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ABSTRACT rithm combines elements of both Genetic Algorithms (GA)

This paper shows that a novel hybrid algorithm, Breeding
Swarms, performs equal to, or better than, Genetic Algo-
rithms and Particle Swarm Optimizers when training recur-
rent neural networks. The algorithm was found to be robust
and scale well to very large networks, ultimately outperform-
ing Genetic Algorithms and Particle Swarm Optimization
in 79 of 80 tested networks. This research shows that the
Breeding Swarm algorithm is a viable option when choosing
an algorithm to train recurrent neural networks.

Categories and Subject Descriptors

1.2.8 [Problem Solving, Control Methods, and Search]:
Heuristic methods; F.1.1 [Models of Compuation]: Self-
modifying machines—Recurrent Neural Networks

General Terms
Algorithms

Keywords

Breeding Swarms, Particle Swarm Optimization, Genetic
Algorithms, Recurrent Neural Networks

INTRODUCTION

Recurrent Neural Networks (RNN) are networks of neu-
rons with feedback connections and are computationally more
powerful than standard feedforward neural networks. In
principle, RNN can implement almost any arbitrary sequen-
tial behavior. Today, recurrent neural networks are being
used in a wide variety of applications including time-series
prediction, speech recognition, music composition [5,8,15].
However, training RNN to perform a certain task is known
to be a very difficult problem. Currently no ideal training
algorithm exists.

In this paper we present a novel hybrid algorithm, Breed-
ing Swarms (BS), to train RNN. The Breeding Swarms algo-
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and Particle Swarm Optimizers (PSO) to form a more ro-
bust algorithm. The goal is to train a strongly connected
recurrent network that produces periodic behavior similar
to that seen in biological neurons. The algorithm is tested
on a variety of different network topologies, ranging from
small networks with 8 neural connections, to large networks
with 6723 neural connection.

The next section discusses previous research and gives an
overview of the standard GA and PSO models. Section 3
presents the Breeding Swarm model developed for this re-
search. Section 4 describes the RNN model used, the test
problem and test parameters. The final two section discuss
the results of the experiments and presents some conclu-
sions.

2. BACKGROUND

RNNs are NNs in which nodes in the ‘later’ layers of the
network may feed back to nodes in ‘earlier’ layers. RNNs
have several significant features missing from feedforward
NNs. Feedforward NNs are limited to input vectors of fixed
dimension; data received in a more general format may need
extensive preprocessing [9]. A typical example of this differ-
ence occurs in time series data. A feedforward NN is limited
to looking at a window of data of fixed size, determined by
the number of input nodes. Associations in the data that
extend beyond this window cannot be found by the NN. In
contrast, a RNN’s recurrent connections allow the network
to 'store’ information received earlier by feeding it back to an
earlier layer of the network. Thus, the RNN’s calculations
are not limited by its input window.

Traditional neural network (NN) training algorithms, such
as back propagation, are based on gradient descent. They
systematically and incrementally reduce the output error.
Although gradient descent approaches are very effective for
a wide range of problems, they are generally restricted to
finding local minimum and may get stuck in flat regions of a
search space. In such cases the typical recourse is to restart
the algorithm from a new random location. In contrast pop-
ulation based searches are not restricted to a local search and
can easily move across flat regions. However, they tend to be
slower and so are only appropriate for particularly difficult
problems.

Unfortunately, RNNs are very difficult to train using gra-
dient descent based approaches. First, the additional con-
nections greatly expand the overall search space making lo-
cal minima and flat regions much more likely. Second, gra-



dient decent training requires 'unfolding’ the network. To
train a network in which a particular input influences the
network (through the recurrent connections) N time steps
into the future requires training the network as if it were a
feedforward network with N times as many layers [9]. This
greatly increases the time required for training and, more
importantly, the difficulty of training the RNN.

Population based approaches do not suffer these draw-
backs. Because they are performance (fitness) based no un-
folding is required. Furthermore they are much better suited
to the complex search spaces created by RNNs. There have
been numerous successful examples of using evolutionary ap-
proaches to train RNNs [2,7,11,14,16]. However, most have
either evolved the topology and weights or used a hybrid
algorithm that evolved the topology and used a local search
or gradient descent search for the weights.

In previous work, a GA and PSO were tested and com-
pared when evolving the weights for a fixed topology RNN
[17]. Both the GA and PSO were successful in evolving
RNNs to produce a periodic output in response to a fixed
input signal.

In this research we chose to use fixed topologies and only
evolve the weights of the RNN. A fixed topology makes com-
parisons to Genetic Algorithms and Particle Swarm Opti-
mizers simpler. In addition fixed topologies also allows us
to use a more typical representation and standard operators.

2.1 Genetic Algorithms

Genetic algorithms were first introduced by Holland in
the early 1970’s [10] and have been widely successful in op-
timization problems.

A real-valued generational Genetic Algorithm(GA) is used
in these experiments. The GA uses a chromosome consist-
ing of real values. The two best individuals are copied into
the next generation (elitism). Tournament selection is used,
with a tournament of size 2. The initial weights were ran-
domly chosen in the range [—0.5,0.5]. Gaussian mutation
was used, with mean 0.0 and variance reduced linearly each
generation from 0.7 to 0.4. Each weight in the chromosome
has probability of mutation 0.1.

The crossover operator chosen for use in this experiment
was blended crossover (BLX-a) [6]. In blended crossover,
two parents are selected using some selection scheme. Each
gene in the offspring is then calculated by randomly choosing
a position in the range [min; — A-a : maz; + A - a]. Where
min; = min(z;, yi), maz; = mazr(z;, yi) and A = |z; — ys.
In this experiment o was chosen to be 0.1. The crossover
rate is 0.6.

2.2 Particle Swarm Optimizer

One of the first implementation of particle swarm opti-
mizers(PSO) was to train neural networks. As described
by Eberhart and Kennedy, the PSO algorithm is an adap-
tive algorithm based on a social-psychological metaphor; a
population of individuals (refereed to as particles) adapts
by returning stochastically toward previously successful re-
gions in the search space and is influenced by the successes
of their previous best results and the global best result [13].

A standard particle swarm optimizer was used to train
the recurrent neural network. The PSO consists of many
particles/individuals, where each particle keeps track of its
position, velocity, best position thus far, and current fitness.
The position and velocity vectors refer to the particle’s posi-
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tion and velocity within the search space, they are real val-
ued vectors, with one value for each network weight. Each
particle also keeps track of its current fitness (analogous to
population members in GA), which is obtained by evaluat-
ing an error function at the particle’s current position. The
best fitness value thus far is retained as well as the particles
position at that fitness value.

During each generation every particle is accelerated to-
ward the particles previous best position and the global best
position. This is achieved by calculating a new velocity term
for each particle based on its current velocity, the distance
from its previous best position, and the distance form the
global best position. An inertia weight, reduced linearly
each generation, is multiplied by the current velocity and
the other two components are weighted randomly to pro-
duce the new velocity value for this particle, this in turn
affects the next position of the particle during the next gen-
eration. Thus, the governing equations are:

G(t) = w-di(t—1)+ap - & - 1)
Feapa(py — Tt — 1)) (1)
zi(t) = &t —1)+0i(t) (2)

Where, x; is particle i’s position vector, v; is particle i’s
velocity vector, p; is particle i’s previous best position vector
and py is the global best particle’s position vector. The
parameter w is the inertia weight. Variables ci,c2, ¢1 and
(2 are social parameters and random numbers in the range
[0.0,1.0], respectively.

3. THE BREEDING SWARM MODEL

Both Angeline and Eberhart have suggested that a hybrid
combination of the GA and PSO models could produce a
very effective search strategy [1,4]. Our goal is to introduce
an adjustable hybrid GA/PSO model. Our results show that
with the correct combination of GA and PSO, the hybrid can
outperform, or perform as well as, both the standard PSO
and GA models.

The hybrid algorithm combines the standard velocity and
position update rules of PSOs with the ideas of selection,
crossover and mutation from GAs. An additional parameter,
the breeding ratio (¥), determines the proportion of the
population which undergoes breeding (selection, crossover
and mutation) in the current generation. Values for the
breeding ratio parameter range from (0.0:1.0).

In each generation, after the fitness values of all the in-
dividuals in the same population are calculated, the bot-
tom (N - ¥), where N is the population size, are discarded
and removed from the population. The remaining individ-
ual’s velocity vectors are updated, acquiring new informa-
tion from the population. The next generation is then cre-
ated by updating the position vectors of these individuals
to fill (V- (1 — ¥)) individuals in the next generation. The
(N - ¥) individuals needed to fill the population are selected
from the individuals whose velocity is updated to undergo
VPAC crossover and mutation and the process is repeated.
For clarity, the flow of these operations is illustrated in Fig-
ure 1 where k = (N - (1 — U)).

The crossover operator used here was developed to utilize
information available in the Breeding Swarm algorithm, but
not available in the standard GA implementation. The new
crossover operator, Velocity Propelled Averaged Crossover



Table 1: Table of parameters for GA, PSO and BS.

Parameter GA PSO BS
Population size 50 50 50
Max iterations 2000 2000 2000
Initial Range [-0.5,0.5] [-0.5,0.5] [-0.5,0.5]
Velocity Range [-1.0,1.0] N/A [—1.0,1.0]
Selection type elitism & tournament N/A tournament
Tournament size 2 N/A 2
Crossover rate 0.6 N/A N/A
Mutation Rate 0.1 N/A 0.1
Mutation Variance 0.7 — 0.4 N/A 1.0 — 0.0
Social N/A 2.0 2.0
Inertia N/A 0.7—04 0.7—04
Generation N 0ld Population social parameters are set to 2.0, inertia is linearly decreased
Rank P, Py Prt Py from 0.7 — 0.4. A maximum velocity (Vimaz)of £1 was
Ind. ? Ind. ? Ind. ? Ind. ? allowed.
The breeding ratio was set to an arbitrary 0.5, with the
{1l Discard expectation that the best results would be with an even
:M Tournament :>’VPACCmssover mix of the GA and PSO. However, this need not be the
igh Parents @ offspring case and other values for the breeding ratio may provide
— better results. All other parameters were kept consistent
with the implementations of GA and PSO to remove any
g {1 bias. Tournament selection, with a tournament size of 2,
e ~ ™ was used to select individuals as parents for crossover. The
[_IndP,_] [ Ind. P ] Ind. Py, [ Ind.Py | mutation operator used is Gaussian mutation, with mean

Generation N + 1 New Population

Figure 1: Flow of the Breeding Swarm Algorithm.

(VPAC), incorporates the PSO velocity vector. The goal is
to create two new child particles whose position is between
the parent’s position, but accelerated away from the parent’s
current direction (negative velocity) in order to increase di-
versity in the population. Equations 3 show how the new
child position vectors are calculated using VPAC. Towards
the end of a typical PSO run, the population tends to be
highly concentrated in a small portion of the search space,
effectively reducing the search space. With the addition of
the VPAC crossover operator, a portion of the population is
always pushed away from the group, increasing the diversity
of the population and the effective search space.

p1(wi) + p2(zs)

a(zi) = 50 — p1p1(vi)
ca(wi) = w—tpzpz(%) (3)

Where, c¢1(x;) and ci1(x;) are the positions of child 1 and
2 in dimension i, respectively. pi(z;) and p2(x;) are the
positions of parents 1 and 2 in dimension i, respectively.
p1(vi) and p2(v;) are the velocities of parents 1 and 2 in
dimension %, respectively. ¢ is a uniform random variable in
the range [0.0:1.0]. The child particles retain their parent’s
velocity vector, c1(¥) = p1(¥),c2(¥) = p2(¥).The previous
best vector is set to the new position vector, restarting the
child’s memory, c1(p) = p1(Z),c2(p) = p2(Z).

The velocity and position update rules remain unchanged
from the standard inertial implementation of the PSO. The
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0.0 and variance reduced linearly each generation from 1.0
to 0.0. Each weight in the chromosome has probability of
mutation 0.1. Parameters used are summarized in Table 1

4. RECURRENT NEURAL NETWORK
4.1 Network Architecture

The recurrent neural network model chosen for this re-
search is a discrete-time, multi-layered and strongly con-
nected recurrent neural network. At each time step, ac-
tivation propagates through one layer of connections at a
time until the output layer is reached and the output of the
network as a whole is determined for that time step. The
network is strongly connected in that every hidden node is
connected to every other node (including itself) in the net-
work, except input nodes, regardless of which layer the node
is in. In this experiment the network contains a single input
node and output node. A sample network with two hidden
layers and two nodes per hidden layer is shown in Figure 2.
The number of hidden layers and nodes per hidden layer is
fixed for each experiment, but different configurations are
tested in separate experiments.

Each node uses a symmetric sigmoidal activation func-
tion:.

2

f(ﬁ):m—l (4)

Where ) is the slope of the symmetric sigmoidal function.
For this experiment A is set to 1.

At each time step the input node’s activation level is set.
Then for each hidden layer the activation level of each node
in that layer is calculated. The activation levels for a layer
are updated to the new values only after all of the activation
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Figure 2: A sample strongly connected recurrent
network with two hidden layers and two nodes per
hidden layer.

Algorithm 1 Procedure for activating the recurrent neural
network
Set all node values to zero.
for Each time step (1 to 100) do
Set the input node value.
for Each hidden layer do
for Each hidden node in the layer do
Calculate the activation level
end for
for Each hidden node in the layer do
Update the activation level
end for
end for
Calculate the output node’s activation level
end for
Evaluate the training error

levels for that layer have been calculated. Then the process
repeats for the next hidden layer. The algorithm for acti-
vating the recurrent neural network is given in Algorithm
1.

Effectively the activation levels of neurons in the same
hidden layer are updated simultaneously and the activation
levels of layers as a whole and updated sequentially.

4.2 Test Problem

A single biological neuron is capable of producing a wide
variety of complex output patterns, for example pulsed out-
puts, on-responses and off-responses [3,12,18]. A recurrent
neural network is needed in order to produce these complex
output patterns from constant inputs.

The test problem chosen for this research is to evolve a
multi-layer strongly connected recurrent neural network that
has properties similar to those of biological neurons [19].
Our goal is to evolve a network that produces a simple pulsed
output when a constant activation ’voltage’ is applied. The
test spans 100 time steps where the activation ’voltage’ is
turned on’ at time step 10 and ’turned off’ at time step 90
(i.e activation of the input node is set to 1 from time steps
10 to 90 and 0 at all other times). The output is a simple
pulsed output with amplitude 1 and period 20, from time
steps 10 to 90 (See figure 3).

There is no source of periodicity within the network, nodes,
or input. Thus, the only way to produce the desired output
pattern is to use the recurrent connections within the net-
work. Further, the desired output period is fairly long (20
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Figure 3: Expected target output signal for evolved

network.

time steps). This means that typical deterministic training
algorithms, such as those based on gradient descent, would
find this problem almost impossible to solve. A gradient
based algorithm would require unfolding the network at least
20 steps. Using a recurrent neural network reduces the size
of the network to a more manageable size.

The error function used in these experiments is:.

100
E =Y [(ti—0:)* + 2 (ts; — 0s:)°] (5)
i=1

where, t; is the desired or target response value at time
step 7 and o; is the actual response of the network at time
step ¢. The values ts; and os; represent the target and actual
slope of the response at time step ¢. Where ts; = t;—t;—1 and
0s; = 0;—0i—1. The slope component of the error function is
meant to help steer the training towards periodic behavior.

4.3 Test Parameters

In order to verify that the results obtained using Breeding
Swarm are acceptable, we compare the results to those ob-
tained using both Genetic Algorithms and Particle Swarm
Optimizers.

Of particular interest is how well the Breeding Swarm
algorithm scales as the size of the neural network increases.
We experiment with networks with a variety of hidden layers
and nodes per hidden layer. In particular the number of
hidden layers ranged from 1 to 9 and the number of nodes
per hidden layer also ranged from 1 to 9 for a total of 80
different networks (excluding network size of 1 layer and 1
node per layer). For each network we ran 50 separate trials.

Each algorithm uses a vector of real values to represent the
network weights. Each real value corresponds to a weight
between one pair of nodes, or between a node and itself.
The vector size varies depending on the size of the network.
For a network with L hidden layers and N nodes per hidden
layers there are a total of (LN)?+2LN weights, each of the
LN hidden nodes is connected to every other hidden node
and the input and output nodes are each connected to LN
nodes. Thus, the vector consists of (LN)?+2LN real values.

Each algorithm run for 2000 generations on a population
size of 50 particles/individuals. The initial weights were
randomly chosen in the range [-0.5,0.5]. The velocity vector,
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where applicable, was allowed to explore values in the range
of [-1.0,1.0].

It is worth noting that no special care was taken in as-
signing the GA, PSO, or BS parameters and result shown
are without optimizing the algorithms for this problem.

5. RESULTS

A t-test for significance was performed on each pair of
algorithms (a = 0.05). The PSO algorithm was found to
perform significantly better than the GA algorithm in 73 of
the 80 networks. The BS algorithm performed significantly
better than the GA algorithm in 75 of 80 networks. The BS
algorithm performed significantly better than the PSO algo-
rithm in 47 of 80 networks. The PSO algorithm significantly
outperformed the BS algorithm on 1 network (8 layers with
2 nodes per layer). The GA algorithm never outperformed
the PSO or BS algorithm. In 79 of 80 network the BS algo-
rithm was able to find a single better network than either
the GA or PSO algorithms.

Figure 4 shows the average single best error of each algo-
rithm by node count (the number of nodes in the network).
The BS algorithm consistently performs much better than
the other algorithms as the number of nodes increases. For
Breeding Swarms the performance as the network size in-
creased, remained almost constant, the error increased at a
much slower rate than either GA or PSO.

Figure 5 shows the average mean error of each algorithm
by node count. Again, the BS algorithm consistently outper-
forms the other algorithms as the number of nodes increases.
In particular the BS algorithm mean error performed at an
almost constant level, regardless of network size, up to a
network size of 42 nodes where the mean began to increase.
These results show that on average the BS algorithm will
give better results than either GA or PSO.

Figure 6 shows the average single worst error of each al-
gorithm by node count. The worst error found by the BS
algorithm remained almost constant. In smaller networks
the PSO algorithm’s worst error performed better than ei-
ther GA, or BS. In general the GA performed poorly on all
network sizes.

Figures 7 through 9 show mean error values and best out-
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puts for networks of sizes 5X1, 6X7 and 9X9 respectively.
Figures 7(a), 8(a) and 9(a) show the average best error of
each algorithm over time. Each graph shows that the BS
algorithm behaves differently than both the GA and PSO.
The GA and PSO algorithms behavior resembles that of an
exponential, the fastest improvement occurs at the begin-
ning of a run and levels off. Where in the BS the quickest
improvement occurs towards the end of a run. This could
be contributed to the VPAC crossover operator actively dis-
persing the population early in the run, maintaining diver-
sity, and collapsing the population on a solution at the end
of a run. During a typical BS run the velocity term steadily
decreases. At the beginning of the run the velocity term is
large and the population is pushed out, due to the VPAC
operator, increasing diversity. Towards the end of a run
the velocity term becomes small and the VPAC operator
searches the mean of its parents, collapsing the population
to a solution.

Figures 7(b), 8(b) and 9(b) show the best output obtained
from the respective networks, it is clear that the BS algo-
rithm finds a substantially better network than either the
GA, or PSO algorithm. The Breeding Swarm algorithm was
able to find solutions with higher peaks that more closely
matched the desired output (smaller error). The GA algo-
rithm was unable to find a network that had periodic be-
havior in the 9X9 network.

6. CONCLUSIONS

Training RNN to perform a certain task is a very difficult
problem. Currently no ideal training algorithm exists. This
research shows that the Breeding Swarms algorithm is a vi-
able option when choosing an algorithm to train recurrent
neural networks. The BS algorithm produced as good as,
or better, results than the comparison algorithms in 79 of
80 test cases. As the network size increased the breeding
swarm algorithm was able to scale better than the compar-
ison algorithms, maintaining significantly better results for
larger networks.

While the test problem chosen here is to train a recurrent
neural network, the BS algorithm is a general population
based algorithm that can be used to evolve solutions to a
variety of problems. Future work includes analysis of the
algorithm parameters and their effect on the behavior of the
algorithm.

An additional advantage of the Breeding Swarm algorithm
may be the ability to evolve network topologies and weights
simultaneously, a trait not available in the standard PSO
implementation. Through the crossover operator, a particle
may be allowed to add new nodes or remove nodes, such as
in GAs. Further research will look into this possibility.
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