
A First Order Logic Classifier System

Drew Mellor
School of Electrical Engineering and Computer Science
The University of Newcastle, Callaghan, 2308, Australia

Telephone: (+612) 4921 6034, Facsimile: (+612) 4921 6929

dmellor@cs.newcastle.edu.au

ABSTRACT
Motivated by the intention to increase the expressive power
of learning classifier systems, we developed a new Xcs deriva-
tive, Fox-cs, where the classifier and observation languages
are a subset of first order logic. We found that Fox-cs was
viable at tasks in two relational task domains, poker and
blocks world, which cannot be represented easily using tra-
ditional bit-string classifiers and inputs. We also found that
for these tasks, the level of generality obtained by Fox-cs in
the portion of population that produces optimal behaviour
is consistent with Wilson’s generality hypothesis.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods—Predicate logic; Representations
(procedural and rule-based); I.2 [Artificial Intelligence]:
Learning—Concept learning

General Terms
Algorithms, Languages

Keywords
Relational learning, first order logic, learning classifier sys-
tem, Xcs, blocks world, poker

1. INTRODUCTION
Languages based on first order logic are highly expressive

and capable of representing complex relationships between
the attributes of a task domain. Thus, when addressing
tasks set in relational domains (domains where the under-
lying regularity is relational in nature [21]), a language over
first order logic can be appropriate for expressing data and
acquired knowledge. The field of inductive logic program-
ming (ILP) consists of methods for learning with first order
logic, which are frequently adapted from propositional al-
gorithms, like the well known Foil algorithm [15] and oth-
ers [3, 11]. A suitable candidate for an upgrade to first order

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

logic is a learning classifier system (LCS) due to the parallel
between a Horn clause and a classifier. Such an upgrade
would extend the application of learning classifier systems
to relational domains, and at the same time would extend
ILP to reinforcement learning tasks, which has only been
addressed recently with the advent of relational reinforce-
ment learning [8, 20]. However, incorporating first order
logic into the LCS framework has remained unrealised until
this paper, which contributes Fox-cs, a learning classifier
system that uses first order logic to represent classifiers and
observations.

A learning classifier system is an adaptive rule-based sys-
tem characterised by the combination of a genetic algo-
rithm, which searches the space of rules, and a reinforcement
learning-like algorithm, which estimates the rules’ expected
payoffs. An individual rule in the system is called a classi-
fier and contains an action and a condition (in this paper
we will use the notation action ← condition to represent a
classifier), which the system interprets procedurally: “if the
input matches condition then do action”. In addition to the
action and condition a classifier also contains a prediction
value that estimates the expected long term payoff accrued
by the system after following the rule. Ideally, the condition
is a generalisation such that the classifier as a whole ex-
presses a regularity in the payoff landscape (i.e. a collection
of input-action pairs sharing equal expected payoff).

The standard classifier language is the bit-string, which
supports fast matching operations (linear in the number of
bits) and is adequately expressive for most attribute-value
concepts [5]. A bit-string classifier expresses a condition
as a string over the ternary alphabet {0,1,#}. To match a
condition against a binary input string, the condition must
match the input string precisely, symbol for symbol, except
that the “don’t care” symbol, #, can match either a 0 or
a 1. The # symbol supports generalisation by allowing a
single condition to match a range of inputs, for example
the condition string 10## generalises over four input values.
However, the # symbol cannot express relationships between
the values at different bits, for example it cannot express
“the first and fourth bits are equal and the second and third
bits are equal” (i.e. ABBA where A and B are variables over
bit values) [17]. It is this lack of expressive power that limits
the usefulness of bit-strings in relational domains.

Although bit-string classifiers are typical, the LCS frame-
work is general enough to support other classifier languages,
such as intervals of reals [24], genetic programming inspired
S-expressions [12], and weights for neural networks [6]. Clas-
sifier languages capable of representing relational concepts

1819

have been used in the following systems: Xcsl [12] and Gp-
cs [1], which partially express classifiers (the conditions and
actions respectively) with S-expressions; and the proposed
Vcs system [18], which extends the bit-string alphabet to
support variables. However, neither Xcsl or Gp-cs can ex-
press abstract relationships between the attributes of actions
and the attributes of conditions (e.g. AB← ABBA), and as far
as we are aware no results for Vcs have ever been published.

In this paper we present a system that uses first order
logic to represent the classifiers and observations. In addi-
tion to facilitating the representation of relational concepts,
including concepts that relate attributes of actions to those
of conditions (like AB← ABBA), other advantages which arise
from the use of first order logic include support for the in-
clusion of background knowledge, and enhanced knowledge
transparency due to the structure present in Horn clauses.
It is also hoped that the new system will inherit some of
the advantages of its parent, Xcs, including its tendency to
discover and proliferate maximally general classifiers in the
population [23].

The remainder of the paper is set out as follows. First,
we briefly present some definitions from first order logic that
will be relevant for describing the new classifier and observa-
tion languages (section 2). Then we outline the Xcs system
(section 3), which the new system Fox-cs is based on. Next,
Fox-cs is described in detail (section 4), followed by an em-
pirical assessment of Fox-cs at single step (section 5) and
multiple step (section 6) tasks. In the final section some
concluding remarks are made (section 7).

2. DEFINITIONS IN FIRST ORDER LOGIC
An atomic formula r(u1, . . . , un) is a predicate symbol r

followed by a bracketed n-tuple of terms. A predicate symbol
is a lower case letter followed by a string of zero or more
lower case letters and digits. A term is either a constant, a
variable or a function symbol followed by a bracketed n-tuple
of terms. Both constants and a function symbols consist of
a lower case letter followed by a string of zero or more lower
case letters and digits (in this paper we will not be concerned
with functions), whereas a variable is an upper case letter
followed by a string of zero or more lower case letters and
digits. The arity of an atomic formula is the number of
terms in (the top level of) the formula. If A is an atomic
formula then both A and ¬A are literals, where A is called
a positive literal and ¬A is called a negative literal.

A clause is a finite set of literals that represents the dis-
junction of the literals. Any clause can be written as a
formula of the form A1; . . . ; Am ← B1, . . . , Bn, where the
Ai are all the positive literals in the clause, the Bi are all
the negative literals in the clause, and the “;” symbol indi-
cates disjunction, the “,” symbol indicates conjunction, and
the “←” symbol represents implication. A Horn clause is a
clause that contains exactly one positive literal, and can be
written as A← B1, . . . , Bn. The positive literal, A, is called
the head of the clause and the negative literals, B1, . . . , Bn,
are called the body of the clause. A Horn clause with an
empty body is called a fact. For more background on first
order logic in the ILP setting see [14].

3. THE XCS SYSTEM
The Xcs system [22, 23] is perhaps the most well known,

thoroughly documented, and best performing LCS imple-
mentation. The principle characteristic distinguishing Xcs

from other LCS implementations is its accuracy based defini-
tion of fitness. Associated with each classifier cl are three pa-
rameters: the prediction, pcl, which estimates the expected
payoff for cl; the prediction error, εcl, which estimates the
difference between pcl and the actual payoff received; and
the fitness, Fcl, which is based on the relative accuracy of
pcl. The accuracy of cl is 1 (perfect) if εcl lies within some
tolerance of zero, otherwise it decreases towards 0 as εcl in-
creases. In contrast to Xcs, strength based classifier systems
like Holland’s LCS [10] use a single parameter, the strength,
which serves for both the prediction and the fitness.

The operational cycle of Xcs proceeds as follows. At each
discrete time step, t, the match set [M] is formed from the
system’s current population of classifiers, [P], that match
the current input. If the number of different actions in [M]
is less than some constant, a new classifier is created by
the process of covering. Covering creates a classifier with
a randomly selected action and a condition matching the
current input, i.e. each condition bit will be equal to its
equivalent input bit or #. For each action a specified by the
classifiers of [M], the action prediction p(a) is calculated
as the fitness weighted average prediction over all classifiers
in [M] advocating a. Based on the action predictions, an
action at is selected, usually stochastically by either ε-greedy
selection or roulette wheel selection weighted by the action
predictions. Next, the action set [A] is formed, containing
the classifiers of [M] that propose at. Then at is executed
resulting in some immediate reward and a new input. Based
on the immediate reward, the classifiers belonging to [A]−1,
the action set at time t−1, have their p, ε, and F parameters
updated using a method similar to Q-Learning. Finally,
from time to time a genetic algorithm is invoked on the
members of [A]−1 to discover new classifiers. If the size of [P]
exceeds a predetermined upper bound N after the insertion
of a new classifier, then a classifier is deleted from [P].

Two standard enhancements to Xcs that reduce the match-
ing overhead are macroclassifiers and subsumption. A macro-
classifier cl has an additional numerosity parameter, ncl,
that is interpreted as the number of (micro)classifiers in the
population that contain cl’s action and condition. Each
macroclassifier cl reduces the number of matching opera-
tions from ncl to 1 because it replaces ncl microclassifiers.
In the remainder of this paper we will generally use the
term “classifier” and reserve the macro- and micro- prefixes
for when the distinction is important, e.g. the parameter N
is given as a quantity of microclassifiers.

The subsumption technique also reduces the number of
distinct classifiers in the population. If a classifier already
has perfect accuracy then a specialisation of it adds no extra
information to the system. Hence, if classifier i is a special-
isation of another classifier j, and j has perfect accuracy,
then j can subsume i by deleting i and incrementing nj .

4. A FIRST ORDER LOGIC XCS SYSTEM
Fox-cs is a learning classifier system that uses first or-

der logic classifier and observation languages. The system is
based on the Xcs specification given in [7], with modifica-
tions to handle matching, discovery and subsumption of first
order logic classifiers. The modifications are detailed below
after first discussing the classifier and observation languages.

The classifiers of Fox-cs are Horn clauses containing three
parts — the usual action and condition parts plus a back-
ground part that can link with a domain specific background

1820

p()
selection1a

2a

3a

action

6

p()

Population

Task Domain

Action Set
match

...cl2 cl3 cl4 cl5 cl cl
1cl cl11 2 cl3

1

Match Set

1a

2a

3a

cl

clcl1

cl

4

cl1 cl2

Prediction

3

Array

a

1aM()

s, A(s)

p()

Figure 1: The performance subsystem of Fox-cs. The match set has been modified to associate with each action

a ∈ A(s) a set of classifiers M(a) that match s and a. Note that a classifier can be associated with more than one action.

theory. Thus, the structure of the classifiers is:

Action ← Condition, Background

Each part consists of a list of atoms, which are predicate
formulas that have the form r(u1, u2, . . . , un), whose argu-
ments, u1, u2, . . . , un, are variables or constants, and whose
arity, n, satisfies n ≥ 0. The action part always contains ex-
actly one atom, and the background knowledge part can be
empty. A domain specific grammar determines the vocab-
ulary of predicate, variable and constant symbols, and how
the atoms may combine to form a classifier. The classifiers
have both a procedural interpretation as an action rule (at
action execution time) and a declarative interpretation as a
Horn clause (at matching time).

The observations input to Fox-cs are facts consisting of
the same atoms found in the classifier’s condition part, but
without any variables. It is the use of variables in the
classifier language that allows relationships between the at-
tributes of the task domain to be expressed in an abstract
way. Thus, variables perform a generalisation role, similar
to the # symbol in bit-string classifiers. However, unlike the
symbol, variables may occur in actions. This means that in
Fox-cs actions may be abstract and not directly executable.
However, abstract actions can be made concrete because the
variables that may occur in actions are constrained to occur
in the condition also, hence the value of a variable in the ac-
tion can be determined when the condition part is matched.
The significance of permitting variables in actions is that it
allows a correspondence between the attributes of an action
and input to be expressed abstractly.

Given a classifier cl, a current input s and an action a
(the origin of a is explained below), the matching operation
is defined as

match(cl, s, a) =

�
true if cl, s, B |= a
false otherwise.

Thus, matching succeeds if and only if cl, s, and the back-
ground theory B, together entail a. To implement the match-
ing operation, a search is run for a substitution of the vari-
ables of cl that satisfy the entailment constraint. Matching
short-circuits if a successful substitution is found; but in the
worst case (when matching fails) all substitutions are tried
(at least implicitly), thus the time complexity of the match-
ing operation is greater for first order logic classifiers than
for bit-string classifiers. If there are n variables that each
accept m possible values then the total number of substitu-

tions is nm, however the entire nm substitutions would be
rarely checked explicitly even when matching fails. This is
because the substitutions can be organised into a tree struc-
ture such that each substitution corresponds to a path from
the root to a leaf, thus if a partial substitution fails at some
node in the tree then all full substitutions containing that
node can be eliminated at once. Hence, although the worst
case time complexity is O(nm) it must be emphasized that
this is not a tight bound, and may be substantially less in
practice.

With the matching operation modified, the performance
subsystem now works as follows. First A(s), the set of ac-
tions allowed in the current input s, is returned by querying
the task domain. Then the match set is computed so that
it associates with each a ∈ A(s) the set of all classifiers
matching s and a, which we denote by M(a) = {cl ∈ [P] |
match(cl, s, a)}, where [P] is the current population. Note
that because an individual classifier can generalise over ac-
tions it may occur in the match set of more than one action
(under different substitutions). Next, the prediction array
is calculated, where for each action a ∈ A(s) the prediction
p(a) is the fitness weighted mean prediction over all classi-
fiers in M(a), that is, p(a) =

�
cl∈M(a) Fclpcl/

�
cl∈M(a) Fcl.

Finally, action selection proceeds as ε-greedy selection over
the prediction array with uniform random selection of ac-
tions that are tied for the maximum prediction. The overall
process is illustrated in figure 1.

As noted above, a single classifier cl can contribute to
the prediction calculation of multiple actions in A(s). How-
ever cl cannot achieve perfect accuracy unless each of these
actions yields the same payoff. Thus, generalisations made
over actions must still reflect uniformities in the payoff land-
scape or suffer low fitness. Hence Fox-cs should preserve
the tendency of Xcs to form accurate generalisations.

Rule discovery in Fox-cs consists of mutation and cov-
ering. From time to time, a rule discovery module selects
a classifier from the action set for reproduction and incre-
ments its numerosity with probability 1 − µ, or produces a
mutated child with probability µ. The effect of mutation is
to explore the space of classifiers allowed by the given task
grammar. Covering operators are used when the match set
is empty. Both mutation and covering employ domain spe-
cific operations, which are detailed in the task description
sections below for the experiments reported in this paper.
In its use of a “direct” representation (first order logic) and
domain specific mutation operators, the evolutionary com-

1821

A) Observation ::= card(1, Rank, Suit), card(2, Rank, Suit), card(3, Rank, Suit), card(4, Rank, Suit),

card(5, Rank, Suit)

Rank ::= two | three | four | five | six | seven | eight | nine | ten | jack | queen | king | ace
Suit ::= clubs | spades | diamonds | hearts

card(1, eight, spades), card(2, two, diamonds), card(3, eight, diamonds), card(4, eight, clubs), card(5, eight, hearts)

B) Classifier ::= Class← Condition

Classifier ::= Class← Condition, Background

Class ::= nought | pair | twopair | threeofakind | straight | flush | fullhouse | fourofakind

Condition ::= card(P1, Rank V, Suit V), card(P2, Rank V, Suit V), card(P3, Rank V, Suit V),

card(P4, Rank V, Suit V), card(P5, Rank V, Suit V)

Rank V ::= R1 | R2 | R3 | R4 | R5 |
Suit V ::= S1 | S2 | S3 | S4 | S5 |

Background ::= Succ | not(Succ)

Succ ::= succ(R1, R2,R3,R4,R5)

fullhouse← card(P1, R1,), card(P2, R1,), card(P3, R2,), card(P4, R2, S1), card(P5, R1,)

Table 1: The grammars, in BNF notation, defining the languages for expressing A) observations and B) classifiers for

the poker classification task. An example is given underneath each grammar.

ponent of Fox-cs resembles evolutionary programming [9].
Subsumption reduces the number of matching operations

required at each cycle. Because matching is a more costly
operation using first order logic, subsumption can play an
important role in Fox-cs. However, unlike bit-strings, it is
difficult to detect if one expression in first order logic is a
specialisation of another in a fast and general way. Hence,
subsumption, like mutation and covering, is performed in a
domain specific fashion.

In the following two sections, experiments with Fox-cs
at a single step task (classifying hands of poker) and two
multiple step tasks (stacking and unstacking blocks) are pre-
sented. The aims of the experiments are to access empiri-
cally the system’s i) learning performance, and ii) general-
isation ability. According to Wilson’s generality hypothesis
the system should tend to evolve a population of classifiers
that are both accurate and maximally general and which
cover the entire state-action space. Since it is complicated to
determine all the accurate and maximally general conditions
over the entire state-action space, we shall be content to con-
sider just the optimal portion instead, i.e. the state-action
pairs that lead to optimal performance. For the evaluation
tasks in this paper, it can be verified whether an arbitrary
classifier specifies optimal behaviour and is maximally gen-
eral.

5. CLASSIFYING POKER HANDS
This multi-class classification task consists of recognising

which of the following eight classes a hand of poker be-
longs to: fourofakind, fullhouse, flush, straight, threeofakind,
twopair, pair or nought. The first seven classes are defined
normally, with the exception that flush includes royal and
straight flushes in addition to ordinary flushes, while the last
class, nought, collects all the hands that don’t belong to one
of the other seven classes. This task, which was first subject
to an ILP algorithm in [4], is inherently relational because it
is the relationships between the ranks and suits of the cards
in the hand, rather than their values, that define the classes.
Xcs and other machine learning systems that use attribute

value languages are unable to solve the task without using
high level features to represent inputs.

5.1 Setup and Training
The observation and classifier languages for this task are

generated by the grammars in table 1. The variables are in-
terpreted in the following way: all occurrences of the same
variable in a classifier refer to the same value, but sepa-
rate variables in a classifier may never refer to the same
value — the exception is the anonymous variable, denoted
by “ ”, which may contain any value, similar to the don’t
care symbol # in bit-string classifiers. These rules for in-
terpreting variables prevent separate atoms in the condition
part from successfully matching against the same card in the
input data, for example card(P1,R1,) and card(P2, R1,)
must match separate cards in the input because P1 �= P2.
The formula succ(R1, R2, R3, R4, R5) evaluates to true if
the values of its arguments can be ordered to form a se-
quence of contiguous ranks. A classifier cannot contain the
atom succ(R1, R2, R3, R4, R5) unless each of the rank vari-
ables also occurs in the condition part.

When covering, a separate classifier is created for each
of the eight classes of hand. The action is set to the class
name, the condition is set to the current observation, and
the background knowledge part is initially empty. Then the
classifier is generalised by mapping each distinct rank and
suit constant to a rank or suit variable.

There are two mutation operations, which are invoked
with equal probability. The first selects an instance of a
rank or suit variable from the condition part at random and
renames it with a randomly selected variable name from
Rank V or Suit V , whichever is appropriate. The second
appends or removes the succ(R1, R2, R3, R4, R5) atom de-
pending whether it is currently absent or present; when ap-
pending, the atom is negated half of the time. However if
a mutation produces a classifier that violates the grammar
— for example the atom succ(R1, R2, R3, R4, R5) is present
but one or more of the rank variables are missing — then
the classifier is discarded and the mutation process is rerun.

1822

0 5000 10000 15000 20000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Episode

Performance
Population size (/N)

Figure 2: The system performance (solid line) and pop-

ulation size (dashed line) for the poker classification task.

The population size is the number of macroclassifiers di-

vided by N (500). Results are averaged over 10 separate

runs.

A classifier cl1 can be subsumed by cl2 if and only if their
expressions are identical or are identical except for either or
both of the following specialisations: i) a named variable in
cl1 is replaced with “ ” in cl2; and ii) cl1 contains the back-
ground atom and cl2 does not. Other cases of specialisation
can occur but are not detected.

The system was trained for 20,000 episodes. During each
episode the system is presented with a randomly generated
hand of poker and awarded 10 if it correctly classifies the
hand, or -10 otherwise. The distribution of hands was uni-
form over the different classes. At the beginning of training
the population was empty and initially created using cover-
ing. The initial classifier parameters were assigned to a ran-
dom Gaussian with mean 0 and standard deviation 0.01 for
prediction, p, and mean 0.01 and standard deviation 0.001
for error, ε, and fitness, F . Values for the system parameters
were set as follows: N = 500, ε = 10%, α = 0.1, β = 0.1,
ε0 = 0.0001, ν = 5, θga = 50, µ = 0.2, θsub = 500, θdel = 20,
δ = 0.1. The values for the parameters are typical in the
Xcs literature except for perhaps ε0 and θsub, which are dis-
cussed later; the new mutation parameter µ was tried with
a variety of values and is also discussed later.

5.2 Results
The system performance and the population size during

training is shown in figure 2. The system performance was
measured as the proportion of correct classifications over the
last 50 non-exploratory episodes. The performance reaches
about 98% by 10,000 episodes but never fully settles. In-
spection of the training runs indicates that after this point
the errors are primarily due to the presence of overgeneral
classifiers in the population, which are continually evolving
from maximally general classifiers. The overgeneral inher-
its its parent’s optimal prediction value, which occasionally
leads to the incorrect selection of the overgeneral’s class for
the given input, thus impairing the system’s classification
performance. After incorrect selection the overgeneral’s pre-
diction and fitness values are adjusted downward. However,
sometimes the frequency of misclassifications is small and
the overgeneral still has a high accuracy and therefore a
high fitness. If so, the overgeneral may cause the average

* 14 straight← card(F, D, M), card(G,L,), card(H, E, M),
card(I,K,), card(J,C, A), succ rank(C, D, E, K, L)

* 14 threeofakind← card(G,D,), card(H, D,), card(I, F, B),
card(J,D, C), card(K, A,)

* 13 nought← card(G, C,), card(H, F, B), card(I,L,),
card(J,E,), card(K, M, N), not(succ rank(C, E, F, L, M))

* 12 fourofakind← card(E,C,), card(F, , B), card(G,C,),
card(H, C,), card(I,C,)

* 10 flush← card(D, B, K), card(E, J, K), card(F, I, K),
card(G,A, K), card(H, C, K)

* 10 pair ← card(F, E, D), card(G,C,), card(H, L,),
card(I,M,), card(J, E,)

* 8 twopair ← card(C, H,), card(D, J,), card(E, H,),
card(F,K,), card(G, J, A)

* 6 pair ← card(F, M, D), card(G,C,), card(H, L,),
card(I,M,), card(J, E, D)

* 5 fourofakind← card(E,C,), card(F, ,), card(G,C,),
card(H, C,), card(I,C,)

* 4 fullhouse← card(D, J, B), card(E, J, A), card(F, C, I),
card(G,C, B), card(H, J,)

* 4 fullhouse← card(D, J, I), card(E, J, A), card(F, C, I),
card(G,C, B), card(H, J,)

* 4 twopair ← card(C, H, B), card(D,J,), card(E, H,),
card(F,K,), card(G, J, A)

3 twopair ← card(C, H, B), card(D,J,), card(E, H,),
card(F,K,), card(G, J, B)

* 2 fullhouse← card(D, J,), card(E, J, A), card(F, C, I),
card(G,C, B), card(H, J,)

1 flush← card(D, B, K), card(E, J, K), card(F, C, K),
card(G,A, K), card(H, C, K)

1 flush← card(D, B, K), card(E, J, K), card(F, I, ,),
card(G,A, K), card(H, C, K)

1 fullhouse← card(D, J, B), card(E, J, A), card(F, C, I),
card(G,C, I), card(H, J,)

1 fullhouse← card(D, J, I), card(E, J, B), card(F, C, I),
card(G,C, B), card(H, J, A)

1 fullhouse← card(D, J, I), card(E, J, B), card(F, C, I),
card(G,C, B), card(H, J,)

1 fullhouse← card(D, J, K), card(E, J, B), card(F, C, I),
card(G,C, B), card(H, J, A)

Table 2: The sample of the population with perfect ac-

curacy and prediction 10 after 25,000 episodes of the

poker classification task, ordered by numerosity. In the

first column, an asterisk “*” indicates that the classifier

is maximally general. The second column gives the nu-

merosity values. Note that in contrast to the grammar

given in figure 1, single letter variables have been used

here in order to be concise.

prediction for inputs it does correctly classify to be lowered
enough to result in further classification errors. Eventually
the situation is rectified when the overgeneral is deleted.
Errors due to overgenerals are perhaps inevitable as long as
the evolutionary component is operating, but they can be
acceptable if the system’s minimum performance lies within
a specified tolerance of optimal. Here, a tolerance of 4% is
enough to account for all errors after 10,000 episodes.

The population size rises quickly to a little over 0.5×500 =
250 macroclassifiers and then gradually decreases to about
200. The decline in the diversity of the macroclassifiers is
expected when generalisation is occurring, because an accu-
rate and specific classifier tends to be replaced by an accu-
rate and general classifier.

To assess the level of generality attained, after a run was
completed the final population was inspected to determine
whether maximally general classifiers had evolved. For this
task, a classifier cl is maximally general if every hand that
matches cl’s condition part belongs to cl’s class, and if ev-
ery hand belonging to cl’s class does match cl’s condition.
Maximally general classifiers were found to evolve. After ex-
perimentation it was also found that the minimum number

1823

of episodes required to evolve maximally general classifiers in
greater proportion than sub-optimally general classifiers for
all classes was approximately 25,000 when using the param-
eter settings given above. A sample of the final population
for one arbitrarily selected run is given in table 2. Note that
for some classes several different maximally general classi-
fiers evolved, which is possible because the classifier lan-
guage does allow for more than one maximally general ex-
pression for each of the classes. Most of the other classifiers
shown are sub-optimally general, but some are overgeneral
or contain conditions that cannot be met. The presence of
these last two groups of classifiers can be explained as hav-
ing evolved recently and awaiting either correction of their
parameters or deletion. We conclude that for this task, the
generalisation behaviour of Fox-cs is consistent with Wil-
son’s generality hypothesis, at least for the portion of the
population that makes correct classifications.

Because the use of variables in the classifier language in-
creases the time cost of the matching operation, some at-
tempt was made to minimise the population size limit N . A
value of 500 was settled on because it was found that values
of N < 500 occasionally resulted in deletion of maximally
general classifiers, but this was never observed for N ≥ 500.
The mutation rate µ was tried for values in increments of
0.1 over the range [0.1, 0.9]. Mutation rates in the range
0.1 ≤ µ ≤ 0.5 all produced performances similar to those
reported above, but as values increased above 0.5, instabil-
ity in the system performance increased. The experience
threshold for subsumption was set very high, at θsub = 500,
because it was found that with lower values, maximally gen-
eral classifiers for flush were occasionally subsumed by over-
general offspring like flush ← card(A,F,), card(B,G, K),
card(C, H,K), card(D, I,K), card(E,J, K), which is over-
general because it will misclassify a nought containing four
equal suits. Inspection of training runs revealed that the
frequency of nought hands containing four equal suits was
sometimes less than about 3

500
, which is low enough to de-

lay the correction of the prediction and accuracy parame-
ters of an overgeneral classifier like the one above until after
it has potentially subsumed its maximally general parent
when θsub < 500. On one hand, this highlights the need
for the distribution of data to be carefully selected so that
the system can accurately differentiate between classifiers
that predict over separate environmental niches, but it also
shows that the Xcs methodology is robust enough to sup-
port learning under uneven training data distributions by
setting the parameters appropriately.

6. BLOCKS WORLD TASKS
The second evaluation domain is the well known blocks

world [19], which has been used extensively within AI, par-
ticularly for testing planning algorithms. The domain con-
sists of a floor and a finite number of blocks that rest either
on the floor or on each other. If a block has nothing on
top of it, it is “clear” and can be moved to the floor or onto
another clear block. A variety of multiple step tasks are pos-
sible within blocks world; in this paper Fox-cs is evaluated
at two: stacking and unstacking [8]. The object of the stack
task is to arrange all the blocks into a single stack where the
order of the blocks is unimportant; the optimal stack policy
simply places any clear block on top of the highest block.
The object of the unstack task is to arrange the blocks so
they are all on the floor, again order is not important; an

A) Observation ::= Observation A {, Observation A}
Observation A ::= cl(Block C) | on fl(Block C) |

on(Block C,Block C)

Block C ::= a | b | c | . . .
cl(b), cl(c), on fl(a), on fl(c), on(b, d), on(d, a)

B) Classifier ::= Action← Condition

Condition ::= Condition A {, Condition A}
Action ::= mv(Block T ,Block T) |mv fl(Block T)

Condition A ::= cl(Block T) | on fl(Block T) |
on(Block T ,Block T)

Block T ::= Block C | Block V

Block C ::= a | b | c | . . .
Block V ::= A | B | C | . . .

mv(A, B)← cl(A), cl(B), on fl(C), on fl(B), on(A, C)

Table 3: The grammars, in BNF notation, defining the

languages for expressing A) observations and B) classi-

fiers for the blocks world tasks. An example is given

underneath each grammar.

optimal policy to unstack selects any clear block not already
on the floor and moves it there. In blocks world the number
of states increases exponentially with the number of blocks,
thus as the number of blocks increases the tasks quickly be-
come unsolvable without generalisation.

6.1 Setup and Training
The observation and classifier languages are given by the

grammars in table 3. As with the poker task, all occurrences
of the same variable in a classifier refer to the same value,
and separate variables in the same classifier may never refer
to the same value. The motivation is again to prevent non-
identical atoms in the condition from matching to the same
atom in the observation. There is no background theory.

When covering, a separate classifier is created for each
action a ∈ A(s) with the action part set to a, the condi-
tion part set to the current observation, and the background
knowledge part initially empty. Then the classifier is gener-
alised so that each distinct block constant has a 40% prob-
ability of having all its occurrences replaced with a block
variable not occurring in the classifier already.

The mutation operation either generalises by replacing all
occurrences of a selected block constant with a new block
variable, or it specialises by replacing all occurrences of a
selected block variable with a block constant not contained
already in the expression. When selecting a term for re-
placement, each distinct constant and variable has an equal
probability of being chosen.

A classifier cl1 can be subsumed by cl2 only if their ex-
pressions are identical or are identical with the exception
that each occurrence in cl1 of a particular block constant is
replaced in cl2 with the same block variable, call it A, and
no other block constant in cl1 maps to A in cl2.

The system was trained for 10,000 episodes. During each
episode the system was initially presented with a randomly
generated start state using the method described in [19]. If
the start state happened to be a goal state then a new start
state was generated. The episode continued until the task

1824

A.
0 2000 4000 6000 8000 10000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Episode

FOXCS (/20)
Optimal (/20)
Population size (/N)

B.
0 2000 4000 6000 8000 10000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Episode

FOXCS (/20)
Optimal (/20)
Population size (/N)

Figure 3: The system performance (solid line) and pop-

ulation size (dashed line) for A) stacking, and B) un-

stacking in a blocks world with 7 blocks. The perfor-

mance of an optimal algorithm (dash-dot line) is given

for comparison. The population size is the number of

macroclassifiers divided by N (2,000). Results are aver-

aged over 10 separate runs.

was complete or an upper limit on the number of steps taken
was reached, which was set to 100. On each step the system
received an immediate reward of -1. At the beginning of
training the population was empty and initially created us-
ing covering. The initial classifier parameters were assigned
to a random Gaussian with mean -0.1 and standard devi-
ation 0.01 for prediction, p, and mean 0.01 and standard
deviation 0.001 for error, ε, and fitness, F . Values for the
system parameters were set as follows: N = 2000, ε = 10%,
α = 0.1, β = 0.1, ε0 = 0.01, γ = 0.9, ν = 5, θga = 50,
µ = 0.3, θsub = 20, θdel = 20, δ = 0.1.

6.2 Results
The system performance and population size during train-

ing is shown in figure 3 for both stacking and unstacking. Af-
ter every 100 training episodes, all learning and exploratory
behaviour is switched off, and the performance of the current
population of rules is measured over 25 evaluation episodes
that start from randomly generated initial states. The per-
formance measure is the average number of steps taken to
reach the goal state. For both tasks the performance is quite
poor in the early stages of training up to about 500 episodes,
then performance improves rapidly until 3,000 episodes or
so, after which it levels off until near optimal performance is
attained at about 7,000 episodes. Inspection of evaluation
episodes revealed that the initial poor performance was due

* 72 mv(A, F)← cl(A), cl(B), cl(F), on fl(B), on fl(C), on fl(G),
on(A, G), on(D, E), on(E, C), on(F, D)

* 72 mv(D, B)← cl(B), cl(D), on fl(D), on fl(E), on(A, F),
on(B, G), on(C, E), on(F, C), on(G, A)

* 69 mv(E, B)← cl(B), cl(D), cl(E), cl(F), on fl(A), on fl(C),
on fl(D), on fl(F), on(B, G), on(E, C), on(G, A)

* 67 mv(C, F)← cl(B), cl(C), cl(F), cl(G), on fl(B), on fl(C),
on fl(E), on fl(G), on(A, D), on(D, E), on(F, A)

* 67 mv(A, B)← cl(A), cl(B), cl(C), on fl(D), on fl(E), on fl(F),
on(A, D), on(B, G), on(C, F), on(G, E)

* 64 mv(F, D)← cl(D), cl(F), on fl(E), on fl(G), on(A, E),
on(B, G), on(C, B), on(D, C), on(F, A)

* 64 mv(E, F)← cl(E), cl(F), on fl(A), on fl(D), on(B, G),
on(C, D), on(E, A), on(F, B), on(G, C)

* 61 mv(G, D)← cl(B), cl(D), cl(G), on fl(B), on fl(E),
on fl(G), on(A, F), on(C, A), on(D, C), on(F, E)

* 58 mv(C, B)← cl(B), cl(C), cl(E), on fl(A), on fl(E),
on fl(G), on(B, D), on(C, F), on(D, G), on(F, A)

* 46 mv(F, A)← cl(A), cl(C), cl(D), cl(F), on fl(B), on fl(E),
on fl(F), on fl(G), on(A, B), on(C, E), on(D, G)

41 mv fl(A)← cl(A), cl(B), on fl(B), on fl(F), on(A, D),
on(C, E), on(D, C), on(E, G), on(G, F)

40 mv(C, G)← cl(A), cl(C), cl(G), on fl(A), on fl(B),
on fl(G), on(C, E), on(D, F), on(E, D), on(F, B)

40 mv(C, D)← cl(C), cl(D), on fl(D), on fl(G), on(A, G),
on(B, E), on(C, B), on(E, F), on(F, A)

* 39 mv(A, F)← cl(A), cl(B), cl(C), cl(E), cl(F), on fl(A),
on fl(B), on fl(D), on fl(E), on fl(G), on(C, D), on(F, G)

34 mv fl(F)← cl(D), cl(F), cl(G), on fl(C), on fl(D),
on fl(G), on(A, E), on(B, A), on(E, C), on(F, B)

33 mv(B, D)← cl(A), cl(B), cl(D), on fl(B), on fl(C),
on fl(D), on(A, E), on(E, F), on(F, G), on(G, C)

26 mv fl(E)← cl(A), cl(E), on fl(B), on fl(G), on(A, C),
on(C, D), on(D, F), on(E, B), on(F, G)

22 mv fl(C)← cl(C), cl(F), on fl(A), on fl(D), on(B, G),
on(C, E), on(E, D), on(F, B), on(G, A)

8 mv(G, F)← cl(D), cl(F), cl(G), on fl(C), on fl(D),
on fl(G), on(A, E), on(B, A), on(E, C), on(F, B)

5 mv(C, E)← cl(B), cl(C), cl(d), cl(E), cl(F), on fl(A),
on fl(B), on fl(C), on fl(d), on fl(E), on(F, G), on(G, A)

5 mv(D, C)← cl(A), cl(C), cl(D), cl(E), cl(g), on fl(A),
on fl(B), on fl(D), on fl(E), on fl(g), on(C, F), on(F, B)

* 5 mv(D, C)← cl(A), cl(C), cl(D), cl(E), cl(G), on fl(A),
on fl(B), on fl(D), on fl(E), on fl(G), on(C, F), on(F, B)

4 mv(B, G)← cl(B), cl(C), cl(d), cl(G), on fl(B), on fl(d),
on fl(E), on fl(G), on(A, F), on(C, A), on(F, E)

1 mv(D, C)← cl(a), cl(C), cl(D), cl(E), cl(G), on fl(a),
on fl(B), on fl(D), on fl(E), on fl(G), on(C, F), on(F, B)

1 mv(C, g)← cl(A), cl(C), cl(g), on fl(A), on fl(B),
on fl(g), on(C, E), on(d, F), on(E, d), on(F, B)

1 mv(A, C)← cl(A), cl(C), cl(e), cl(F), on fl(A), on fl(B),
on fl(F), on fl(g), on(C, D), on(D, g), on(e, B)

Table 4: The sample of the population with perfect ac-

curacy after 10,000 episodes of stacking, ordered by nu-

merosity. In the first column an asterisk “*” indicates

maximally general classifiers. The second column gives

the numerosity values.

to cyclic behaviour, which would only terminate when the
100 step limit was reached.

The average population size rises very quickly to about
0.75 × 2, 000 = 1, 500 macroclassifiers and subsequently de-
creases, at first sharply and then more gradually, to about
800 and 600 for stacking and unstacking respectively. Again,
the decrease in population size is expected from the replace-
ment of specific classifiers with more general ones in the
accurate portion of the population.

To assess the level of generality attained, the final popula-
tion was inspected to determine if it contained the minimum
number of classifiers required to cover all states while still
preserving optimal performance. For blocks worlds with 7
blocks the minimal cover is 14 for both tasks, although there
are several different possible minimal covers. In all training
runs observed, minimal or near minimal covers evolved. The

1825

near minimal covers contained at least 12 classifiers and cov-
ered 99.9% (for stacking) or 86.5% (for unstacking) of the
total state space. Out of the minimal or near minimal cov-
ers evolved, about 10 classifiers would usually be the highest
ranked by numerosity, with most of the others not far be-
hind. The near minimal cover evolved for stacking during
one arbitrarily selected run is shown in table 4; limited space
prevents the inclusion of a similar table for unstacking. We
conclude that for stacking and unstacking, the generalisa-
tion behaviour of Fox-cs is again consistent with Wilson’s
generality hypothesis, as far as can be determined from the
classifiers that produce optimal behaviour.

7. CONCLUSION
We presented a new Xcs derivative, Fox-cs, where the

bit-string classifiers are replaced by Horn clauses in first
order logic. The system was able to attain near optimal
performance at tasks in two relational domains, poker and
blocks world, that would be difficult for systems using at-
tribute value languages to represent. In addition, repeated
inspection of the system’s population showed that, in line
with Wilson’s generality hypothesis, given sufficient train-
ing maximally general classifiers evolved consistently in the
portion of the population that produced optimal behaviour.
This finding is obviously valuable for Fox-cs, but its wider
significance is that it suggests the validity of the generality
hypothesis is not conditional upon implementing Xcs with
bit-string classifiers and a genetic algorithm.

Future work on Fox-cs will focus on evolving classifiers
that accurately generalise over different payoff levels. For ex-
ample, recall that the optimal unstack policy is to place any
clear block onto the floor if it isn’t already there, and the op-
timal stack policy is to place any clear block onto the highest
block. These policies give rise to generalisations that apply
over different payoff levels, but multi-payoff level generalisa-
tions are not supported by Xcs or the traditional learning
classifier system framework. Our approach will evolve a sec-
ondary population of classifiers whose prediction parameters
estimate optimality rather than payoff.

8. REFERENCES
[1] M. Ahluwalia and L. Bull. A genetic

programming-based classifier system. In Banzhaf et al.
[2], pages 11–18.

[2] W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon,
V. Honavar, M. Jakiela, and R. E. Smith, editors.
GECCO’99: Proceedings of the Genetic and
Evolutionary Computation Conference. Morgan
Kaufmann, 1999.

[3] H. Blockeel and L. D. Raedt. Top-down induction of
first-order logical decision trees. Artificial Intelligence,
101(1–2):285–297, 1998.

[4] H. Blockeel, L. D. Raedt, N. Jacobs, and B. Demoen.
Scaling up inductive logic programming by learning
from interpretations. Data Mining and Knowledge
Discovery, 3(1):59–93, 1999.

[5] L. B. Booker. Representing attribute-based concepts
in a classifier system. In G. J. E. Rawlins, editor,
Proceedings of the First Workshop on Foundations of
Genetic Algorithms (FOGA91), pages 115–127,
San-Maeto, 1991. Morgan Kaufmann.

[6] L. Bull and T. O’Hara. Accuracy-based neuro and
neuro-fuzzy classifier systems. In GECCO-2002:

Proceedings of the Genetic and Evolutionary
Computation Conference, pages 905–911. Morgan
Kaufmann, 2002.

[7] M. V. Butz and S. W. Wilson. An algorithmic
description of XCS. Soft Computing, 6(3–4):144–153,
2002.

[8] S. Dz̆eroski, L. D. Raedt, and K. Driessens. Relational
reinforcement learning. Machine Learning,
43(1–2):7–52, 2001.

[9] D. B. Fogel. Evolutionary Computation: Toward a
New Philosophy of Machine Intelligence. IEEE Press,
1995.

[10] J. H. Holland. Escaping brittleness: the possibilities of
general-purpose learning algorithms applied to parallel
rule-based systems. In R. S. Michalski, J. G.
Carbonell, and T. M. Mitchell, editors, Machine
Learning, an Artificial Intelligence Approach, pages
593–623, Los Altos, California, 1986. Morgan
Kaufmann.

[11] W. V. Laer. From Propositional to First Order Logic
in Machine Learning and Data Mining. PhD thesis,
Katholieke Universiteit Leuven, 2002.

[12] P. L. Lanzi. Extending the representation of classifer
conditions, part II: From messy codings to
S-expressions. In Banzhaf et al. [2], pages 345–352.

[13] P. L. Lanzi, W. Stolzmann, and S. W. Wilson, editors.
Learning Classifier Systems: from Foundations to
Applications. Springer-Verlag, 2000.

[14] S. Muggleton. Inductive Logic Programming. In The
MIT Encyclopedia of the Cognitive Sciences
(MITECS). Academic Press, 1992.

[15] J. R. Quinlan. Learning logical definition from
relations. Machine Learning, 5(3):239–266, 1990.

[16] J. D. Schaffer, editor. Proceedings of the Third
International Conference on Genetic Algorithms, San
Mateo, CA, 1989. Morgan Kaufmann.

[17] D. Schuurmans and J. Schaeffer. Representational
difficulties with classifier systems. In Schaffer [16],
pages 328–333.

[18] L. Shu and J. Schaeffer. VCS: Variable classifier
system. In Schaffer [16], pages 334–339.

[19] J. Slaney and S. Thiébaux. Blocks World revisited.
Artificial Intelligence, 125:119–153, 2001.

[20] P. Tadepalli, R. Givan, and K. Driessens, editors.
Proceedings of the ICML’04 Workshop on Relational
Reinforcement Learning, 2004.
http://eecs.oregonstate.edu/research/rrl/index.html.

[21] C. Thornton. Truth from Trash: How Learning Makes
Sense. The MIT Press, 2000.

[22] S. W. Wilson. Classifier fitness based on accuracy.
Evolutionary Computation, 3(2):149–175, 1995.

[23] S. W. Wilson. Generalization in the XCS classifier
system. In Genetic Programming 1998: Proceedings of
the Third Annual Conference, pages 665–674,
University of Wisconsin, Madison, Wisconsin, USA,
1998. Morgan Kaufmann.

[24] S. W. Wilson. Get real! XCS with continuous-valued
inputs. In Lanzi et al. [13], pages 209–222.

1826

