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ABSTRACT
This paper examines a real-world application of genetic algo-
rithms – solving the United States Navy’s Sailor Assignment
Problem (SAP). The SAP is a complex assignment problem
in which each of n sailors must be assigned one job drawn
from a set of m jobs. The goal is to find a set of these as-
signments such that the overall desirability of the match is
maximized while the cost of the match is minimized. We
compare genetic algorithms to an existing algorithm, the
Gale-Shapley algorithm, for generating these assignments
and present empirical results showing that the GA is able
to produce good solutions with significant savings in cost.
Finally, we examine the possibility of using the GA to gener-
ate multiple different solutions for presentation to a human
decision maker called a detailer, and we show that the GA
can be used to provide a sample of good solutions.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Global Optimization

General Terms
Algorithms

Keywords
Genetic Algorithms, Assignment Problem, CHC

1. DESCRIPTION OF THE PROBLEM
Many real-world problems can be modeled as assignment

problems. Given two sets, the assignment problem is to
match each element of set A with a single element of set B
such that some criteria of desirability is maximized. The
simplest example of such a problem is the so-called stable
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marriage problem. In this problem, we are given a set of n
men and a set of n women. The problem is to find the opti-
mal stable set of marriages between the men and the women
with respect to the stated preferences of the individuals. A
stable set of marriages is defined to be a set of marriages in
which the following can not occur: A is married to B and
C is married to D while A prefers D to B and D prefers
A to C. If this situation did occur, then obviously, A and
D would leave their partners for each other. An optimal
stable marriage is a stable marriage in which each person is
at least as happy as they would be in any other stable set
of marriages.

Another example of such a problem is the United States
Navy’s sailor assignment problem [9, 11]. Every two years,
each sailor in the Navy is required to change jobs. As a
result, at any given time, there are many sailors who require
assignment to a new job. The problem the Navy faces is
to find a set of assignments, also called a match, of sailors
to jobs which keeps the sailors happy and maintains fleet
readiness while minimizing the cost of implementing those
assignments. Many factors go into determining a good set
of assignments. The Navy must ensure that not only are
the sailors and commanders satisfied with the assignment,
but also that the match can be implemented within a fixed
budget. If the resulting cost is too expensive, then the Navy
cannot adequately maintain its other priorities. However,
if the assignment is overly focused on costs, it may be that
the sailors are unhappy with their assigned jobs. This could
lead to a decrease in morale, followed by decreased retention
rates and other problems.

Formally, the problem may be defined as follows. Maxi-
mize

NX
i=1

MX
j=1

Fi,jdi,j ,

subject to

NX
i=1

di,j ≤ 1, ∀j ∈ {1, 2, . . . , M}

and

MX
j=1

di,j ≤ 1, ∀i ∈ {1, 2, . . . , N} ,
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where Fi,j denotes the fitness of assigning sailor i to job j
and D is an assignment matrix such that

di,j =

�
1 : Sailor i assigned to job j
0 : otherwise

The fitness measure Fi,j encapsulates all information rel-
evant to determining the desirability of the match. The
construction of F is described in detail later in the paper.
The constraints on D ensure that at most one job will be
assigned to any sailor and that no job is assigned to multi-
ple sailors. Note that both constraints are inequalities thus
allowing for the possibility that a given sailor is not assigned
a job.

Over successive two-week intervals, a group of Naval per-
sonnel known as detailers manually construct the set of as-
signments. They must first communicate with the sailor to
determine his or her preferences, then with the officer at the
post to determine if the sailor is acceptable for that posi-
tion. This traditional way of assigning jobs is problematic
for a number of reasons, preventing the Navy from adopting
longer detailing windows which could help allocate resources
more effectively.

The Navy is developing a Web Based Marketplace (WBM)
for each sailor to connect to through the Web and bid on a
pool of jobs for which he or she is qualified. The WBM pro-
vides the sailor information about the jobs’ suitability and
displays metrics of how this job will affect his career pro-
gression, current skills, quality of life, pay grade, and other
relevant details. It is an attempt to automate the process
of the detailers communicating directly with the sailor. The
sailor selects a subset of the available jobs that he would like
to obtain, and ranks the selected jobs in decreasing order of
preference.

Figure 1: Overall Job Assignment Process

The complete distribution and assignment process is de-
scribed below. The distribution and assignment process
entails three primary phases: allocation, placement, and
assignment. The detailing process, the process by which
sailors and jobs are actually matched, consists of four steps,
as shown in Figure 1.

• Register sailors in the system

• Receive sailors’ applications for eligible jobs

• Review of requisitions by the navy command

• Assignment of jobs (match sailor-job)

In the sailor registration step, sailors whose Projected Ro-
tation Date (PRD) is within the specified time range in the
application are registered in the database. For each, a set
of potential jobs (jobs for which the sailor is qualified) is
searched and stored in the database. Additionally, the fit-
ness and cost associated with each job is recorded. The fit-
ness score simply measures the sailor’s ability to perform the
requirements of the position. The cost measure is known as
the Permanent Change of Station (PCS) cost, and estimates
the monetary cost of assigning the sailor to that position.
The PCS cost includes the cost of moving the sailor and his
or her family to the new location, the cost of any additional
required training, and many other factors.

After the registration process is completed, the sailors
must access the system through a web interface, and ap-
ply for the jobs they want. The system allows a sailor to
apply for only those jobs for which he is qualified. These ap-
plications are stored in the database for use in the detailing
process.

The next step, command review, is performed after all ap-
plications are received. In this phase, the command reviews
the prioritized requisitions (jobs) and checks the suitability
of the candidate sailors for each. Sailors particularly well
suited to a position may be ranked by officers at the com-
mand. In some cases, this stage also provides opportunities
for proactive recruiting – contacting sailors who did not ap-
ply for the job, but who might be a good fit.

Finally, the matching process takes place during the job
assignment phase. Currently, the detailers construct the
match entirely by hand, but a prototype system using the
Gale-Shapley algorithm described below has been developed.
The system produces a set of sailor-to-job assignments that
is optimal with respect to the preferences of the sailors and
commands. The match is then evaluated by a detailer, who
either accepts or rejects the match. Typically, the detailer it-
eratively refines the set of assignments, rejecting some com-
ponents of the match for cost or other reasons. If a partic-
ular sailor and job pairing is rejected by the detailer, the
sailor is re-matched against the list of remaining jobs. The
detailer continues this process until all requirements are sat-
isfied. The current state of the art is at best an 80% solution.
That is to say, at least 20% of the sailors must be manually
assigned by detailers. Obviously, a system which could find
suitable assignments for more sailors could provide impor-
tant benefits for the Navy.

The Navy is focusing on using a Multi-Agent System in
solving the Sailor Assignment Problem [9, 11]. The agent
system manages and coordinates the applications of sailors
for jobs, subsequent evaluation by the command, and finally
the construction of the match itself using the Gale-Shapley
algorithm. However, the Gale-Shapley algorithm, described
below, is not able to consider cost as a factor in determining
the best match. A deterministic algorithm, Gale-Shapley
considers only the preferences of the sailors and commands.
The resulting match is optimal with respect to these pref-
erences, but may be prohibitively expensive to implement.
This paper examines genetic algorithm approaches to the
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sailor assignment problem in order to allow outside con-
straints such as cost to influence the construction of the
match. The goal is to produce matches which keep the
sailors and commands happy, while minimizing the total cost
of implementing the match.

2. RELATED WORK

2.1 The Gale-Shapley Stable Marriage
Algorithm

The Gale-Shapley algorithm is a quadratic time algorithm
for finding an optimal set of stable matches, i.e. marriages
[7]. To understand the algorithm, let us first simplify the
problem to one of finding stable marriages between a set of
n men and a set of n women. This algorithm works by al-
lowing either the men or the women to propose. Without
loss of generality, let us assume that the men propose to
the women. Each iteration of the algorithm, each man pro-
poses to the woman to whom he would most like to marry
and to whom he has not previously proposed to. After all
the men propose, each woman rejects all but her favorite
from among the men who proposed to her. She does not ac-
cept the remaining proposal. Instead, she keeps him around
in case no one better comes along. After all women have
been proposed to at least once, the algorithm terminates
and the women each accept the proposal from the man they
most prefer. This algorithm produces after O(n2) steps a set
of marriages that is stable and optimal with respect to the
preferences of the men. Allowing the women to propose pro-
duces a stable set of marriages optimal with respect to the
preferences of the women. Note that allowing the women to
propose will not generally lead to the same set of marriages
as if the men proposed. In fact, this will occur only if there
is but a single optimal set of marriages.

The algorithm described above is currently used in many
situations in which a stable set of assignments is required.
However, the algorithm provides optimality only with re-
spect to local conditions. If the men propose, then each
man will be at least as well off under the solution found as
under any other stable set of marriages. There is no mech-
anism by which the global characteristics of the problem
can be considered. For the marriage problem, this is a rea-
sonable restriction. However, for other types of assignment
problems, this restriction may be problematic.

The Sailor Assignment Problem has two major constraints
outside of those imposed in the mathematical formulation of
the problem described earlier. The first of these is that a
sailor must only be matched to a job for which he meets the
requirements. These requirements encapsulate not only the
ability (requirements and qualifications) of the sailor to do
the job, but also the desirability of offering that assignment
from the Navy’s point of view. If an experienced, highly
paid sailor wished to apply for a job as a cook, the Navy
would likely disallow the assignment. The Navy satisfies
this constraint by disallowing applications from a sailor to
a job he is unqualified for. The system must respect this
constraint and never assign an unfit sailor to any job.

A second constraint on feasible solutions is that the PCS
cost associated with implementing the match should be min-
imized. If cost were not an issue, then the Gale-Shapely al-
gorithm could provide an optimal set of assignments with
respect to the preferences of the sailors and commands,
although such a match would not necessarily involve all

sailors. However, the addition of cost constraints results
in an NP-hard optimization problem.

2.2 Genetic Algorithms
Genetic Algorithms are a biologically inspired method

that have been successfully applied to many real world appli-
cations. They have often been utilized to solve the Quadratic
Assignment Problem (QAP) with mixed results. Typically,
canonical GAs have not fared well on QAP [2]. Better results
have been reported by combining GAs with local improve-
ment heuristics such as Tabu Search [12, 6].

However, there are substantial differences between QAP
and the Sailor Assignment Problem (SAP). In the standard
QAP formulation, it is assumed that every possible assign-
ment from members of one group to another is valid. Stated
another way, the standard QAP is unconstrained. In con-
trast, valid assignments in the sailor assignment problem are
determined by a long list of constraints. The Navy’s guide-
lines dictate that only certain jobs are acceptable for any
given sailor, and any system to produce these assignments
must respect those guidelines.

The constraints on valid assignments has profound con-
sequences for the design of a genetic algorithm to solve the
problem. In QAP, the most commonly used representation
is the permutation. In a typical QAP problem, the num-
ber of facilities is equal to the number of locations, thus
restricting solutions to one-to-one mappings from the set of
facilities to the set of locations. Because of this, a permuta-
tion of the numbers 0 through n − 1 always defines a valid
set of assignments. In the sailor assignment problem, there
are typically more jobs than sailors at any given time. In
addition, a given sailor can select only a subset of the avail-
able jobs due to lack of training, differences in pay grade
between the sailor and the proposed job, or many other fac-
tors. As a result, only a very small fraction of randomly
generated permutations would correspond to valid assign-
ments. This implies that most genetic operators commonly
used on permutation encodings would be ineffective.

For the same reasons, a binary encoding is unsuitable for
the sailor assignment problem. A mutation operator which
simply flipped a bit would likely produce an infeasible indi-
vidual, as would crossover applied at arbitrary points on the
string. Instead, we utilize an integer encoding in which each
gene is chosen from a subset of possible numbers, precisely
those representing valid jobs for that sailor.

Hybrid genetic algorithms have also been applied to the
Generalized Assignment Problem (GAP) with great success
[3, 5]. In GAP, there are n agents and m jobs to be as-
signed and the goal is to find an assignment of each of the
jobs to one agent such that no agent violates his capacity
constraints. Chu and Beasley [3] proposed a hybrid steady-
state genetic algorithm for GAP which was able to surpass
the state of the art on large and difficult instances. One of
the key aspects of the their work was the development of
a replacement scheme which always replaced the most in-
feasible individual from the population. If all members of
the population were feasible, the method simply replaced
the individual with the lowest fitness. Their algorithm was
subsequently modified providing improvements in both exe-
cution time and final solution quality [5]. One modification
was to replace the most-infeasible-first replacement strategy
with a more traditional penalization mechanism.
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The sailor assignment problem can in principle be formu-
lated as a GAP in which each job requires one capacity unit
and each agent (sailor) has only one capacity unit to uti-
lize. In doing so, most of the assumptions that make the
preceding algorithms effective are violated. The most gen-
eral formulation of the problem assumes that persons can
have more than one job; that assumption is pervasive in
the algorithms. Thus, the GAP oriented genetic algorithms
cannot achieve good performance if directly applied to SAP.
Stated another way, if the number of jobs is greater than
the number of sailors, not all jobs can be assigned. This
point underlies the conceptual difference between the GAP
and the SAP. Because our algorithm must perform well in
the presence of many unassigned sailors, the GA approaches
to the generalized assignment problem discussed above are
problematic.

In this paper, we examine alternative genetic algorithm
approaches to the sailor assignment problem in order to al-
low outside constraints to influence the quality of the match.
The goal is to produce matches which keep the sailors and
commands happy, while minimizing the total cost of imple-
menting the match. Additionally, we examine the ability of
the GA to generate multiple good solutions to SAP through
niching techniques.

3. IMPLEMENTATION
One of the primary decisions to be made concerning any

genetic algorithm is the encoding. For the Sailor Assign-
ment Problem, candidate solutions are represented using an
integer encoding scheme specific to the application. Each
chromosome is encoded as an array of integers, where each
position in the array represents a particular sailor and the
number stored at that position represents the job assigned
to that sailor. To ensure that no sailor receives a job for
which is not fit, each sailor is associated with a set of jobs
that he is allowed to take. All operators used by our genetic
algorithm ensure that no position in the array can take on
a value not in this set.

This encoding ensures that no sailor gets a job for which
he is not qualified, but does so at the expense of allowing
another type of constraint to be violated; a single job may
be assigned to multiple sailors. Whenever this occurs, a
heuristic is used to attempt to repair the individual. For any
sailor in the match with a job already awarded to another
sailor, a list of each job the sailor may take is generated
in random order. The list is traversed looking for the first
job which is not currently assigned to another sailor. If no
job can be found satisfying this criteria, then the sailor is
left unassigned in the match. Unassigned sailors contribute
nothing to either the match fitness score or to the PCS cost
of the match, and are indicated with a value of −1 in the
encoding. In order to eliminate bias resulting from position
in the encoding, the order in which sailors are visited is
randomized prior to beginning the repair process.

In addition to the repair mechanism, a heuristic was em-
ployed to generate the initial population. Each sailor is vis-
ited in turn and assigned a random job which has not been
assigned to another sailor. If no such job exists, the same
heuristic repair process described above is utilized. To pre-
vent bias based on the order of the sailors and jobs, both the
order in which the sailors are visited and the order in which
the jobs are attempted are randomized prior to initialization
of the individual.

Providing a solution in which some sailors have not been
assigned is appropriate for the application, provided that the
number of such sailors is relatively small. It may be that no
feasible assignment of all sailors exists. Furthermore, it may
be that although a complete match exists, it is far more
expensive than another set of assignments which does not
match all sailors. In that case, it may be better from the
Navy’s viewpoint to manually match the remaining sailors
by relaxing constraints or assigning additional training.

Although unmatched sailors are acceptable in small num-
bers, it is obviously preferable to find a job for as many
sailors as possible. Crossover and mutation operations may
produce individuals with unnecessarily unassigned sailors.
Consider a solution in which two sailors are assigned the
same job. The repair procedure described above, if it fails
to find an alternate job for one of the sailors, will leave
one unassigned. Later, crossover or mutation may alter the
other sailors in such a way as to remove the potential con-
flict. Therefore, the repair procedure also attempts to pro-
vide a valid assignment for any sailors previously marked as
unassigned. In addition, a small penalty is applied for each
unassigned sailor in a match. The penalty is kept reasonably
small to prevent the GA from focusing entirely on matching
all sailors at the expense of fitness and cost.

Several variants of genetic algorithms were tested. The
results are reported for the most promising parameter set-
tings. Both generational and steady state GAs using Sto-
chastic Universal Sampling (SUS) selection [1] and uniform
crossover [14] were tested. The steady state GA is elitist in
nature, always replacing the worst individual in the parent
population. For the generational GA, we tested both elitist
and non-elitist algorithms. In addition, tournament selec-
tion and both one and two-point crossover were tested for
each algorithm. Uniform crossover was found to be produce
better results for all but the smallest problem.

In addition to the two conventional GAs mentioned above,
a version of CHC [4] was tested. CHC is a state-of-the-art
genetic algorithm which uses a sophisticated convergence de-
tection mechanism to trigger a cataclysmic mutation of the
population. CHC’s crossover operator, called HUX, imple-
ments an incest prevention mechanism with a dynamically
changing definition of incest. During each generation, the al-
gorithm randomly pairs individuals for recombination. The
selection is done without replacement, so each individual is
selected once. The individuals are then allowed to produce
offspring only if they are not too similar. Thus, the number
of children produced per generation is dynamic. When no
children are produced during one generation, the similarity
threshold is reduced, allowing more similar individuals to
successfully breed. When this threshold reaches zero, the
cataclysmic mutation is triggered. This creates a new popu-
lation containing exactly n copies of the best solution in the
old population, where n is the population size. One copy is
kept unchanged, while the remainder of the new population
is constructed by randomly flipping 35% of the bits in the
remaining copies.

The algorithm was modified only to handle the constrained
integer encoding scheme rather than the conventional bit-
string encoding. The sole difference is that the “Hamming
distance” for the SAP is defined to be the number of sailors
assigned different jobs by two solutions. When convergence
was detected, the restart was performed and 35% of the
sailors in each solution were assigned randomly selected jobs.
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The repair procedure was then invoked to handle constraint
violations in the newly created individuals.

All runs of the GAs except CHC used a population size
of 300 and were terminated after 500,000 evaluations of the
fitness function, or in the case of elitist algorithms, if the
population had been converged for some fixed period of time.
Following the literature, CHC was tested with a population
size of 50.

4. EXPERIMENTS AND RESULTS
Data was gathered from actual Navy requisition data for

data sets of 20 sailors to 533 sailors. To generate the data,
randomly selected subsets of sailors were drawn from the
database. Any job that a selected sailor was eligible for
was also selected from the database. The training score and
PCS cost of each of these candidates was computed and
stored for use in the fitness function evaluation. Because
there is a limited range of data which can be taken from the
database, a random problem generator was also employed
to provide additional test instances of various sizes. This
generator accurately models the distribution of sailors and
jobs present in real situations. Each synthetically generated
sailor has approximately the same number of eligible jobs
and applies for roughly the same number as one could expect
to occur in reality.

To construct random problem instances, the distribution
of data drawn from the database was examined. The gener-
ator was then constructed to match this distribution. Para-
meters of the generator include the total number of sailors
in the window, the total number of jobs in the window, and
the mean and standard deviation of the number of jobs ap-
plied for by each sailor. The training scores and PCS costs
were drawn from a distribution constructed to be identical
to that found in the real-world data.

Table 1 shows the number of sailors and jobs in each in-
stance of the problem used during testing. The a versions
of the problems are drawn from actual sailor data. The
20, 50, 100, and 200 sailor versions of the problem are con-
structed by taking a random sample of the sailors eligible for
reassignment during a given time window and selecting all
jobs for which the selected sailors are eligible to apply. The
533 sailor instance represents all sailors and jobs eligible for
reassignment during a particular two-month window. Note
that the number of jobs is nearly independent of the number
of sailors. The implications of this are that competition for
jobs increases substantially as the number of sailors increase,
so that not only does the dimensionality increase, but also
the difficulty associated with finding a feasible solution is
increased.

The amount of real data is limited, and many of the a-type
problems exhibit a high degree of overlap among the sailors
and jobs. Therefore, we focus primarily on the synthetically
generated instances of the problem. This lets us avoid any
bias associated with the particular set of sailors and jobs
present in the database. In most experiments, we report
only the full 533-sailor instance to analyze the performance
on the actual sailor data.

Each sailor is allowed to apply for only a subset of the
jobs available. The exact jobs available to a sailor depend
on several factors defined by the Navy. For each job a sailor
is allowed to apply for, a measure of utility is computed
encapsulating information such as discrepancies between the
pay grade of the sailor and the job, the training requirements

Table 1: Number of sailors and jobs in each instance
of the problem considered. The “a” instances con-
sist of real data. The “b” instances are created using
a random problem generator.

Problem Sailors Jobs Problem Sailors Jobs
20a 20 1002 50b 50 750
50a 50 1127 100b 100 1500
100a 100 1663 200b 200 1500
200a 200 1676 1000b 1000 2000
533a 533 1582

for the job, and several other factors. We can define a n×m
matrix A where ai,j is the utility associated with assigning
sailor i to job j. This score is also referred to as the total
training score and is defined by

T =

nX
i=1

mX
j=1

ai,jdi,j . (1)

To begin, we first establish a baseline of comparison by
running the Gale-Shapley algorithm on each problem in-
stance. The resulting match is optimal with respect to the
preferences of the sailors. Without loss of generality, we
assume that each sailor applies for all jobs for which he is
eligible to apply, and that he does so in the order of decreas-
ing fitness. As a result, the match is not only optimal for the
sailors, but also with respect to the total fitness. Certainly,
the GA will not be able to consistently match Gale-Shapley
on this set of problems.

The implications of these assumptions are that the Gale-
Shapley algorithm will provide the match with the highest
total fitness score. In a real scenario, this is not necessarily
true. The algorithm will provide the match which maximizes
the overall satisfaction of the sailors and commands, subject
to the hard constraints built into the problem. However, any
solution inside the feasible region of the space will be consid-
ered equivalent with respect to the constraints. Therefore,
the algorithm cannot consider the impact of outside influ-
ences on the problem. If the set of sailor preferences diverge
from the assumed preference for higher fitness, then the
match scores will necessarily decrease for the Gale-Shapley
algorithm.

Because there exists a very fast algorithm for finding opti-
mal matches based on the preferences of the sailors, there is
little to be gained from running a genetic algorithm on this
formulation of the problem. However, as stated above, there
is no way for the Gale-Shapley algorithm to incorporate ex-
ternal constraints. This represents a substantial problem for
the Navy, since it prevents the simultaneous minimization
of the PCS cost of the match. Therefore, it is important
to show that the GA is capable of producing not only good
matches, but also matches which result in smaller cost to
the Navy.

Ten trials of the genetic algorithms were then performed
on the same problem instances. Table 2 clearly shows the ad-
vantage of the Gale-Shapley algorithm when only the fitness
relationship between sailors and jobs is considered. While
CHC is able to outperform the steady state and generational
GAs on all instances, it is never able to fully reach the per-
formance of the deterministic algorithm.

To determine the ability of the GA to minimize the PCS
cost while maintaining highly fit matches, the fitness calcu-
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Table 2: Comparison of Gale-Shapley and the Genetic Algorithms using only the fitness of the individuals to
construct the match.

Algorithm 20a 50a 100a 200a 533a
Gale-Shapley 15.36 37.40 75.22 148.26 475.07
Generational GA 14.97 35.06 60.78 115.25 447.44
Steady State GA 14.75 36.06 72.73 143.26 459.91
CHC 15.10 36.65 74.35 146.39 468.84

Table 3: Comparison of Gale-Shapley and the Genetic Algorithms on problems using both fitness and PCS
Cost. For these experiments, fitness and PCS cost are equally weighted.

Problem CHC Generational GA Steady State GA Gale-Shapley
Fitness PCS Cost Fitness PCS Cost Fitness PCS Cost Fitness PCS Cost

50b 44.20 370,229 43.84 373,966 44.05 371,816 48.20 1,218,602
100b 93.16 448,460 91.28 606,313 91.79 552,413 98.47 2,313,229
200b 183.55 897,919 170.12 2,294,836 180.45 1,229,460 195.61 4,999,665
533a 463.32 4,340,020 445.19 4,695,708 457.73 4,453,584 475.07 4,566,906
1000b 870.77 9,493,592 781.65 21,837,280 858.37 11,531,480 936.71 25,624,575

lation of the GA was modified to include a PCS cost term.
The new fitness measure is a linear combination of match
fitness and PCS cost. Because the goal is to minimize the
PCS cost while maximizing the total fitness given by Equa-
tion 1, an inhibitory factor is used for the PCS component
of the fitness function. Both the match fitness and PCS
cost must be normalized prior to computing the fitness of a
match. Because the sailor-to-job fitness scores are already
normalized values, they are simply averaged over the entire
match to yield the match fitness score. For PCS cost, each
sailor-to-job cost is divided by the maximum PCS cost for
any sailor-to-job candidate in the problem instance. These
scaled costs are then averaged over the entire match. The
fitness of an individual is then given by

F(x) = αTx − βCx,

where Tx is the scaled total training (fitness) score for match
x and Cx is the scaled total PCS cost for match x. The
normalized PCS costs are typically less than the normalized
fitness scores, due to the presence of possible matches with
very large PCS costs. These matches are quickly rejected
by the GA, leading to a population in which most of the
individual matches consist of relatively low cost compared
to the average fitness score.

Table 3 shows the performance of the algorithms with
α = β = 1.0. Note that the Gale-Shapley match does not
utilize the PCS cost in determining its match. Thus, while
the fitness score of the Gale-Shapley match is superior to
those found by the genetic algorithms, this comes at the
expense of a much more costly match. Both variants of GA
were able to find matches exhibiting much smaller PCS costs
than the Gale-Shapley match, but CHC was consistently
better than the steady state or generational algorithms in
that regard.

Consider the performance on the 100 sailor problem from
Table 3. We see that the Gale-Shapley algorithm produced
a match with a total match fitness of 98.47 with a PCS cost
of $2,313,229.49. Over all 100 sailors, the mean fitness and
cost are 0.985 and $23,132.29. Contrast those numbers with
those reported by the CHC algorithm. The mean fitness for
the sailors in that match is slightly lower, 0.932. However,
the average cost per sailor is only $4,484.60, approximately

one-fifth the cost of the match found by the Gale-Shapley
algorithm.

Because the GA uses a simple linear combination of its
individual components to evaluate fitness scores, it is rela-
tively easy to guide the algorithm toward better matches or
lower costs as the need becomes apparent. For example, the
PCS costs reported in Table 3 are so small that it might be
worthwhile to experiment with increasing the weight associ-
ated with high fitness. In this way, it is hoped that the GA
will find better matches at the expense of slight increases
in PCS cost. Table 4 shows the results of repeating the
algorithms using weights of α = 1.0 and β = 0.5. This set-
ting allows the GA to more aggressively improve the fitness
of the match, since any penalty incurred by an increase in
PCS cost is reduced by a factor of two. The results show
that the GA can indeed find increasingly better match scores
without dramatically increasing the PCS costs.

Both with and without consideration of the PCS cost, the
problem 533a is significantly more difficult for the GA to
optimize. While CHC is capable of finding good solutions
costing less than those found by the Gale-Shapley algorithm,
the difference is much less than reported in the other prob-
lems. The difficulty of this problem arises from the large
number of sailors applying for each job – a direct result
of the assumption that all sailors would apply for each job
they were eligible to receive. The mean number of sailors
per job in this problem is 22.68. Compare this to 5.05 sailors
per job in the instance 1000b. Intuitively, the more sailors
apply for each job, the more likely it becomes that an ar-
bitrary candidate solution assigns multiple sailors the same
job, thus incurring a penalty which prevents the individual
from contributing to the evolutionary process.

4.1 Finding Multiple Solutions
The introduction of PCS cost into the fitness function

transforms the problem into a multiobjective optimization
problem. In many multiobjective optimization problems,
the goal is not only to find an optimal solution, but to uni-
formly sample the Pareto front, the set of equivalent but
distinct optimal solutions.

For the Navy’s Sailor Assignment Problem, often there
is no clearly preferred solution. Instead, there are a range
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Table 4: Comparison of Gale-Shapley and the Genetic Algorithms on problems using both fitness and PCS
Cost. For these experiments, fitness is weighted more heavily than PCS cost.

Problem CHC Generational GA Steady State GA Gale-Shapley
Fitness PCS Cost Fitness PCS Cost Fitness PCS Cost Fitness PCS Cost

50b 45.40 460,292 45.81 522,127 45.57 472,132 48.20 1,218,602
100b 94.36 501,393 93.75 696,454 93.34 643,305 98.47 2,313,229
200b 187.75 1,257,060 178.84 2,750,758 185.18 1,658,778 195.61 4,999,665
533a 464.19 4,491,036 446.42 4,768,400 456.35 4,529,148 475.07 4,566,906
1000b 908.71 12,218,340 773.17 23,757,540 894.22 14,329,880 936.71 25,624,575

of solutions across the Pareto front from which a human
detailer must choose. The deterministic nature of the algo-
rithm and lack of side constraints prevents the Gale-Shapley
formulation from finding more than a single solution. The
GA however, should be able to present multiple solutions
to the detailer, allowing greater flexibility in the assignment
process. The typical GA approach to Pareto optimization
is the introduction of niching techniques.

Niching Genetic Algorithms (NGAs) attempt to bias the
GA away from areas which are currently overrepresented
in the population. The most common means of introduc-
ing this bias is Goldberg and Richardson’s [8] fitness shar-
ing scheme. In this approach, individuals undergo a fitness
scaling operation just prior to selection. The fitness of each
individual is reduced proportionally to the number of other
individuals in the same region of the space. To determine
whether two individuals should be considered to be in the
same region, a single parameter, σshare, is specified. This
parameter defines the maximum distance between two indi-
viduals considered to share the same niche. The selection
algorithm then sees only the scaled fitness values. By ma-
nipulating the scaled values, it is possible to manipulate the
probability of survival for a given individual, thus providing
some means of control over which regions of the space are
explored further.

To test the ability of the GA to find multiple good so-
lutions to the assignment problem, we performed the ex-
periments using fitness sharing and recorded the best indi-
vidual found from each niche. In accordance with various
other studies [15, 13], we used SUS selection with one-point
crossover in order to increase the likelihood of convergence.
Additionally, following [15], we terminated the GA if 20 gen-
erations passed without significant improvement in the mean
fitness of the population. Also to promote convergence, a re-
duced crossover probability of 0.7 was tested along with a
higher probability of 0.9. Under these parameter settings,
the niching GA failed to converge, producing approximately
n very sparsely populated subpopulations, where n is the
population size.

To attempt to allow the GA to converge, we then em-
ployed an elitist replacement strategy in which the best in-
dividuals always survive to the next generation. With this
modification, the sharing mechanism provided distinct sub-
populations, but failed to maintain them throughout the
entirety of the run. Therefore, we modified the termination
criteria to halt after the number of subpopulations decreases
to a fixed level – five in our experiments. We then report the
most fit individual from each remaining subpopulation for
the purpose of human evaluation. Table 5 shows the results
of these experiments.

The interpretation of σshare in a typical parameter opti-
mization NGA is that it should be very close to the distance
between any two peaks in the fitness landscape. If the value
of σshare does not match the structure of the fitness land-
scape, then the ability of the NGA to adequately find and
maintain multiple solutions will be negatively affected. In
the sailor assignment problem, σshare plays the same role.
However, the distance measure between any two individuals
is defined simply as the number of sailors assigned different
jobs by the two candidate solutions.

We tested several different values for σshare with the fit-
ness sharing method. The behavior of the NGA was essen-
tially independent of σshare for reasonable settings. With
generational replacement, the GA failed to converge, while
converging completely with elitist replacement. For the ex-
periments reported, we used σshare = 0.15n, where n is the
number of sailors for the problem.

Thus, the interpretation of Table 5 is as follows. The GA
finds approximately five distinct matches such that no two of
the five assign more than N−σshare sailors to the same job.
For example, consider the problem 200b. There are different
assignments of the 200 sailors to 200 jobs found during each
run of the GA. Any one of those five assignments may be
compared to any of the other four and at least 50 sailors will
be assigned to a different job in the two matches.

For comparative purposes, we then tested Mahfoud’s [10]
Deterministic Crowding algorithm. Because DC includes
its own selection and replacement operators, the vital para-
meters are the population size and the crossover operator.
One-point crossover was selected due to lower disruption,
although the elitist nature of the Deterministic Crowding
algorithm should allow for convergence with more aggres-
sive genetic operators.

Like the sharing GA with elitism, the Deterministic Crowd-
ing GA converged but was unable to prevent complete con-
vergence. Therefore, we employed the same early termina-
tion criteria to halt the GA before all subpopulations were
lost. Table 6 presents the results of these experiments with
the Deterministic Crowding algorithm. To determine the
number of distinct solutions found, the final population was
sorted and the best solutions which assigned at least 15% of
the sailors different jobs were reported.

As shown in Table 5, the matches are typically of relatively
high fitness. This implies that there are multiple very dif-
ferent solutions which may satisfy the Navy’s requirements
for both fitness and cost. Thus, the ability to present mul-
tiple possible solutions to a human detailer could be very
valuable, as it allows the detailer to consider factors which
may not be well represented in the fitness function. While
this ability is useful, it is important to limit the information
presented to the detailer. Presenting thousands of possible
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Table 5: Performance of the GA using fitness shar-
ing and early termination on the task of finding mul-
tiple good solutions.

Problem Solutions Fitness PCS Cost
50b 4.7 45.36 480,348
100b 4.2 94.14 602,136
200b 4.5 186.35 1,464,456
1000b 4.8 872.20 21,190,634
533a 4.4 448.86 4,678,452

Table 6: Performance of the GA using determinis-
tic crowding with early termination on the task of
finding multiple good solutions.

Problem Solutions Fitness PCS Cost
50b 3.9 45.64 480,919
100b 4.6 94.36 568,905
200b 4.3 186.05 1,568,144
1000b 4.4 883.61 15,943,000
533a 4.7 451.33 4,897,398

matches is typically far worse than presenting one. Any in-
formation presented to the detailer must be in a form that
allows the detailer to use and process the information. The
ability to specify a maximum number of matches is thus a
useful trait of our implementation.

5. CONCLUSIONS
We have shown that a genetic algorithm has tremendous

potential to improve the Navy’s ability to generate sailor-
to-job assignments in a much more cost effective way than
is currently in use. In addition, our algorithm is shown
to possess the ability to present multiple different solutions
to a human detailer, thereby allowing a greater degree of
human control over the detailing process without subjecting
the detailer to an avalanche of information.

The failure of the unmodified fitness sharing mechanism
to converge to a set of stable subpopulations suggests an
area in which our approach could be improved. Termina-
tion of the algorithm when a specified number of solutions
is reached can be a useful tool, as described above. A more
stable niching procedure could allow the individuals in each
subpopulation to further evolve, perhaps finding better so-
lutions. An area of future work thus involves studying how
best to find and maintain multiple different solutions to the
assignment problem.

Additionally, on the most difficult instance of the prob-
lem considered here, 533a, the enormous number of job ap-
plications for each sailor results in markedly decreased abil-
ity to generate new individuals without large numbers of
constraint violations. This dramatically reduces the effec-
tiveness of the GA, although CHC with its restart mecha-
nism is still able to find very good solutions less costly than
the Gale-Shapley match. The addition of an hybridization
mechanism has the potential to provide greater improve-
ments on these most difficult instances of the problem. It
should be noted, however that although instance 533a was
drawn from actual fitness and cost data, it is a pathological
case in that typically sailors would not apply for all of the
potentially thousands of jobs available to them.
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