

where h is usually the identity function. The internal state
of cell i is:

si(t) = neti(t)g
in
i (t) + g

forget
i (t)si(t − 1), (6)

and the output gates control the cell outputs ci which is
squashed by the tanh function:

ci(t) = tanh(gout
i (t)si(t)). (7)

3.3 Combining ESP and LSTM in Evolino
We apply our general Evolino framework to the LSTM ar-

chitecture, using ESP for evolution and regression for com-
puting linear mappings from hidden state to outputs. ESP
coevolves subpopulations of memory cells instead of stan-
dard recurrent neurons (figure 2). Each chromosome is a
string containing the external input weights and the input,
output, and forget gate weights, for a total of 4 ∗ (I + H)
weights in each memory cell chromosome, where I is the
number of external inputs and H is the number of memory
cells in the network. There are four sets of I + H weights
because the three gates (equations 2, 3, and 4) and the cell
itself (equation 5) receive input from outside the cell and
the other cells. Figure 4 shows how the memory cells are
encoded in an ESP chromosome. Each chromosome in a
subpopulation encodes the connection weights for a cell’s
input, output, and forget gates, and external inputs.

ESP, as described in section 3.1, normally uses crossover
to recombine neurons. However, for the present Evolino
variant, where fine local search is desirable, ESP uses only
mutation. The top quarter of the chromosomes in each sub-
population are duplicated and the copies are mutated by
adding Cauchy noise (equation 1) to all of their weight val-
ues.

The linear regression method used to compute the output
weights W is the Moore-Penrose pseudo-inverse method [17],
which is both fast and optimal in the sense that it minimizes
the summed squared error. For LSTM networks, the vector
φ(t), which is used to compute the output layer weights, con-
sists of both the cell outputs, ci (equation 7), and their in-
ternal states, si (equation 6). Therefore, the pseudo-inverse
computes two connection weights for each memory cell (the
four connections to the output unit in figure 3). We refer
to the connections from internal states to the output units
as “output peephole” connections, since they peer into the
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Figure 4: Genotype-Phenotype mapping. Each chromo-

some (genotype, left) in a subpopulation encodes the ex-

ternal input, and input, output, and forget gate weights

of an LSTM memory cell (right). The weights leading

out of the state (S) and output (O) units in figure 3 are

not encoded in the genotype, but are instead computed

at evaluation time by linear regression.

interior of the cells. The output of the network is then:

yi(t) =
X

j

cj(t)w
standard
ij +

X

k

sk(t)wpeephole

ik .

For continuous function generation, backprojection is used
where the predicted outputs are fed back as inputs in the
next time step. During training, the correct target values are
backprojected, in effect “clamping” the network’s outputs to
the right values. During testing, the network backprojects
its own predictions. This technique is also used by ESNs,
but whereas ESNs do not change the backprojection connec-
tion weights, Evolino evolves them, treating them like any
other input to the network. In the experiments described
below, backprojection was found useful for continuous func-
tion generation tasks, but interferes to some extent with
performance in the discrete context-sensitive language task.

4. EXPERIMENTAL RESULTS
We carried out experiments on two very different domains:

continuous function generation and context-sensitive lan-
guages. This choice was made to ensure that Evolino did
not only perform well in continuous time series prediction,
but also on discrete tasks, since many real world applications
have both discrete and continuous elements.

To demonstrate the generality of Evolino, we used exactly
the same parameters for both tasks, despite their very dif-
ferent characteristics. A bias was added to the forget gates
and output gates: +1.5 for the forget gates and −1.5 to
the output gates. This did not affect the overall results
of the experiments, but sped up learning, especially dur-
ing the first few generations. The initial weights for the

time steps

cell 3

 0

 500

 1000

 1500

 2000

 0  500  1000  1500  2000  2500
−1000

cell 4

cell 2
cell 1

−500

Figure 5: Internal state activations. The state activa-

tions for the 4 memory cells of an Evolino network being

presented the string a800b800c800. The plot clearly shows

how some units function as “counters,” recording how

many as and bs have been seen.

memory cells were chosen at random from [−0.1, 0.1], and
the Cauchy noise parameter α both for recombination and
burst mutation was set to 0.00001.

The only difference between the experimental settings of
both experiments was the use of backprojection for the su-
perimposed sine wave task. Again, adding backprojection to
the language task only slows down evolution but does not
qualitatively produce worse results.

4.1 Context-Sensitive Grammars
Context-sensitive languages are languages that cannot be

recognized by deterministic finite-state automata, and are
therefore more complex in some respects than regular lan-
guages. In general, determining whether a string of symbols
belongs to a context-sensitive language requires remember-
ing all the symbols in the string seen so far, which rules out
the use of non-recurrent neural architectures. To compare
Evolino-based LSTM with published results for Gradient-
based LSTM [6], we chose the language anbncn.

The task was implemented using networks with 4 input
units, one for each symbol (a, b, c) plus the start symbol S,
and four output units, one for each symbol plus the termina-
tion symbol T . Symbol strings were presented sequentially
to the network, with each symbol’s corresponding input unit
set to 1, and the other three set to -1. At each time step, the
network must predict the possible symbols that could come
next in a legal string. Legal strings in anbncn are those in
which the number of as, bs, and cs is equal, e.g. ST , SabcT ,
SaabbccT , SaaabbbcccT , and so forth. So, for n = 3, the set
of input and target values would be:

Input: S a a a b b b c c c

Target: a/T a/b a/b a/b b b c c c T

Evolino-based LSTM networks were evolved using 8 dif-
ferent training sets, each containing legal strings with values
for n as shown in the first column of table 1. In the first four
sets, n ranges from 1 to k, where k = 10, 20, 30, 40. The sec-
ond four sets consist of just two training samples, and were
intended to test how well the methods could induce the lan-
guage from a nearly minimal number of examples.

Table 1 compares the results of Evolino-based LSTM re-
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Training Standard Tuned Gradient-
data Evolino-LSTM Evolino-LSTM LSTM

1..10 1..29 1..53 1..28
1..20 1..67 1..95 1..66
1..30 1..93 1..355 1..91
1..40 1..101 1..804 1..120

10,11 4..14 3..35 10..11
20,21 13..36 5..39 17..23
30,31 26..39 3..305 29..32
40,41 32..53 1..726 35..45

Table 1: Results for the anbncn language. The ta-

ble compares Evolino-based LSTM with Gradient-based

LSTM on the anbncn language task. “Standard” refers

to Evolino with the parameter settings used for both dis-

crete and continuous domains (anbncn and superimposed

sine waves). The “Tuned” version is biased to the lan-

guage task: we additionally squash the cell input with

the tanh function. The leftmost column shows the set

of strings used for training in each of the experiments.

The other three columns show the set of legal strings

to which each method could generalize after 50 genera-

tions (3000 evaluations), averaged over 20 runs. The up-

per training sets contain all strings up to the indicated

length. The lower training sets only contain a single pair.

Evolino-based LSTM generalizes better than Gradient-

based LSTM, most notably when trained on only two ex-

amples of correct behavior. The Gradient-based LSTM

results are taken from [6].

sults with those of Gradient-based LSTM from [6]. “Stan-
dard Evolino” uses parameter settings that are a compro-
mise between discrete and continuous domains. If we set
h in equation 5 to the tanh function, we obtain “Tuned
Evolino.”

The Standard Evolino networks had generalization very
similar to that of Gradient-based LSTM on the 1..k train-
ing sets, but slightly better on the two-example training
sets. Tuned Evolino showed a dramatic improvement over
Gradient-based LSTM on all of the training sets, but, most
remarkably on the two-example sets where it was able to
generalize on average to all strings up to n = 726 after being
trained on only n = {40, 41}. Figure 5, shows the internal
states of each of the 4 memory cells of one of the evolved
networks while processing a800b800c800.

4.2 Multiple Superimposed Sine Waves
Learning to generate a sinusoidal signal is a relatively sim-

ple task that requires only one bit of memory to indicate
whether the current network output is greater or less than
the previous output. When sine waves with frequencies that
are not integer multiples of each other are superimposed, the
resulting signal becomes much harder to predict because its
wavelength can be extremely long, i.e. there are large num-
ber of time steps before the periodic signal repeats. Gen-
erating such a signal accurately without recurrency would
require a prohibitively large time-delay window using a feed-
forward architecture.

Jaeger reports [11] that Echo State Networks are unable
to learn functions composed of even two superimposed os-
cillators, in particular sin(0.2x) + sin(0.311x). The reason
for this is that the dynamics of all the neurons in the ESN

No. sines No. cells Training error Gen. error
2 10 0.0008 0.0034
3 15 0.0018 0.0195
4 20 0.0893 4.73
5 20 0.125 13.4

Table 2: Results for multiple superimposed sine waves.

The table shows the number of memory cells, training

error, and generalization error for each of the superim-

posed sine wave functions. The training error is the sum

of squares error on time steps 100 to 400 (i.e. the washout

time is not included in the measure). The generalization

error is calculated for time steps 400 to 700. The error

values are the average over 20 experiments.

“pool” are coupled, while this task requires that the two
underlying oscillators be represented independently by the
network’s internal state.

Here we show how Evolino-based LSTM not only can
solve the two-sine function mentioned above, but also more
complex functions formed by adding up to three more sine
waves. The following table shows the four functions used
in our experiments, starting with the two-sine suggested by
Jaeger [11]. Each of the functions we used was construct
by

Pn

i=1
sin(λix), where n is the number of sine waves and

λ1 = 0.2, λ2 = 0.311, λ3 = 0.42, λ4 = 0.51, and λ5 = 0.74.
Evolino used the same parameter settings as in the pre-

vious section, except that backprojection was used (see sec-
tion 3.3). Networks were evolved to predict, without any
external input, the first 400 time steps of each function, us-
ing a “washout time” of 100 steps. During the washout time
the vectors φ(t) are not collected for calculating the pseudo-
inverse. After a specified number of generations, the best
networks were then tested for generalization on data points
from time-steps 400..700. The first three tasks, n = 2, 3, 4,
used subpopulations of size 40 and simulations were run for
50 generations. The five-sine wave task, n = 5, proved much
more difficult to learn requiring a larger subpopulation size
of 100, and simulations were allowed to run for 150 genera-
tions.

Table 2 shows the number of memory cells used for each
task, and the average error on both the training set and the
testing set for the best network found during each evolution-
ary run. Figure 6 shows the behavior of one the successful
networks from each of the tasks. The column on the left
shows the target signal from Table 2, and the output gen-
erated by the network on the training set. The column on
the right shows the same curves forward in time to show the
generalization capability of the networks. For the two-sine
function, even after 9000 time-step, the network continues
to generated the signal accurately. As more sines are added,
the prediction error grows more quickly, but the overall be-
havior of the signal is still retained, showing that the net-
work has succeeded in representing the signal’s underlying
attractors.

5. DISCUSSION
The two sequence prediction tasks investigated in this pa-

per demonstrate that Evolino-based LSTM networks are ca-
pable of learning both discrete and continuous time-series
that require extracting and retaining information from el-
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Figure 6: Performance of Evolino-based LSTM on the superimposed sine wave tasks. The plots show the behavior of

a typical network produced after a specified number of generations: 50 for the two-, three-, and four-sine functions,

and 150 for the five-sine function. The first 300 steps of each function, in the left column, were used for training.

The curves in the right column show values predicted by the networks (dashed curves) further into the future vs. the

corresponding reference signal (solid curves). While the onset of noticeable prediction error occurs earlier as more

sines are added, the networks still track the correct behavior for hundreds of time steps, even for the five-sine function.

ements in the series that can be far in past. This general
ability to base decisions on past experience is essential for
building robust anticipatory systems that can function in
uncertain real-world environments.

On the context-sensitive grammar task, Evolino outper-
formed Gradient-based LSTM—the only RNN architecture
previously able to learn this task. And, it was able capture
the underlying dynamics of up to five superimposed sine
waves, while Echo State Networks are unable to cope with
even the two-sine case. The very different nature of these
two tasks suggests that Evolino could be widely applicable
to modeling complex processes, such as speech, that have
both discrete and continuous properties.

Although Evolino does not use learning in the traditional
gradient-descent sense, it is related to other hybrid evolu-
tionary methods that adapt weight values during interaction

with the evaluation environment [16, 25, 14]. The “on the
fly” computation of the output layer can be viewed as a
kind of learning, and, like learning, it effectively distorts the
fitness landscape in a Baldwinian sense [1].

The version Evolino used in this paper is but one possi-
ble instantiation of the general framework. Many others are
possible. For instance, ESP could be replaced by a neuroevo-
lution method that evolves topology as well, or the genetic
search, in general, could be complemented by local search,
or even gradient-descent. Also, other network architectures
could be evolved, such as Higher-Order networks.

Future work will begin by exploring this space of possible
implementations further, with a view toward applying them
to autonomous mobile robot tasks. Evolino will be used to
build forward models that not only can enable a robot to
forecast future states and thereby behave more intelligently,
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but also to accelerate the evolution of robot controllers. An
Evolino-based model that captures the dynamic elements of
an environment that are salient for a particular robot task,
can serve as a computationally efficient surrogate for the
real-world in which to evaluate candidate controllers.

6. CONCLUSION
In this paper, we demonstrated an implementation of EVO-

lution of recurrent systems with LINear Outputs (Evolino)
that used the Enforced SubPopulations neuroevolution algo-
rithm to coevolve Long Short-Term Memory cells. The ap-
proach was evaluated on two different prediction tasks that
require short-term memory: a discrete problem, context-
sensitive languages, and a continuous time-series, multiple
superimposed sine waves. In both cases, our results im-
proved upon the state of the art, demonstrating that the
method is a powerful and general sequence prediction strat-
egy.
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