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ABSTRACT 
Building upon the interactive inversion method introduced by 
Ashburn and Bonabeau (2004), we show how to dramatically 
improve the results by exploiting modularity and by letting the 
computer learn user preferences.  

Categories and Subject Descriptors 
I.2.6 [Learning], I.2.8 [Problem Solving, Control Methods, and 
Search] 

General Terms 
Algorithms, Economics. 

Keywords 
Agent-based modeling, interactive evolution. 

1. INTRODUCTION 
There have been a number of attempts over the last decade to 
model financial markets with agent-based modeling (ABM) 
[1,4,6,9,14,15,16,17,19]. In ABM, systems are modeled as 
collections of autonomous decision-making entities, called agents. 
Each agent individually assesses its situation and makes decisions 
based upon a set of rules. Agents may execute various behaviors 
appropriate for the system they represent –for example, buying or 
selling. Repetitive interactions between agents are a feature of 
ABM, which relies on the power of computers to explore 
dynamics out of the reach of pure mathematical methods [7]. The 
power of ABM lies in their ability (1) to let the modeler describe 
behavior in very natural terms and (2) to capture emergent 
phenomena. A financial market seems to be a natural fit for ABM. 
The dynamics of the stock market results from the behavior of 
many interacting agents, leading to emergent phenomena that can 
be understood using a bottom-up, ABM approach.  

 While ABM is useful in producing market-like 
aggregate-level patterns from individual-level rules, the main 
issue in financial markets ABM is calibration and validation: how 

can one evaluate the quality of a model, from both a structural 
perspective (how sound is the model?) and from an econometric 
perspective (how well does that model reproduce the data 
quantitatively?). In practice, calibration and validation of 
financial markets ABM are often neglected. One reason is that the 
use of purely numerical scoring methods to evaluate data fit and 
guide the search for explanatory models constrains the search path 
so dramatically that no good fitting model is found or the best fit 
is generated by a low-plausibility model. In many situations the 
fitness function for a model cannot be practically formulated 
mathematically. This problem can be overcome if one can allow 
more subjective factors to guide the search for “good” models, 
enabling ABM users to integrate financial economics expertise 
into their models.  

 Boschetti & Moresi [5,24] have proposed to replace the 
numerical evaluation of data fit by a subjective evaluation. A 
technique originally developed to generate “interesting” images 
and pieces of art [3,8,20,21,22] is used to perform model 
inversion by integrating subjective knowledge into the evaluation 
process. The technique (see [23] for a review) is a directed search 
evolutionary algorithm which requires human input to evaluate 
the fitness of a pattern (here, the fitness might be how well the 
model reproduces the data qualitatively) and uses common 
evolutionary operators such as mutation and crossover to breed 
the individual-level rules that produced the fittest collective-level 
patterns. Interactive evolutionary computation (IEC), as this 
technique is known, combines computational search with human 
evaluation [23]. 

 In this paper we present an application of IEC to 
financial markets ABM inversion. One example illustrates how 
IEC can be used to discover the parameters of an agent-based 
model of a financial market from aggregate observations. The 
user operates a visualization tool to navigate a parameter space 
using selection and variation operators. Parameter values define 
traders and their trading strategies which, in turn, generate a 
synthetic price history. The user’s goal is to find a combination of 
parameter values that can reproduce a target price history. The 
experiment utilizes a target price history from a market frenzy 
that occurred on the London Stock Exchange in September 2002. 
IEC is used in this case to obtain a qualitative fit. 

2. AGENT-BASED MODEL 
A simple model of a financial market is used in both experiments. 
Each model simulation includes its own order management and 
clearing mechanism (an order book), traders operating trading 
strategies, a market maker posting orders on the book which are 
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matched with traders’ orders, and a price history. At the end of 
each time step, after all trading and market-making, the arithmetic 
mean of the best bid and best ask is appended to a simulation’s 
price history. 
 

2.1 Order book 
The order book matches orders in a continuous double-sided 
auction. It holds and clears both limit orders and market orders, 
where clearing is the action of matching a bid with a same-priced 
ask and removing these from the book. Same-priced limit orders 
are matched with other limit orders or market orders. In the 
process of clearing, the size (number of shares) of each matched 
order is reduced by the amount of the smaller-size order. Orders 
with size zero are removed from the book. Upon order 
submission, the book immediately clears any and all clearable 
orders. Orders are characterized as follows: (i) Bid: an offer to 
buy; (ii) Ask: an offer to sell; (iii) Best bid: the highest bid; (iv) 
Best ask: the lowest ask; (v) Limit order: a bid or ask at a specific 
price or better; (vi) Market order: an offer to buy at the best ask or 
sell at the best bid. 

2.2 Traders 
At each time step, traders take turns trading according to their 
strategies. Traders trade once per time step, each trader submits 
only market orders, and traders’ strategies (described below) are 
based upon a set of initial conditions and the accumulated price 
history of the stock. In each time step, after each trader trade, the 
market maker trades. 

 Market maker. To ensure liquidity in the market, there 
is one market maker in each simulation, tightening the spread and 
maintaining order depth. The spread is the difference between the 
best bid and the best ask. When a trader trades, bids or asks are 
often cleared from the book, which widens the spread in a 
particular direction. Spread tightening is the action of the market 
maker adding bids if the trader had bought, or adding asks if the 
trader had sold, until the spread is a specific dollar amount. In our 
experiments, the market maker separates all its orders by $1 
increments, and attempts to maintain a spread of $1. Order depth 
refers to the number of uniquely-priced bids and asks that the 
market maintains on the book. This buffers trading and must be of 
a sufficient depth to handle all trading; several hundred orders 
suffice in our experiments. 

Traders in this model come in four flavors: 
fundamentalists, chartists, noise traders, and a whoops trader. 
Each has unlimited buying power, and unlimited shorting power 
(in the real world, shorting is betting that the stock is going down 
in value, using borrowed stock; covering is buying back the stock 
and returning it to the lender. For our purposes, shorting and 
covering are simply a different kind of selling and buying, 
respectively). Also, only one trade can be made per time step, per 
trader.  

 Fundamentalists. Fundamentalists calculate a “true 
value” of the underlying stock by averaging the price history a 
certain number of minutes back – a moving average of the form 

∑ −

=
= lr

rx xpT
where T is the true price, p is a historical price, r is 

the time of the most recently recorded historical price, and l is the 
number of time steps used in the computation. The trader then 

computes an upper threshold, U, and a lower threshold, L. Each is 
a percentage t away (50%=0.50) from the true price: )1( tTU +=  
and )1( tTL −= . Once the price action has passed through one of 
the thresholds, a number of time steps must pass (greater than the 
fundamentalist’s reaction time) before the fundamentalist is 
“awake” and able to trade. Once this reaction time threshold has 
been passed, the fundamentalist makes one trade per time step 
according to the rules: 

• Buy if LA ≤  and a long position is not held 

• Sell if TB ≥  and a long position is held  

• Short if UB ≥  and a short position is not held 

• Cover if TA ≤  and a short position is held  

where B is the best bid, and A is the best ask. The trader holds a 
long position if he has bought, and he no long holds it if he sells; 
likewise for the short side. Characteristically, a fundamentalist 
appears to anchor the price history and dampen volatility. 

 Chartists. Chartists’ trading is triggered by momentum 
– they trade in the direction of a trend when the trend is steep 
enough. The momentum M is computed: ( ) lppM lrr −= , where 
l is the number of time steps used in the calculation, pr is the most 
recent historical price, and pr-l is the price l time steps before pr. A 
chartist’s trading rules are: 

If the number of my previous trades is less than the maximum 
allowed, then: 

• Buy if )1( TpM r +≥  and the trader does not hold a 
long position  

• Sell if 0≤M  and the trader holds a short position Short 
if UB ≥  and a short position is not held 

• Short if )1( TpM r −≤  and the trader does not hold a 
short position 

• Cover if 0≥M  and the trader holds a short position 

where pr is the most recent historical price and T is the threshold 
(5%=0.05). Buying, selling, shorting, and covering each count as 
one trade. Characteristically, chartists appear to reinforce trends 
and enhance both volatility and waves. 

 Noise Traders. Noise traders either buy or sell with 
equal probability in each time step. Noise traders are meant to 
reflect the apparent randomness in the real markets and act to 
move the price action around, in effect “tripping” the strategies of 
the other traders. 

 Whoops Trader. The whoops trader places one 10,000-
stock order to buy at the market at 10:15am which represents the 
alleged trading mistake that happened on September 20, 2002 at 
10:10am. While the trading mistake is reported to have occurred 
at 10:10am [18], orders on the London Stock Exchange may take 
many minutes before they are observed by other traders who then 
may take minutes more to act on that information. Because our 
synthetic traders immediately see information and react just as 
quickly, the simulation time of the mistaken order is adjusted to 
10:15am. 
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Each simulation begins with the market maker quoting a best bid 
at $3820, best ask at $3821. All the market maker’s orders are in 
lots of 100, and each simulation is run for the duration of the real 
dataset – from 9:00am to 11:30am in 1-minute increments. 

3. INTERACTIVE EVOLUTION 
The IEC search method employs a genetic algorithm and a 
graphical user interface to facilitate the user acting as the fitness 
function. A small initial population of agent based models is 
generated with random parameter values. The resulting price 
histories are generated by running the models, and then shown to 
the human observer. The observer selects interesting patterns 
according to whatever objective and subjective criteria the 
observer may be using to visually compare candidates with the 
target. These selections are considered the fittest individuals of 
the generation. The user configures a set of operators - elitism, 
mutation, and crossover – which are used to produce a new 
generation of models from the user-selected “fittest” individuals 
in the previous generation. The new generation is then simulated 
and the resulting price histories are again presented to the 
observer. This procedure is iterated until interesting patterns 
emerge from the search that more closely match the target. Over 
multiple generations the population may converge toward the 
target.  
 

Figure 1. User Interface. 

3.1 User Interface 
The user interface, shown in Figure 1, is a critical component of 
the method, which depends crucially upon the user’s ability to 
evaluate visualizations of the candidate solutions [23] –obviously 
this method can only work if the population size is kept small and 
if interesting patterns emerge after a reasonably small number of 
generations. The user interface shows the price histories of each 
candidate model in the left window, each overlaid on top of the 
target price history. On the right are two controls panels: (1) the 
main IEC control panel configures the size of the left-hand 
visualization grid, toggles operators, controls the chance that a 

gene is mutated, and controls the proportion of crossover versus 
mutation; the evolve button produces the next generation; (2) the 
second control panel controls model drawing. 

3.2 Evolutionary Algorithm 
Genotype representation. Each model simulation and 

its price history can be considered a phenotype, generated from 
the set of trading strategies and their parameters used in the 
simulation (the genotype). The parameters of these strategies vary 
across genotype, and it is the composition of these genotypes that 
we are interactively evolving. The genotype of a model has genes 
that are numbers – initially random numbers. Each number codes 
for a specific aspect of the set of traders (how many of each kind 
of trader, parameters of each strategy) and has bounds specific to 
the aspect it codes for. For example, a gene that codes for the 
number of traders might be bounded between 10 and 100. The 
trading strategies of each trader are designed to make possible a 
wide variety of behaviors that can potentially produce the target 
pattern. The genotype of each simulation is composed of genes 
that are numbers that code for what are considered random 
variables – either how many of one kind of trader (the random 
variable is a constant in this case) or the α ’s and β ’s for a beta 
distribution. Random values drawn from the Beta distribution 
serve as specific parameters to traders. In this way, only α  and  
β  describe a distribution of values used to parameterize any 
number of traders, compressing the genotype. The Beta 
probability distribution has non-zero values and takes the form: 

( ) 11 )1()()()()( −− −ΓΓ+Γ= βαβαβα xxxp  
where x is real number in the interval [0,1], p(x) is the probability 
at x, and )(nΓ  is Euler’s gamma function. We chose the beta 
distribution for our purposes because it is a bounded distribution 
that can take many shapes, it is nicely parameterized by just α  
and β , and it is easily scaled to cover each variable’s legal 
bounds. Note also that a beta distribution with 1=α  and 1=β  
is equivalent to a uniform distribution. Alphas and betas are 
bounded between 1 and 100, and each parameter has an upper and 
lower bound for values drawn from this distribution which scales 
the corresponding beta distribution. Constants, α ’s, and β ’s 
comprise a genotype, and the parameter values drawn from these 
random variables and their bounds define the search space. The 
bounds and distributions for the parameters are defined as 
follows: 

 Fundamentalists: # of traders is a constant between 10 
and 50; Trade size, Reaction time, Moving average length and 
threshold percentage are all drawn from Beta distributions within 
bounds [100,500], [1,50], [20,100] and [0%,5%], respectively. 

 Chartists: # of traders is a constant between 10 and 100; 
Trade size, Maximum # of trades, Momentum look back and  
Momentum threshold percentage are all drawn from Beta 
distributions within bounds [100,1000], [1,200], [1,5] and 
[0.1%,1%], respectively. 

 Noise traders: # of traders is a constant between 1 and 
10; Trade size is drawn from a Beta distribution within bounds 
[100,200]. 
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Selection. Candidates are either selected or not, and 
non-selected candidates are discarded. The user may turn on and 
off each of three operators to produce next generation members - 
elitism, mutation, and crossover. Elitism is applied first; then 
crossover and mutation are performed on randomly chosen 
selected members to produce remaining members. The number of 
new members produced by crossover versus the number produced 
by mutation is a proportion chosen by the user. 

 Elitism. Selected candidates are copied to the new 
generation. 

 Mutation. The user controls the chance that each gene 
is mutated - between 0% and 100%. As the mutation algorithm 
iterates through each gene, a random number between 0.0 and 1.0 
is chosen. If that number is less than the mutation percentage 
(expressed as a decimal, 50% is 0.50), that gene is mutated to a 
new value within the bounds of that variable. Mutation occurs on 
each gene if rand<chance, where rand is a random number in the 
interval [0,1] and chance is the user-selected chance that a gene is 
mutated. New values for a given gene are chosen as follows:  
vn=min+rand*(max-min), where vn is the new value, min is the 
lower bound for this gene, max is the upper bound for this gene, 
and rand is a random number in the interval [0,1]. 

 Crossover. Double-point crossover chooses crossover 
points in a uniform random fashion and produces a new candidate 
by recombining two parent genotypes from among the selected 
candidates. 

 

4. EXPERIMENTS AND RESULTS 

4.1 Experiments 
A market frenzy is a large deviation from the efficient market 
hypothesis for a relatively short period time, usually triggered by 
an anomalous event such as a trading error, a glitch in the trade 
processing information system, a significant piece of news, etc. 
Although such events are unusual, they do happen. One example 
is the market frenzy that occurred on September 20, 2002 at the 
London Stock Exchange and lasted for about 20 minutes and 
generated losses on the order of £100M for some of the players 
[2]. The trade volume (£3.2B) of this 20-minute event was larger 
than the volume of an average trading day. According to [18], 
“the trade activity (trades/second) was so high that some 
computer systems failed to cope and prices of shares were 
delayed” – probably leading to an amplification effect. The event 
began at 10:10 am and within 5 minutes the FTSE100 index rose 
from 3,860 to 4,060. Within another few minutes, the index fell to 
3,755, before returning to a value slightly above its original level 
at the end of the 20 minutes (Figure 2).  
 Although Muchnik and Solomon [18] tell us that “it is 
believed that the event was triggered by a huge order (£1.2B) 
mistakenly submitted twice (or even three times) causing all trade 
participants to try to exploit the opportunity,” the exact course of 
events is not precisely known; the players don’t like to publicize 
their mistakes. The hypothesis that the event was triggered by a 
glitch is likely, given the return to a stable state, but according to 
various private sources the glitch is actually a combination of a 
trading error and an information system problem. In that context, 
our formulation of the problem we wish to address is: what is the 

nature of the initial trigger and what are the likely behaviors of 
the different players that can generate such a deviation from the 
market’s stationary behavior? Our model will assume that one 
large order is being submitted, producing the necessary trigger to 
push the market out of its stationary state “without affecting its 
fundamental dynamical parameters”, following Muchnik and 
Solomon’s [18] plausible assumption.  
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Figure 2. Top: FTSE 100 dynamics following a likely trading 
mistake on September 20, 2002. Bottom: From Muchnik and 
Solomon’s model [18] with a trend-dependent panic factor. 

Modified from [18]. 
 
The goal of IEC here is to determine the nature of the herding 
behavior that could produce the event. While Muchnik and 
Solomon [18] offer an elegant first-order explanation of the 
phenomenon (an oscillator model akin to that of a guitar string), 
their model produces several oscillations around the stationary 
level before stabilization (Figure 2), while in the real data there is 
only one oscillation before stabilization.  The IEC approach will 
be used to design a model that produces a better qualitative fit 
with the real data.  

4.2 Results 
It was possible to match the target price history qualitatively in an 
average of 10 generations, from a variety of starting populations. 
While “qualitative match” is an imprecise term, the characteristics 
we attempted to match are the amplitude, period, phase, and 
damping rate of the approximate wave – and of course the size, 
shape, and location of the price history. We matched reasonably 
well on each of these dimensions (Figure 3). The parameter 
values of the best solution are: 

Noise traders 
Number of traders (constant) = 8 

Trade size (beta distrib.): α=97.02, β=49.75 

1900



 
Chartists 

Number of traders (constant) = 27 
Trade size (beta): α=12.68, β=40.16 

Threshold % (beta): α=92.52, β=25.52 
Look back (beta): α=93.64, β=30.77 
Max trades (beta): α=41.28, β=73.28 

 
Fundamentalists 

Number of traders (constant) = 45 
Trade size (beta): α=55.01, β=59.92 

True price look back (beta): α=65.76, β=28.95 
Percent away (beta): α=27.3, β=28.24 
Reaction time (beta): α=99.35, β=83.8 

 

 
Figure 3. Best solution with data to be fitted (thick curve). 

 
It appears that chartists are responsible for the herding behavior 
(wave-form of the price action) and that nearly twice as many 
fundamentalists, submitting trades more than twice as big as 
chartists, are needed to dampen the effect of chartists. 
Fundamentalists use a roughly 60-minute moving average, have a 
±2.5% response envelope, and might be considered patient in 
waiting a half hour after a threshold cross before awakening. The 
chartists seem to be conservative, waiting an average of 4 minutes 
before assessing a trend and acting only when that trend is 
relatively steep – that is, an average of 0.75% growth per time 
step (-0.75% in the case of a down-trend). Chartists having a 
maximum number of trades around 65 may or may not make a 
difference; the number of chartists who reached their maximum 
was not recorded. It might be the case that because none of the 
beta distributions were very close to the edges of their possible 
ranges, that reasonable bounds were chosen for the variables. The 
beta distributions also seem to be quite “tight,” and we are 
tempted to conclude that narrow ranges tend to be most 
appropriate, but we are reminded that it is only when both α and β 
are very small that a beta distribution is not tight. It must be noted 
that while this best candidate appears to match that target 
exceptionally well, consider that some of the match is a result of 
random outcomes resulting from the noise trader and from 
parameters values being drawn randomly from beta distributions. 
Seeded with different random numbers, model simulations with 
the same parameters produce variety although they all exhibit 
similar qualitative features. 

5. GA vs IEC 
One of the first questions one may ask about the example 
described in the previous sections is, “why can’t a straight genetic 
algorithm come up with similar results in a short amount of 
time?”  The answer is not trivial. In fact, it is worth testing. In 
order to apply a GA with an automated rather than user-defined 
fitness function, one has to define one such fitness function. The 
easiest and most natural one here is simply the inverse of a fitting 

error function E= ( )( ) 21

0
21∑ =

− −N
t tt apN , where pt and at represent 

the model-predicted and actual price at time t, respectively. We 
used a simple GA, where the probability to be selected for each 
mutation or crossover operation is proportional to ( )0001.01 +E . 
Figure 4 shows the fittest phenotype the GA found after 50 
generations (top) together with a good match found with IEC. The 
error value for the fittest GA-discovered phenotype is 31.68, 
which is lower than the value obtained with IEC, 38.85. However, 
the phenotype discovered by the GA does not satisfy the 
requirements of the experiment, namely it does not match the 
amplitude and shape of the first wave and dampens so fast as to 
almost not exhibit the second wave. This result is not entirely 
surprising since these qualitative features were not built into the 
error function E and that is why GA could not "see" them but a 
human could. We repeated the experiment with GA more than 10 
times with different initial conditions but could not get a good 
match to the true price curve. E is not a good measure of 
performance in this experiment. 

Figure 4. Best solution with data to be fitted (thick curve). 
Top: GA best solution. Bottom: IE best solution. 

 

6. MODULARITY 
Another interesting aspect of IEC is the fact that users using IEC 
often find parts of a solution they like and end up selecting 
solutions that have such interesting parts. Because they are not 
given the opportunity to select only part of a solution, they have 
to select an entire solution. We tested the effectiveness of a 
modularity-based selection strategy. However, in the present 
example, the mapping from genotype to phenotype is “indirect”, 
in the sense that modules observed in the phenotype have no easy-
to-identify counterparts at the genotype level. To introduce 
modularity in a way that is relevant to the user, we divided each 
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phenotype (basically a time series) into 5 temporal modules of 
equal size. The user can select any number of modules from as 
many phenotypes as he wants. Each phenotype of the next 
generation is then evaluated by computing an error function Em 
with respect to each module m as: 

Em = ( )( ) 21

0
21∑ = +

− −L
i iio mpL , 

where L is the length of module m, o is the offset that sets the 
location of the chosen module on the phenotype, iop +  is the 
model-predicted price at time o+i, and mi is the model-predicted 
price that the user sets through the module he picks. This error 
function computes how much this phenotype conforms to this 
particular module. We discard a phenotype if Em is above a 
certain threshold T for all the modules at a certain location. The 
user can adjust T as another way of interacting with the system. 
While a too small T would make the system discard all 
phenotypes generated through evolutionary operators, a big 
threshold would not act as a good filter and would create 
phenotypes that do not match user's module selections. We found 
that T=75 worked well for this example. We tested the system 
with 10 random initial conditions. Figure 5 shows the result of 
this experiment in terms of the number of cases which could find 
a good match after a given number of generations. It is clear that 
MIE outperformed IE in this example. IE found a good match at 
generations 4, 9 (twice), 10, 11, 13, 14, 15, 18, and 49 (15 +/- 12 
generations) while MIE found a good match at generations 3 (3 
times), 7 (3 times), 9, 10, 15, and 16 (8 +/- 4.4 generations).  

Note that even though we used an analytical formula to 
filter phenotypes according to module settings, we always 
assumed that the true price history is unknown to the system and 
we have neither computed nor used the error function with respect 
to the true prices. 

 

 
 
 

 
Figure 5. Comparison of IEC and modular IEC. 

7. LEARNING USER PREFERENCES 
In this section we use machine learning techniques to learn the 
underlying characteristics of human evaluation in IEC. The user 
evaluates the phenotypes for a number of generations (e.g., until 
he/she is tired) while a supervised neural network is trained. Then 

the user lets the neural network evaluate the phenotypes on his 
behalf and the evolutionary algorithm evolves solutions based on 
the fitness assigned by the neural network. The supervised and 
predictive phases can be repeated until the user is satisfied with a 
solution.  
Though the idea sounds simple, there are some challenges 
inherent in the approach:  

• The selection and implementation details of the 
machine learning technique depend on the particular 
problem.  

• Neural networks usually require large training sets. 
Since human fatigue is the main motivation for the 
approach, we should typically expect less than 100 
training patterns. That is not adequate for most 
networks.  

• In IEC, the user evaluates a given number of 
phenotypes and selects some of them based on his/her 
comparison with other phenotypes presented within the 
same generation. The same phenotype he selects as the 
best of the first generation may be the worst of 
generation 10. To deal with this relative evaluation 
problem, we let the user rate each phenotype on a scale 
from 0 to 10, 10 being the best solution. We also 
assume that the user is more or less consistent on his 
ratings, which we know is not always true as humans 
may change their evaluation criteria over time.  

• We assume that the user does not reach the optimal 
solution during the initial supervised phase, otherwise 
he does not need to proceed with the neural network. 
Since the optimal solution is not in the training set, it is 
unlikely that the neural network will recognize it in the 
predictive phase.  

 
In our implementation, applied to the problem described in the 
previous sections, each generation consists of 12 genotypes with 2 
elites surviving to the next generation. Five genotypes are created 
through mutation and 5 genotypes through crossover. The 
probability of a genotype to be selected for each mutation or 
crossover operation is proportional to R2, where R is the user 
rating between 0 and 10. A simplified version of the Radial Basis 
Function network [12,13] is used. The output of the network is 
given by  

( ) ( )∑ == K
j kk xgxy 0ω , 

where kω ’s are the elements of a weight vector and x is the K-
dimensional input vector. We defined the radial basis functions as 
Gaussians: 

( ) ( )[ ]22 2exp kkkk xxg σμ−−= , 

where kμ  and kσ  are the center and variance of the Gaussian. In 
this implementation we use an iterative learning rule to find the 
centers kμ  that minimize the difference between the user ratings 
and the network predictions. Since we know that each dimension 
is equally important for the user we fixed the weights kω at 10/K 
and kσ  at 0.5.  
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In order to measure the performance of the system it is useful to 

define an automatic error function E= ( )( ) 21

0
21∑ =

− −N
t tt apN , 

where pt and at represent the model-predicted and actual price at 
time t, respectively. Figure 6 shows user evaluations and 
automatic error values for a large set of phenotypes. It is clear that 
the user rating is not a simple function of E, the user assigns the 
same rating for phenotypes with very different E values. 

 
Figure 6. E vs user rating.. 

 
The system was tested with 30 random initial 

conditions. In each run, the user evaluates the phenotypes for 5 
generations. If the user reaches the optimal solution during this 
training phase, that run is discarded and the system reset. If the 
optimal solution is not found after 5 generations the user lets the 
neural network predict his/her evaluations and evolve the 
genotypes.  

Figure 7 shows the average of best user rating and E as 
a function of the number of generations. The number of distinct 
training patterns ranged from 6 to 25 with a mean of 16.7. In 
order to produce Figure 7a, we had the user rate the phenotypes 
after the 5th generation, but we did not use those ratings neither to 
train the neural network nor to use in evolutionary operations. It is 
clear that the quality of the phenotypes continues to increase even 
after the neural network replaced the user. 

It is interesting to analyze the generalization 
performance of the neural network. Figure 8 shows the neural 
network predictions as a function of the user ratings. The blue 
curve shows the histogram of the training patterns. The network is 
trained on input patterns with user ratings between 0 and 8, and it 
could successfully predict the optimal solution's score around 9.5. 

8. CONCLUSION 
We have shown with a simple financial markets example how 
IEC can be used to perform agent-model inversion. When applied 
to simple models and reasonably small parameter spaces that have 

human-interpretable visualizations, IEC as a technique nicely 
combines human expertise with evolutionary computation and 
may improve the speed and accuracy of search in the fields of 
model inversion and model design, particularly when goal 
evaluation is multi-variate, complex, or qualitative. Although a 
straight optimization algorithm such as a genetic algorithm (GA) 
with a least-mean squares objective function does find a solution, 
IEC enables the user to estimate models without having to define 
a problem-specific, ad hoc objective function. One useful 
extension to this work consists of using IEC to fit two or more 
aggregate-level datasets simultaneously, thereby increasing the 
plausibility of the discovered model. It was also shown that 
adding modularity to the user selection process greatly enhances 
the user’s ability to find a good solution. A machine learning 
technique that learns the user’s selection preferences also helps 
mitigate one of the biggest issues with IEC, user fatigue. 

 
 
 

 
 
 

 
 
 
 

 
 
 
 
 
 

Figure 7. Top: Average best user rating as a function of 
generation number. Bottom: E as a function of generation 

number. 
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Figure 8. Neural net predicted rating vs user rating (black 
dots). The line shows a histogram of training patterns. 
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