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ABSTRACT
Constructive Induction is the process of transforming the
original representation of hard concepts with complex in-
teraction into a representation that highlights regularities.
Most Constructive Induction methods apply a greedy strat-
egy to find interacting attributes and then construct func-
tions over them. This approach fails when complex interac-
tion exists among attributes and the search space has high
variation. In this paper, we illustrate the importance of ap-
plying Genetic Algorithms as a global search strategy for
these methods and present MFE2/GA1, while comparing it
with other GA-based Constructive Induction methods. We
empirically analyze our Genetic Algorithm’s operators and
compare MFE2/GA with greedy-based methods. We also
performed experiments to evaluate the presented method
when concept has attributes participating in more than one
complex interaction. In experiments that are conducted,
MFE2/GA successfully finds interacting attributes and con-
structs functions to represent interactions. Results show the
advantage of using Genetic Algorithms for Constructive In-
duction when compared with greedy-based methods.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Induction; H.2.8
[Database Management]: Database Applications—Data
mining ; I.5.2 [Pattern Recognition]: Design Methodol-
ogy—Feature evaluation and selection

General Terms
Algorithms, Design, Experimentation

Keywords
Attribute interaction, constructive induction, feature con-

1MFE2/GA is a modification to our previous method intro-
duced in[27]
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Figure 1: Interaction and complex interaction in in-
stance space

struction, feature selection, genetic algorithms, shared at-
tributes

1. INTRODUCTION
Similarity-Based Learning methods (SBL) learn concepts

by discovering similarities. They assume that cases belong-
ing to the same class are located close to each other in the
instance space, defined by original attributes. They achieve
high accuracy when the data representation of the concept
is good enough to maintain the closeness of instances of the
same class. For this reason most machine learning meth-
ods attain high accuracy on many artificial and real-world
domains such as those provided in Irvine database [3, 10].

Hard concepts with complex interaction are difficult to be
learned by an SBL. Interaction means the relation between
one attribute and the target concept depends on another at-
tribute. When the dependency is not constant for all values
of the other attribute, the interaction is complex [20]. Fig-
ure 1 shows an example of interaction and complex interac-
tion between two attributes in instance space. The complex
interaction has been seen in real-world domains such as pro-
tein secondary structure [22]. Due to interaction, each class
is scattered through the space, and therefore, regularities
are hidden to the learner. The interaction problem arises
when shortage of domain knowledge exists and only low-
level primitive attributes are available to represent data.

Constructive induction (CI) methods have been introduc-
ed to ease the attribute interaction problem. Their goal is
to automatically transform the original representation space
of hard concepts into a new one, where the regularity is
more apparent [1, 5]. This goal is achieved by constructing
new features from the given attribute set, to abstract the
interaction among several attributes into a new one. The
new feature outlines the interaction and makes it apparent
to the learner.

Most CI methods apply a greedy search to find new fea-
tures. Due to the attributes interaction, the search space for
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constructing new features has more variation, and therefore,
a greedy method may find a local optimal solution. Recent
works on problems with interaction [6, 27] show that a global
search strategy such as Genetic Algorithms (GA) is more
likely to be successful in searching through the intractable
and complicated search space [16]. Moreover, GA provides
the ability to construct and evaluate several features as one
single individual. Evaluating a combination of features is
essential for the success of a CI method when complex in-
teractions among several subsets of attributes exist.

This paper highlights the importance of applying GA as
a global search strategy for CI methods, and introduces a
new GA-based CI method called MFE2/GA. Unlike other
GA-based CI methods, MFE2/GA benefits from the use of
a non-algebraic form of representing new features. As we
showed in [26] this form of representation reduces the diffi-
culty of constructing complex features.

Next section focuses on the shortcoming of greedy-based
CI methods when high interaction exists among attributes.
In Sect. 3 some of recently introduced GA-based CI methods
are reviewed. Sect. 4 presents MFE2/GA, our new GA-
based CI method. Experiments in Sect. 5 show that the new
method successfully finds and highlights interactions among
attributes and outperforms greedy-based CI methods.

2. THE IMPORTANCE OF GA FOR CI
As mentioned in previous section, the goal of CI is to ab-

stract the interaction among attributes into new features
to highlight regularities. This goal is usually achieved by
constructing functions defined over interacting attributes.
Therefore, a CI method needs to find subset of interacting
attributes and define a function over this subset. For this
purpose some CI methods such as Fringe, SymFringe [18,
19] and DCFringe [30] make use of hypotheses previously
generated by a similarity based learner. These hypothesis-
driven methods strongly depend on the generated hypothe-
sis. When the concept is complex, because of the high in-
teraction among attributes an SBL cannot generate a useful
hypothesis, and consequently, the new features constructed
using such hypothesis will be meaningless.

Other CI methods such as GALA [12], LFC [24], and
MRP [21] apply a greedy strategy for selecting attributes
and constructing new features. Attributes are considered
one by one as candidates for inclusion in the current feature
under construction. When high interaction exists among
attributes, each attribute by itself does not give enough in-
formation about the concept and therefore, may be consid-
ered as an irrelevant attribute by a greedy CI method [6, 7,
20]. In order to see the interaction among attributes and
construct a feature that highlights this interaction, several
attributes are needed to be evaluated and selected at a time.
So we need to search the space of all possible combination
of attributes. However, this space grows exponentially with
the number of attributes and has many local optima; thus,
it becomes more complex to be explored. A CI method
needs a search strategy that eventually finds the global op-
timal solution in such a complex search space. A greedy
search approach may be suitable only when the variation of
the search space is not high, otherwise it will find the local
optimum.

Another problem of the greedy CI methods is that because
of the greedy strategy of generating new features, construc-
tion of each feature depends on the feature previously con-

structed. Since the search space of concepts with complex
interaction has high variation and several local optima the
greedy strategy of constructing features may lead to a local
optimal solution.

As an alternative to greedy methods, a global search such
as evolutionary algorithms can be used for complex con-
cepts. Evolutionary algorithms are theoretically and empir-
ically proved to provide a robust search in complex spaces [8,
9]. Genetic Algorithms (GA) have been applied successfully
to a variety of learning problems as well as to other tasks
such as solving optimization problems. The reason for their
success is that these methods search in intractable search
space by retaining a balance between the exploitation of the
best solution and the exploration of the search space [16].

In addition to the global search property, GA provides the
ability to evaluate several attributes or constructed features
as one single individual. This is important for a CI method
when complex interaction exists, since each attribute or fea-
ture alone can be evaluated as an irrelevant one.

Therefore, if a proper representation language, GA op-
erators and fitness function are provided, a GA-based CI
method has the potential to generate useful features.

3. RELATED WORKS
Recently, new CI methods based on genetics search strat-

egy have been introduced. Their success in achieving higher
accuracy proves the advantage of GA over greedy searches.
In this section some of these methods are reviewed and eval-
uated. These methods are preprocessing procedures. When
the process is finished the new features are added to or used
instead of the original set of attributes, and then data rep-
resented by the new set is given to a learner.

Most GA-based CI methods such as GCI [2], GPCI [11],
Gabret [29], GAP [28] and the GA approach of Otero [17],
consider individuals as algebraic expressions represented by
Koza’s parse trees [13] with operators in internal nodes and
attributes in leaves. Among these, GPCI and Otero’s ap-
proach have a set of predefined operators while the oth-
ers apply domain specific operators. Unlike these methods,
Larsen [14] and Ritthoff [25] do not use parse trees for con-
structing features. Larson applies the X-of-N representation
of functions introduced by Zheng for a greedy CI [31]; so,
this method also uses the fix predefined X-of-N operator. In
Ritthoff’s method each individual is a subset of attributes
and functions represented by algebraic expressions. Genetic
operators are not applied over segments of function. Func-
tions are constructed arbitrarily by a new unary operator
from the set of attributes in the individual and a set of pre-
defined operators.

All these methods apply an algebraic representation [26]
for constructing features, using some simple predefined oper-
ators or domain specific operators. Simple predefined oper-
ators make the method applicable to a wide range of prob-
lems. However, a complex feature is required to capture and
encapsulate the interaction using simple operators. Domain
specific operators reduce the complexity of feature construc-
tion. Nevertheless, specifying these operators properly can-
not be performed without any prior information about the
target concept. In Sect. 4 we see how non-algebraic repre-
sentation in contrast to algebraic representation could be
successfully applied to CI.

Features are evaluated differently by each of these meth-
ods. Each individual in GPCI, Otero’s and Larsen’s meth-
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ods, and GCI represents a new feature or function. The first
three methods use an Entropy-based fitness function [23]
evaluating features individually. GCI uses a learner for eval-
uating the fitness of the function. Therefore, the fitness is
measured considering the function in combination with orig-
inal attributes. Gabret also uses a learner for fitness eval-
uation, but applies a different strategy. It consists of two
independently selectable genetic-based modules, feature se-
lection and feature construction. In the feature selection
module, individuals are bit-strings representing subsets of
attributes in current set. In feature construction module,
individuals are parse trees representing sets of features and
attributes. Therefore, in both modules a set of attributes
and functions is evaluated as a whole. GAP applies a similar
strategy. Ritthoff also uses a learner for measuring fitness,
and evaluates a set of attributes and constructed features as
a whole.

Evaluating a combination of features as an individual is
useful for a CI, when high interaction exists as, each at-
tribute or constructed feature alone may not be evaluated
correctly. Also, using a learner as fitness function has the
advantage of evaluating constructed functions in combina-
tion with other attributes. These methods add the new
feature to the list of attributes and update data, then ap-
ply a learner like C4.5 [23] to measure the accuracy. How-
ever, this kind of evaluation, called hypothesis-driven eval-
uation, relies on the performance of the learner. Therefore,
if the learner assigns incorrectly a low or high fitness value
to individuals, it will guide the algorithm to a local solu-
tion. Moreover, performing a learning system for evaluating
each individual increases the execution time of GA. A data-
driven evaluation formula like entropy is preferred. This
approach only depends on data and, therefore, is more reli-
able than a hypothesis-driven approach for guiding GA. In
addition, computation time of fitness function is very im-
portant for GA performance, since this function is called
for every individual during many generations. Experiments
in [26] shows the advantage of a data-driven fitness function
over a hypothesis-driven one.

It is important to note that GPCI is different from the
other methods as it applies a divide and conquer strat-
egy [19] to produce more than one new feature. After each
performance of GA, the best individual, as the new feature,
is used for splitting data. Then a new and independent GA
is performed for each division. At the end of the proce-
dure, one feature for each splitting of data exists which are
added to original set of attributes. In fact GPCI uses GA
for constructing each single feature but the whole process of
constructing a set of features is greedy. The construction of
each feature depends on the feature previously constructed.
If the previous feature is not good enough it may misguide
the whole process toward a local optimal solution.

Finally, all these methods modify the simple GA to be
applied to a particular problem of learning. These modifi-
cations push simple GA away from their theoretical bases.
These methods have many factors, which are difficult to be
analyzed by schema theorem that will help the method to
approach to the solution. The most important factor is the
representation of the constructed features.

4. MFE2/GA
MFE2/GA (Multi-Feature Extraction using GA) aims to

construct new features to highlight interactions. As ex-

plained in Sect. 2 the search space for finding relevant at-
tributes and constructing functions is large and with high
variation when complex interactions exist in concept. There-
fore, a global search strategy such as GA is needed to suc-
cessfully find the optimal solution.

We applied GA to search through the space of different
combination of attributes subsets and functions defined over
them. GA receives training data with original attributes
set and finds subsets of interacting attributes and features
representing the interaction. When GA finishes, the new
features are added to the original set of attributes and the
new representation of data is given to a standard learner for
learning. The current version of the method assumes that
all continuous attributes have been converted to nominal
attributes before running the system.

4.1 Representation Language
For constructing new features, two tasks are needed to

be performed: finding the subsets of interacting attributes
and generating a function defined over each subset. Our
individuals are sets of subsets of primitive attributes such
as Ind = 〈S1, S2, . . . , Sk〉 where Si ⊂ S, Si 6= ∅, and S is the
set of original attributes.

Subsets in individuals are represented by bit-strings of
length n, where n is the number of original attributes; each
bit showing the presence or absence of the attribute in the
subset. Therefore, each individual is a bit-string of length
k.n (k > 0) such as Ind = 〈b1, . . . , bn : b′1, . . . , b′n : b′′1 , . . . , b′′n :

. . . 〉. Since each individual has different number of subsets,
the length of individuals is variable. To avoid unnecessary
growth of individuals, the number of subsets in individuals
is made limited so that k ≤ 5.

Each subset in individual is associated with a function
that is extracted from data. Thus each individual is actually
representing a set of functions such as {F1, F2, . . . , Fk}, where
Fi is a function defined over Si. It is important to note
that during mutation and crossover if a subset is changed,
the associated function is also changed since a new F ′

i is
extracted for the new subset S′

i in the offspring.
The function Fi created for any given subset in an individ-

ual uses a non-algebraic form of representation. By contrast
to algebraic representation, non-algebraic form refers to a
representation language that does not apply any form of al-
gebraic operators. For example, for a Boolean attribute set
{X1,X2} an algebraic feature like (X1∧X2)∨(X1∧X2) can be
represented by a non-algebraic feature such as 〈0110〉, where
the jth element in 〈0110〉 represents the outcome of the func-
tion for jth combination of attributes X1 and X2 according
to the following truth table:

X1 X2 f
0 0 0
0 1 1
1 0 1
1 1 0

As discussed in Sect. 3, most GA-based CI methods apply
algebraic form of representing functions. We showed in [26]
that a complex algebraic expression is required to capture
and encapsulate the interaction into a feature, while non-
algebraic representation reduces the difficulty of construct-
ing complex features. For this reason, and in spite of their
use of GA search strategy, some CI methods fail when a
high-order complex interaction exists among attributes.

The function Fi for any given subset Si = {Xi1, . . . ,Xim}
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is defined by assigning Boolean class labels to all the tuples
in the Cartesian product Xi1 × . . .×Xim. The class assigned
to each tuple t depends on the training samples that match
the tuple, that is, the training samples whose values for
attributes in Si are equal to the corresponding values in
tuple t. More precisely, the class assigned depends on the
class labels of all those training samples matching the tuple,
as discussed case by case next:

Case 1. If there are no training samples matching t, a
class label is assigned to Fi(t) stochastically, according
to the class distribution in the training data.

Case 2. If all training samples matching t belong to
the same class, this is the class assigned to Fi(t).

Case 3. If there is a mixture of classes in the samples
matching t, the class assigned to Fi(t) depends on the
numbers of tuples labeled by Case 2 as positive and
negative, p2 and n2 respectively. If p2 > n2, the nega-
tive class is assigned; and otherwise, the positive class
is assigned.

As discussed in the next section, the GA’s fitness evalu-
ation is applied to individuals composed of several Fi, each
defined over a subset Si. Thus, each individual encapsulates
several interactions into features, and this allows GA to si-
multaneously construct and evaluate features, which turns
out to be essential when several high-order interactions exist
in data.

4.2 Fitness Function
We mentioned in Sect. 3 that some GA-based CI meth-

ods apply a hypothesis-driven fitness function, and there-
fore, their performance relies on learner they apply. More-
over, the computation time of a proper data-driven fitness
function is less than a hypothesis-driven one. Therefore, we
applied a data-driven fitness function.

When features are extracted, for each Ind = 〈S1, . . . , Sk〉,
data are projected onto the set of new features {F1, . . . , Fk}

and the goodness of the individual is evaluated by the fol-
lowing formula:

Fitness(Ind) =

min(|π+−π−|,|π−−π+|)k+||π+∩π−||(k+1)
r(k+1)

+
�

|Si|
k|S|

(1)

where π+ is set of positive tuples and π− is set of neg-
ative tuples obtained by projecting data into {F1, . . . , Fk},
r is the total number of tuples in training data, the single
bars |z| denote the number of attributes (or tuples) in subset
(or relation) z, and the double bars ||p|| denote the number
of examples in training data that match with the tuples in
relation p. The objective of GA is to minimize the value
of Fitness(Ind). The first term in this formula estimates
how good is the set of new features for classifying data. It
is divided by k + 1 to favor individuals with larger number
of subsets. The aim is to prefer several simple features to
few complex features. The complexity of features is evalu-
ated in the last term by measuring the fraction of attributes
participating in constructing features.

To reduce over-fitting, we use 90% of training data for
generating functions and all training data for fitness evalua-
tion. Aside from that, the empirical evaluation of the system
will be based on unseen data (see Sect. 5).

Mutation in Attributes Level (Mutation Type-1)
Parent1 = 〈10010010:01010100:00010111〉
Child1 = 〈11010011:01110100:00000111〉

Mutation in Subsets Level (Mutation Type-2)
Parent2 = 〈S1, S2, S3, S4, S5〉
Child2 = 〈S1, S′

2, S3, S4, S5〉

Crossover in Attributes Level (Crossover Type-1)
Parent3 = 〈1001|0010:010|10100:00010111〉
Parent4 = 〈0010|1011:10010001:111|01100〉

Child3 = 〈10011011:10010001:11110100:00010111〉
Child4 = 〈00100010:01001100〉

Crossover in Subsets Level (Crossover Type-2)
Parent5 = 〈S11, S12〉 Mask1= 〈10〉
Parent6 = 〈S21, S22, S23, S24, S25〉 Mask2= 〈01101〉
Child5 = 〈S11, S22, S23, S25〉
Child6 = 〈S12, S21, S24〉

Figure 2: GA operators

4.3 GA Operators
Our objective is to generate different subsets of attributes

with their associated functions and combine them to even-
tually find the group of functions defined over subsets of
interacting attributes. Operators are applied in two levels:
attributes level to generate different subsets and features;
and, subsets level to make different combination of subsets
and features as illustrated by examples in Fig. 2.

Mutation in attributes level, Mutation Type-1, considers
the individual as a bit-string of size k.n where k is the num-
ber of subsets and n is the number of original attributes.
The traditional mutation is applied over the bit-string to
flip bits of the string. This operation aims to introduce a
new subset by a tiny change in the previously generated
subset in individual.

The Mutation Type-2, that is mutation in subsets level,
considers an individual as a sequence of subsets and replaces
one subset by a new generated subset. Therefore, this op-
erator introduces more variability into the population and
gives more diversity comparing to Mutation Type-1.

Similarly, two types of crossover operators are used in this
method. Crossover Type-1, that is crossover in attributes
level, exchanges segments of individuals considering them as
bit-strings. It applies the classical two-point crossover. The
two crossing points in the first parent are selected randomly.
On the second parent, the crossing points are selected ran-
domly, subject to the restriction that they must have the
same distance from the subsets boundary in bit-string rep-
resentation as they had in the first parent [4]. This operator
may change the length of the individual. But we impose
the limitation of k ≤ 5; otherwise, new crossing points are
selected until the produced offspring have k ≤ 5 subsets.
Depending on where the crossing points are situated this
operator may generate new subsets from subsets of parents
and/or recombine subsets.

Crossover in subsets level, Crossover Type-2, aims to gen-
erate different combinations of subsets by exchanging sub-
sets of parents. It considers individuals as sequence of sub-
sets and performs uniform crossover. Two crossover masks
are generated randomly to define the cutting points. This
operator may change the length of the individuals and there-
fore has the restriction of k ≤ 5, same as above. Crossover
Type-2 only recombines subsets and does not generate any
new subset.
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It is important to note that GA operators are performed
over individuals representing combinations of subsets of at-
tributes. Thus, changing an individual implies modifying at-
tributes subsets and their combination. Furthermore, since
each attributes subset determines a function extracted from
data (as explained in Sect. 4.1), a modified subset of at-
tributes means a new constructed feature. In the same way
a modified combination of subsets of attributes means a new
combination of functions. Therefore, the application of GA
operators to MFE2/GA’s population produces the evolution
of construed features and their combination.

Another important note is that the bit-string representa-
tion of individuals in this method provides the facility to
apply classical GA operators, and therefore, maintains the-
oretical bases of GA.

5. EXPERIMENTS
We empirically analyze the effect of our main operators,

that are crossover in attributes level and in subsets level (see
Sect. 4.3), on performance of GA. Also MFE2/GA is com-
pared and evaluated with greedy-based method, MRP [21].
Furthermore, the performance of the presented method is
evaluated over hard concepts with attributes participating
in more than one complex interaction. For implementing
GA, we used PGAPack Library [15] with default parame-
ters, except those indicated in Table 1. The stopping rule is
to reach the maximum number of iterations limit or the max-
imum number of iterations in which no change in the best
evaluation is allowed. To reduce over-fitting we used 90%
of training data for constructing functions and all training
data for evaluating the constructed feature using Formula 1
as fitness function.

5.1 Evaluating Crossover Operators
The aim is to evaluate the importance of our two crossover

operators for converging GA to optimal solution. For each
problem, MFE2/GA was run; once with crossover type-
1, once with crossover type-2 and once more with both
crossover operators. When both crossovers are permitted,
each time that individuals are selected for reproduction, the
type of crossover operator is selected for application by flip-
ping a coin.

Synthetic problems were used for these experiments. All
problems are concepts with complex interaction that can be
represented by several smaller interactions. See Appendix
A for definition of these concepts.

Figures 3 and 4 show the average results of 20 independent
runs of GA for each concept. For each run, 5% of shuffled
data were used for training and the rest for final evaluation.
When GA was finished the new features were added to orig-
inal set of attributes and data were updated. Then the 5%
training data were used for learning by C4.5 and the accu-
racy was measured over 95% unseen data. The horizontal

Table 1: GA’s modified parameters
GA Parameter New Value
Population Size 100
Mutation Probability 0.01
Num. of Strings to be Replaced 90
Max Iteration 350
Max No Change Iteration 100
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axis in figures represents concepts. In Figures 3 the verti-
cal axis shows the average accuracy of running learner C4.5
on updated data. This axis in Figure 4 shows the average
number of generations needed in order to achieve the result
for each concept.

Figure 3 shows that using crossover in attributes level
or in subsets level alone caused GA to fail sometimes; and
therefore, gave a lower average accuracy. The application of
both crossover operators helped GA to converge to optimal
solution and allowed a higher accuracy. Therefore, both
crossover operators are required to achieve better accuracy.

It can be seen from Figure 4 that, in addition to resulting
better accuracy, using two operators together helped GA to
terminate earlier.

Results in Figures 3 and 4 support our claims that two
crossover operators defined in Sect. 4.3 complement each
other to accelerate the convergence of MFE2/GA to the op-
timal solution.
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Table 2: The average accuracies over complex con-
cepts

Num. of MFE2/GA
Concept Relevant MRP +

Atts C4.5
cp(4,9) 6 99.0 (1.6) 100 (0.0)
cp(3,10) 8 89.9 (1.2) 100 (0.0)
cp(2,11) 10 91.7 (5.7) 96.7 (6.1)
cdp(3,11) 6 97.3 (3.9) 100 (0.0)
cdp(2,10) 9 92.0 (6.5) 85.8 (8.6)
cdp(1,9) 12 81.3 (3.0) 71.7 (3.8)

P(3,6)∧(2) 10 90.5 (4.5) 93.1 (5.7)
P(3,6)∧(3) 10 87.6 (5.4) 93.8 (5.2)

P(3,6)∧(3or2) 10 79.0 (2.3) 89.3 (5.7)
P(3,6)∨(2) 10 97.1 (2.9) 89.7 (5.5)
P(3,6)∨(3) 10 95.9 (4.4) 91.1 (7.6)

P(3,6)∨(2or3) 10 80.4 (6.0) 92.5 (5.7)

5.2 Comparing with a Greedy Method
In this section, MFE2/GA is compared with MRP [21]

which is a greedy-based CI method. MRP was selected be-
cause of its similarity to MFE2/GA in using non-algebraic
representation of new features. MRP represents features by
sets of tuples using relational projection. However it ap-
plies a greedy hill climbing method for selecting attributes
and constructing features. Nevertheless, MRP has shown
good performance on concepts with complex interactions
when compared to non GA-based CI methods such as Fringe,
Grove, Greedy3 [19] and LFC [24].

Experiments were run over synthetic problems with more
than one interaction (see Appendix A). These problems were
used as prototypes to exemplify complex interaction in real-
world hard problems. Therefore, similar results are expected
for real-world problems, where the main difficulty is complex
interaction. All concepts have complex interaction among
attributes that can be represented by several smaller inter-
actions.

For each concept, MFE2/GA was run 20 times indepen-
dently, using 5% of shuffled data for training and the rest
for final evaluation. When MFE2/GA was finished, its per-
formance was evaluated by the accuracy of C4.5 on modified
data after adding constructed features, using the same 5%
data as training data and 95% unseen data as test data. Ta-
ble 2 gives a summary of MFE2/GA’s accuracy over 20 runs
and its comparison with MRP. Numbers between parenthe-
ses indicate standard deviation. Bold means that the differ-
ence is statistically significant (α = 0.02).

It can be seen that in most cases, MFE2/GA significantly
outperforms MRP. When number of interacting attributes
grows, the concept becomes more complex to be learned.
This additional complexity, along with MRP’s greedy strat-
egy, makes this method to result in low accuracy. On the
other hand, MFE2/GA uses a global search strategy to suc-
cessfully break down the interaction over relevant attributes
into two or more interactions over smaller subsets of at-
tributes; and therefore, it gives better accuracy than MRP
in most concepts of Table 2.

The synthetic concepts cdp(i, j) illustrates well the differ-
ent behaviors of MRP and MFE2/GA. Each of the concepts
cdp(1, 9), cdp(2, 10) and cdp(3, 11) involves three parity rela-
tions combined by simple interactions (conjunction and dis-

junction of parity). These concepts differ in the degree of
parity involved (4, 3, and 2, respectively). More importantly,
they also differ in the ratio of relevant attributes (12/12,
9/12, and 6/12, respectively). This affects MFE2/GA in a
higher degree than it affects MRP due to differences between
both systems’ biases. In particular, considering cdp(1, 9),
MRP’s focus on learning one single best relation guides
learning toward Parity(a1 , . . . , a4). As stated above, the
interactions that combine Parity(a1 , . . . , a4) with the other
parity features in this concept are simple (conjunction and
disjunction). So MRP easily finds its way toward learn-
ing Parity(a1 , . . . , a4). Had it used only this single feature
to classify unseen data, it would have obtained even higher
accuracy than it does (up to 87%). Perhaps, due to over-
fitting, MRP’s heuristic function does not allow the sys-
tem to reach such theoretically best possible performance
on this concept. However, MRP’s bias gets it closer to the
goal than MFE2/GA. MFE2/GA’s bias is, in sense, oppo-
site to MRP’s. It focuses on learning multiple features at
once to evaluate them in combination. This higher flexibil-
ity in searching a large and complex feature space makes the
system more dependent on data quality (since features are
extracted from training data). Therefore, MFE2/GA’s more
flexible search gets trapped in a local optimum, over-fitting
data; whereas MRP is favored by its strong bias for one best
relation, which in this case, does indeed exists and it is easy
to find.

It is important to note that in all experiments MFE2/GA
generated close approximations to represent the complex in-
teraction by several sub-interactions. Indeed, in more than
80% of experiments MFE2/GA successfully found the exact
subsets of interacting attributes and corresponding functions
representing sub-interactions.

We have not done a detail study of MFE2/GA’s execution
time, since it is implemented as a prototype system, with-
out any optimizing aspects and intended mainly to evaluate
a new way of integrating GA into CI. However, as an in-
dication, we report here MFE2/GA’s overall running time
for these experiments. The total real time to run 20 experi-
ments for 12 concepts took 146 minutes on a Pentium 4, 2.26
GHz, with 384 MB of RAM; which is in average 36 seconds
for each MFE2/GA run.

The use of synthetic concepts allowed an in-depth analysis
of the system behavior before moving on to try to solve real-
world problems with difficulties similar to those exemplified
by these synthetic concepts. More studies are needed to
evaluate how MFE2/GA will scale up for large concepts and
real-word problems.

5.3 Concepts with Shared Attributed
The main advantage of MFE2/GA with non-algebraic rep-

resentation of features is its capability of dealing with com-
plex concepts when there are attributes participating in more
than one interaction. However, despite using non-algebraic
representation of features, MRP’s greedy search strategy
prevents the construction of useful features when there are
shared attributes in several interactions. This limitation of
MRP and other similar greedy-based methods is anticipated
in [20].

A number of experiments were carried out to further eval-
uate this property of MFE2/GA using concepts with at-
tributes participating in more than one interaction (see Ap-
pendix A). We compared MFE2/GA with C4.5 and C4.5-
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Table 3: The average accuracies over complex concepts with relations on shared attributes
Num. of C4.5 C4.5Rules C4.5 C4.5Rules MFE2/GA

Concept Relevant Original Original Relevant Relevant +
Atts Atts Atts Atts Atts C4.5

(P4 ∧ P4)-of-6 6 72.2 (3.6) 70.9 (2.9) 87.9 (5.5) 94.4 (4.8) 99.1 (1.6)
(P6 ∧ P6)-of-8 8 72.2 (3.5) 69.0 (3.5) 73.2 (2.4) 69.7 (2.4) 92.8 (5.7)

(P3 ∧ P3 ∧ P3)-of-6 6 87.4 (1.5) 85.1 (3.2) 91.7 (3.6) 96.4 (2.8) 99.8 (0.7)
(P4 ∧ P4 ∧ P4)-of-6 6 87.5 (0.1) 84.2 (2.0) 90.6 (2.5) 95.8 (3.9) 99.6 (0.7)
(P4 ∧ P4 ∧ P4)-of-8 8 87.5 (0.1) 84.2 (3.0) 85.4 (1.8) 85.4 (1.8) 96.4 (1.8)
(P6 ∧ P6 ∧ P6)-of-8 8 86.5 (2.2) 83.9 (2.7) 87.0 (1.6) 86.2 (1.9) 92.2 (3.3)

Rules [23]. Table 3 shows the average accuracy after 20
independent runs over 5% shuffled data. Columns 3 and
4 show the result of C4.5 and C4.5Rules on original set of
data. The results of C4.5 and C4.5Rules are also shown
in columns 5 and 6 after forcing them to use only relevant
attributes.

As it can be seen, in all cases MFE2/GA achieved sig-
nificantly higher accuracy comparing to the others. This
demonstrates the ability of this method to construct use-
ful features when there are attributes participating in more
than one interaction.

The results in column 6 show that if the system can be in-
formed which attributes are relevant, C4.5Rules can slightly
improve performance in most cases. However, MFE2/GA
by discovering interacting attributes and constructing new
functions, considerably facilitates learning these concepts.
Due to the complex interactions of these concepts, selection
of interacting attributes alone does not facilitates learning.
This implies that a preprocessing feature selection alone and
without feature construction cannot help a learner when a
high interaction exists among attributes.

6. CONCLUSION
In this paper the problem of greedy-based CI methods

was discussed. It was explained that the search space for
finding interacting attributes and constructing functions is
large and has high variation when complex interaction exists
in concept. Therefore, a global search such as GA is more
likely to be successful.

It was also argued that CI requires constructing and eval-
uating several features together, since each feature by itself
may not be evaluated correctly due to the complex inter-
action in data. GA allows simultaneously constructing and
evaluating several features represented as a single individ-
ual, which turns out to be essential for concepts with high
complex interaction.

Considering these, MFE2/GA, a GA-based CI method,
was presented. The simple bit-string representation of in-
dividuals as subsets of attributes, along with non-algebraic
representation of corresponding functions defined over such
attribute subset, allowed the application of classical GA op-
erators. A new data-driven fitness function was used, which
was faster than a hypothesis-driven fitness function. Two
types of mutation and crossover operators along with the
data-driven fitness function in this method showed a good
behavior in converging GA to optimal solution. Represent-
ing several subsets of attributes and corresponding functions
as one individual made MFE2/GA capable of dealing with
concepts with attributes participating in more than one in-
teraction. Experiments showed the good performance of this
method when compared with greedy-based methods on con-
cepts where CI was important due to complex interactions.
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APPENDIX

A. CONCEPTS DEFINITIONS
All concepts used for experiments are synthetic concepts

defined over twelve Boolean attributes a1, . . . , a12. The con-
cepts used in Sec. 5.1 and 5.2 are as follows:

cp(i, j) =Parity(ai,. . . ,a6)∧Parity(a7 ,. . . ,aj)

cdp(i, j) =Parity(ai,. . . ,a4)∧

(Parity(a i+j
2

,. . . ,a8)∨ Parity(aj ,. . . ,a12))

P (3, 6) ∧ (l) =Parity(a3,. . . ,a6)∧

exactly l attributes in {a7 ,. . . ,a12} are true

P (3, 6) ∨ (l) =Parity(a3,. . . ,a6)∨

exactly l attributes in {a7 ,. . . ,a12} are true

All above concepts have complex interaction among rel-
evant attributes that can be represented by several smaller
interactions.

We also defined the following particular complex concepts
for experiments in Sec. 5.3:

(P4 ∧ P4)-of-6 =Parity(a1 ,. . . ,a4)∧

Parity(a3 ,. . . ,a6)

(P6 ∧ P6)-of-8 =Parity(a1 ,. . . ,a6)∧

Parity(a3 ,. . . ,a8)

(P3 ∧ P3 ∧ P3)-of-6 =Parity(a1 ,. . . ,a3)∧

Parity(a3 ,. . . ,a5)∧ Parity(a4 ,. . . ,a6)

(P4 ∧ P4 ∧ P4)-of-6 =Parity(a1 , . . . , a4)∧

Parity(a2 ,. . . ,a5)∧ Parity(a3 ,. . . ,a6)

(P4 ∧ P4 ∧ P4)-of-8 =Parity(a1 ,. . . ,a4)∧

Parity(a3 ,. . . ,a6)∧ Parity(a5 ,. . . ,a8)

(P6 ∧ P6 ∧ P6)-of-8 =Parity(a1 ,. . . ,a6)∧

Parity(a2 ,. . . ,a7)∧ Parity(a3 ,. . . ,a8)

The important characteristic of these concepts is that
there are attributes participating in more than one inter-
action.
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