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ABSTRACT
In this paper we present a genetic algorithm applied to the
problem of mission planning for Joint Suppression of En-
emy Air Defenses (JSEAD) in support of air strike opera-
tions. The stochastic nature of JSEAD scenarios and the
complexity of JSEAD operations and interactions make this
an especially challenging problem within the military do-
main. JSEAD planners and analysts stand to benefit from
any advances in tools that address this problem. While our
interest in this subject is broad, in this paper we are specifi-
cally investigating methods for developing robust plans that
include routes for JSEAD assets, target types, firing ranges,
and take off time, subject to multiple objective functions
that capture different aspects of mission performance. The
multi-objective optimization is performed by the Dynamic
Non-Dominated Sorting GA (DNSGA), a non-elitist variant
of NSGA-II. The objective functions are evaluated using a
stochastic agent-based JSEAD simulation, and we assess the
quality of mission plans produced by the GA in a set of test
scenarios. The results from these tests indicate that our ap-
proach has significant promise as a component of a JSEAD
mission planning tool.

Categories and Subject Descriptors: I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and Search
– Plan execution, formation, and generation; I.6.3 [Simula-
tion and Modeling]: Applications

General Terms: Algorithms

Keywords: Genetic algorithms, mission planning

1. INTRODUCTION
The role of Joint Suppression of Enemy Air Defenses op-

erations is to apply lethal and non-lethal means of neutral-
izing enemy air defenses in order to enable air operations
in enemy airspace. They are critical enabling capabilities of
modern air power. Lethal means of air defense suppression
include anti-radiation missiles (ARMs) that home on radio
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frequency emissions, standoff weapons, and guided or free-
falling bombs. Non-lethal means include electronic attack —
jamming of communications and radars. These capabilities
are employed against an enemy integrated air defense sys-
tem (IADS) in order to degrade its effectiveness, preventing
or delaying detection and engagement of friendly aircraft.
An IADS has a similar, but opposite role, to that of JSEAD
forces — to prevent the destruction of targets by killing or
deterring the aircraft that would threaten them. Because
of the potentially large number of interacting units of vari-
ous types, JSEAD is a complex problem that is difficult to
analyze in significant depth. There are many potential ap-
plications for evolutionary computation tools in the military
domain in general and the JSEAD domain in particular. In
this paper we focus on the application of evolutionary com-
putation to JSEAD mission planning.
Mission planning activities require an assessment of capa-

bilities and threats in order to develop a mission plan. This
assessment usually involves application of tools which ap-
ply limited analyses or time tested rules-of-thumb. Mission
planning begins with an assumed level of a priori knowledge
of the environment, including 1) The mix of friendly (Blue)
capabilities is known, although the numbers of particular
units and the course of action for employing the capabilities
may be determined by the planning process, and 2) The lo-
cations of enemy (Red) units are partially known with some
degree of uncertainty. For mission planning our goal is to
create robust mission plans with good performance across a
range of Red variations that reflect the uncertainty of the
environment.
The purpose of our work is to develop a proof-of-concept

prototype of an advanced JSEAD mission planning tool that
uses a genetic algorithm to search for robust plans with good
performance. We don’t expect an operational tool to re-
place a human mission planner. Nor do we expect that
a mission planner would implement the results of the GA
without modification. Therefore, our goal is not to develop
a GA that produces near perfect operational solutions, but
rather to develop a genetic algorithm that rapidly and re-
liably produces solutions that provide the mission planner
with useful insights to help construct a robust mission plan.
The GA would assist the mission planner by helping to an-
swer a number of questions, such as: How many JSEAD
assets of each type do I need to use? Where should they be
employed? What are their targets or target areas of inter-
est? How should they approach and when should they arrive
at their target areas of interest? How should they respond
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to the environment? The answers to these and similar ques-
tions would greatly help the mission planner to develop a
robust mission plan.

2. RELATED WORK
Other work using genetic algorithms for military problems

related to mission planning includes that of Yilmaz et al. [7],
who sought to use a GA to design optimal teams of sensors
to detect enemy radars, Grace et al. [2], who implemented
a genetic algorithm as one of four optimization algorithms
in a prototype GPS jammer planning tool, Soliday [6], who
used a genetic algorithm for determining the paths of UAVs
in order to complete a number of surveillance tasks, and
Louis et al. [3] who used a genetic algorithm to dynamically
reallocate strike force resources in order to assist real-time
targeting and retargeting.
The current work is most closely related to a problem

treated by Ridder [5] in the Advanced Reactive Electronic
warfare Simulation (ARES). The ARES simulation is a sim-
ulation of airborne electronic attack (AEA), one of the crit-
ical components of JSEAD, that featured detailed models
of terrain, radio frequency signal detection, jamming, net-
worked communication, enemy radars, etc. It included a GA
that would search a trade space of AEA platforms, systems,
jamming targets, and strategies. However, due to ARES’
level of detail, single complete GA runs could require over a
day to execute on a 96 node Beowulf cluster. Clearly, mis-
sion planning applications require solutions in significantly
less time.
Our current focus is on making advances in the mission

planning domain by striking a balance between GAs using
long-running, high resolution simulations like ARES and
fast-running, low resolution simulations that yield opera-
tionally uninteresting results. We believe this balance can be
achieved by sacrificing the notion that the GA-based mission
planning tool will directly provide operationally useful mis-
sion plans in exchange for meaningful insights produced in a
timely manner. This allows us to use a fast-executing agent-
based simulation that emphasizes modeling of systems’ in-
teractions and their effects, rather than detailed computa-
tional models that attempt to predict systems’ effectiveness.
In addition to improvements in run time, this approach al-
lows us to focus on a richer set of interactions than might
otherwise be possible.

3. PROBLEM ENVIRONMENT
We have constructed a simulation of a JSEAD environ-

ment using the MASON agent-based modeling toolkit [4].
This simulation models two sides — Red and Blue — where
each side has two basic types of entities: targets and air
defense units for Red, and strikers and JSEAD units for
Blue. Red targets are stationary throughout the simulation
and carry point values to support objective function calcu-
lation. Red’s air defense units are of one of three types:
early warning sites, surface-to-air-missile (SAM) sites, and
surface-to-air missiles. Early warning sites contain a single,
long range radar which emits periodically, detecting any air-
craft within its detection range. For all radars, an aircraft is
considered tracked if it is detected on two consecutive scans.
Early warning site tracks are passed to SAM sites as a cue.
SAM sites contain two radars: 1) a target acquisition radar
that may emit periodically or in response to cues from early

warning sites, and 2) a target tracking radar that remains
off until cued by the co-located target acquisition radar. A
SAM site may fire a SAM at tracked aircraft that are within
a given range (limited by the lethal maximum and minimum
ranges of the SAM). The target tracking radar must contin-
uously track aircraft in order for the SAM to reach the end-
game (i.e., the point at which a random number generator
determines whether the aircraft is killed based on the SAM’s
probability of kill). Jamming aircraft are an exception and
may also be fired upon using the home-on-jam feature of the
SAMs. That is, if a SAM site detects jamming it can fire a
SAM in a mode that allows it to home on jamming without
need for any additional tracking guidance.
Blue strikers fly to user-assigned targets using five route

points. JSEAD units include weasels and jammers. Weasels
are aircraft similar to strikers, except that their targets are
only air defense sites and they fire anti-radiation missiles
(ARMs) at emitting targets of a designated type. Jammers
also have five route points, of which any but the first could
be a terminal orbit point (i.e., the jammer will stop and orbit
at that point for the remainder of the simulation). Jammers
impact the detection range of enemy radars based on prox-
imity and detection. They reduce the detection range of all
radars as a function of 1/R2

j , where Rj is the range from the
jammer to the victim radar. Additionally, narrowband re-
active jamming is used to focus twenty times more jamming
energy at radars that are detected by the jammer. Radars
are detected when they are within a specified electronic sup-
port measures detection range of the jammer. Finally, if a
jammer detects a SAM site and determines that it is within
maximum lethal range of the SAM, it will disengage and
move to an orbit position outside of the SAM’s lethal range
for the remainder of the mission.
The simulation is stochastic with a number of random

characteristics. Both SAMs and ARMs have attributes of
probability of kill which determine their effectiveness on an
event-by-event basis. The initial emission state of radars
is randomized. Also, all Red units are assigned a location
centroid and uncertainty such that the actual position of
any Red unit in any simulation run is randomly generated
with a Gaussian distribution using the location uncertainty
as the standard deviation relative to the centroid.
We’ve implemented a simple rule system for many of our

agents. Although the rules are fixed, several parameters
in the rules are subject to manipulation by the GA, signifi-
cantly impacting behavior of units. For Red air defense units
the rules concern conditions that would cause radars to ini-
tiate or terminate emission, such as the amount of elapsed
time, the range of the closest track, or the range to the clos-
est cue. In addition, SAM sites have rules for the conditions
under which they will fire a SAM. For Blue JSEAD units,
weasels have rules with conditions that determine when to
return to base, when to fire an ARM, when to approach a
potential target, and when to orbit a location in anticipation
of a target emitting. Jammers have a single rule (with no
parameters) that causes them to move outside of a detected
SAM’s lethal range and initiate orbit. The effectiveness of
Red air defense units is governed by the amount of loca-
tion uncertainty and settings of rule parameters, including
elapsed time and range limits. The effectiveness of Blue
JSEAD units is influenced by routes, timing, and weasel
rule parameters, including target types and firing ranges.
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Figure 1: Problem representation.

4. GENETIC ALGORITHM

4.1 Problem Representation
Each individual in the population specifies all Blue mis-

sion variables as a vector of real-valued genes. As shown in
Figure 1, the first segment of the genome contains the genes
for each of the jammers, grouping each jammer’s genes con-
tiguously. The second segment contains the genes for the
weasels and the third segment contains genes for the strikers.
For example, a simulation using one jammer, two weasels,
and three strikers would have a genome with 58 genes. Since
our current focus is on planning JSEAD in support of a
strike, most aspects of the strikers’ mission plan are fixed,
allowing some flexibility in the strikers’ start times (to per-
mit phasing with JSEAD units) and abort conditions. The
JSEAD units (weasels and jammers) contain route point
genes which determine their flight path through the sce-
nario. Jammers have additional route point type genes that
determine whether a point is a waypoint (fly through) or
orbit (terminal point). Weasels, like strikers, have an abort
threshold gene which determines the number of SAMs that
must be actively tracking them before they’ll abort their
current target and either divert to their secondary target or
return to base. Weasels have additional genes for determin-
ing their target types (radar classification), their relative
priority (target type 1 will be pursued if available before
target type 2), and the range at which they will fire at that
target type (closer means less time to impact, reducing the
time the radar has to turn off and increasing the chance
of success, but also increasing the risk that a SAM will be
fired in return). All JSEAD units also have an activation
gene that determines whether they will be used at all in the
mission plan.

4.2 Multi-Objective GA
The problem of mission planning is fundamentally multi-

objective, where the goal is to strike a balance between the
components of mission success: 1) maximizing operational
objectives achieved, 2) minimizing attrition (loss of friendly
forces), and 3) minimizing resource cost. In principle, these
objectives could be combined into a single fitness function.

However, this would require the mission planner to perform
the difficult task of assigning relative importance to each of
these components of mission success — a difficult judgement
call with potentially lethal consequences. Furthermore, in
practice we found the combined objective approach to be
problematic since quite often one component of mission suc-
cess would dominate early in the GA run, resulting in so-
lutions clustered near an undesirable local optimum. For
example, in one of our less successful early runs we found
that it was difficult to get aircraft to fly on their assigned
missions. The GA quickly rewarded the notion that the best
way to survive was to not fly at all, resulting in a solution
where all aircraft survived, but no operational objectives
were achieved. Upon modifying the objective function to
reward aircraft for flying we found that all left their airfields
then immediately declared an abort and returned to base.
Apparently the survival instinct is alive and well in digi-
tal warfare. Further modification of the combined objective
function to provide incentives for achieving various phases
of a mission proved to be a futile exercise in attempting to
achieve a balance between the many sub-objectives. The dif-
ficulty of achieving this balance in practice, combined with
the benefits for a mission planner to be able to choose from
multiple plans along the Pareto front led us to abandon this
approach in favor of a multi-objective GA.
We modified the NSGA-II [1] non-dominated sorting GA

to make it suitable for use in uncertain, noisy environments
such as that modeled by the JSEAD simulation. The NSGA-
II algorithm performs a non-dominated sort of a combined
population of elites with the evaluated population (creat-
ing a double-sized population), then discards the worst half,
keeping the remainder as both the next elite population and
as the parent population for the next generation. This works
well as long as the fitness values assigned to each member
of the elite population remain constant throughout the GA
run. However, the elite population becomes problematic for
noisy or dynamic problems since elite individuals retain their
approximated scores from a single evaluation that may in-
flate their true fitness. Instead, our modification to NSGA-
II, which we call the Dynamic Non-Dominated Sorting GA
(DNSGA), is to implement a steady-state approach with 50
percent replacement. All individuals must be evaluated in
each generation followed by a non-dominated sort (there is
no separate elite population). The lowest ranking half of
the population is discarded and replaced by children pro-
duced by parents selected from the best half. For non-noisy
problems DNSGA requires evaluation of populations that
are twice the size of that required by NSGA-II. All other
aspects of the algorithm are the same as NSGA-II.

4.3 Fitness Evaluation
The results presented in this paper were produced using

the DNSGA algorithm with three objective functions. These
are:

1. Targets at risk — the accumulated points of all targets
that had weapons released at them.

2. Attrition — the accumulated points of all aircraft that
were destroyed by enemy air defenses.

3. SEAD cost — the accumulated points of all JSEAD
aircraft that participated in the mission.
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Before each generation we generate a set of N variations
of a JSEAD simulation scenario. Each Blue individual is
evaluated using the same set of scenario variations and the
fitness assigned to each individual for each objective function
is the average for the set.
One technique that we found helps the development of

good solutions is to not implement the SEAD cost objective
until a sufficient number of generations has elapsed. Prior to
this point we force activation of each JSEAD unit through
the “active” gene so that they are forced to fly and find
solutions that contribute to, or at least do not detract from
(via attrition), mission success. The cost phase then reduces
the number of JSEAD units to find cost-effective solutions.

4.4 Selection and Genetic Operators
We use Deb’s multi-objective tournament selection that

is integral to NSGA-II. The NSGA-II algorithm uses a tour-
nament of size 2, performing selection based on Pareto rank
or, if both individuals are of the same rank, the individual
with the highest “crowding distance” (a diversity measure
integral to NSGA-II) is selected. We also use single-point
crossover, but restrict it to non-route point segments of the
genome so that, in effect, the GA treats the route point
segments as a single gene. We use Gaussian mutation on
continuously real-valued genes (e.g., ARM firing range for
weasels), flip mutation on discretely valued genes (e.g., tar-
get emitter type), and a special mutator for route points.
If the mutator determines that a route point gene is to un-
dergo mutation (the only way that route point genes are
modified since crossover is prohibited), then it executes a
route nudger that randomly selects a single route point and
nudges it using a Gaussian distribution. In nudging the
point it ensures that the maximum range constraint of the
aircraft is enforced (i.e., no infeasible routes are generated).
Finally, if the nudged route point is for a jammer, then the
route point type (waypoint or orbit) is determined by flip
mutation.

5. SCENARIOS
In this paper we consider six cases for each of two scenar-

ios. The first scenario we refer to as the Gauntlet, illustrated
in Figure 2. It is an operationally unrealistic, but challeng-
ing scenario that features a line of staggered air defense units
(23 SAM sites and 10 early warning sites) providing overlap-
ping coverage to each other and protecting the point-valued
targets in the rear. The Blue strike plan is to fly through the
center of the air defenses, get into their rear, then disperse
to their assigned targets. This requires the JSEAD units to
create a corridor of protection for the strikers through the
middle of the Gauntlet. A perfect solution would allow the
ten Blue strikers to achieve a targets at risk score of 100
points with no attrition and require no JSEAD units.
The second scenario, illustrated in Figure 3, we refer to

as Point-defense. The Point-defense scenario is more oper-
ationally realistic than the Gauntlet and features ten loca-
tions, each with two targets, two SAM sites, and one early
warning radar in close proximity. In addition, there are
three SAM sites acting as “free agents” that have a large
location uncertainty (100 nautical miles) in every case. The
Blue strike plan is for ten strikers to enter on a single axis,
slanting in from the upper left, and departing from that axis
to approach targets with minimal exposure to SAMs. The
JSEAD units are significantly challenged by this scenario

Figure 2: Gauntlet scenario.

Table 1: Scenario cases
Air Defense

Location Uncertainty SAM Site
Case (Nautical Miles) Aggressiveness
A 0 Low
B 20 Low
C 40 Low
D 0 High
E 20 High
F 40 High

since they must protect both the main ingress axis and the
individual target approach axes of the strikers.
We ran six different cases for each of these scenarios, where

each case models a particular location uncertainty and level
of aggressiveness of Red air defense units. Table 1 lists the
scenario cases. Regardless of the location uncertainty for
all other air defense units, all Point-defense cases include
3 SAM sites with a location uncertainty of 100 nautical
miles (free agents). For the low aggressiveness cases, the
SAM sites do not emit until they receive a cue from the
early warning radars that a target aircraft is within detec-
tion range of the SAM site target acquisition radar. The
high aggressiveness cases differ in that the SAM site target
acquisition radars will also emit periodically in an attempt
to detect target aircraft independently of the early warning
radars.

6. RESULTS
The results presented here are from one typical run of each

case for both scenarios to illustrate how a mission planner
would use this information to gain insights for construct-
ing the mission plan. For each case, Red targets and Blue
strikers and weasels are valued at ten points each, and each
jammer is valued at fifty points (consistent with the notion
that jammers are high value, high demand assets). For ex-
ample, a plan that results in eight targets placed at risk, loss
of one striker and one jammer, and use of two jammers and
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Figure 3: Point-defense scenario.

three weasels, has fitness scores of (80, 60, 130) for targets
at risk, attrition, and SEAD cost. Each case was run us-
ing a population size of 200 individuals for 300 generations
with fitness being approximated as the average score us-
ing ten scenario variations, where the variations differ from
each other in terms of pseudo-randomly generated locations
of Red units. The pool of available JSEAD units consisted
of five jammers and ten weasels, for a maximum SEAD cost
of 350. The first 150 generations forced all JSEAD units
to be active, resulting in a constant, maximum SEAD cost
during this period. The remaining generations added SEAD
cost as a fitness measure by allowing the GA to manipulate
SEAD resource selection. The crossover probability was 0.8
and the mutation probability was 0.01.

6.1 Gauntlet Scenario
Figures 4–6 illustrate the results from runs of cases A–

C of the Gauntlet scenario. Each of the figures plots the
non-dominated individuals in the final population by their
targets at risk and attrition scores versus the SEAD cost.
To identify the non-dominated individuals, we first evalu-
ated each individual in the final population against 1000
random scenario variations to determine the average and
standard deviation scores for targets at risk and attrition
(SEAD cost is invariable for a given individual). We then
did a non-dominated sort using the average objective func-
tion scores to identify the individuals on the Pareto front.
The average scores are marked by symbols and the standard
deviation by error bars. The standard deviation provides a
measure of robustness of a particular individual in that ob-
jective function, where smaller error bars indicate a greater
tolerance to variation. Each attrition score for a given SEAD
cost corresponds to a targets at risk score from the same
non-dominated individual at the same SEAD cost. There is
usually only one non-dominated individual for each SEAD
cost and, therefore, the targets at risk and attrition scores
at that SEAD cost correspond directly to that individual.
The figures show an expected trend adequately captured

by the GA. That is, as scenario uncertainty increases, the

Figure 4: Non-dominated individuals from Gauntlet sce-
nario case A.

Figure 5: Non-dominated individuals from Gauntlet sce-
nario case B.

Figure 6: Non-dominated individuals from Gauntlet sce-
nario case C.
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Figure 7: Case B of the Gauntlet scenario before attack by
SEAD forces implementing a plan with SEAD cost of 80.

SEAD cost to handle that uncertainty also increases. Fig-
ure 4 shows that when Red locations are known (case A)
the Gauntlet scenario requires a SEAD cost of at least 50
points (corresponding to one jammer) in order for Blue to
be effective. With a SEAD cost of 60 points — one jam-
mer and one weasel — Blue can expect excellent mission
performance resulting in low attrition and high targets at
risk. Note also that although the locations of all units are
known, other stochastic factors result in significant standard
deviations for the plan with SEAD cost of 50. As location
uncertainty increases in case B (Figure 5), a minimum SEAD
cost of 70 (one jammer and two weasels) is required to keep
attrition below 20 points, but increasing SEAD cost to 90
by adding weasels results in further reducing attrition and
increasing targets at risk to nearly 100, while also increas-
ing robustness (reducing the standard deviation indicated
by the error bars). Clearly, a mission planner would have to
decide whether the additional SEAD cost is worthwhile, but
is now armed with the information necessary to justify such
a decision. Figure 6 shows that case C — with the highest
location uncertainty — results in degraded attrition, targets
at risk, and robustness even with higher SEAD costs than
for case B. A SEAD cost of 100 is sufficient to achieve re-
sults near the best possible, although the highest SEAD cost
improves robustness.
We expect that figures like those presented here would

guide a planner to the set of plans that correspond to an
attractive range of SEAD costs. For example, if case A is
expected, then the planner would consider plans from case
A with SEAD costs of 60. If case B is expected, then the
planner would focus on plans with SEAD costs in the range
of 70 to 90.
Figure 7 shows ingressing SEAD forces implementing a

plan with SEAD cost of 80 against an example of case B of
the Gauntlet scenario. Figure 8 shows the same scenario af-
ter the SEAD forces have done their work, clearing the mid-
dle of the Gauntlet for the ingressing strikers. The weasels
(marked with “W”), jammers (“J”) and strikers (“S”) ap-

Figure 8: Case B of the Gauntlet scenario after successful
attack by SEAD forces.

proach the Gauntlet from the top of the figure. This plan
provides a number of interesting insights and ideas for a mis-
sion planner, beginning with the use of a weasel to lead the
strike and clear any forward SAM sites so that a jammer
can orbit closer to deeper SAM sites. This weasel fires at
SAM target tracking radars from close to max ARM range,
but cleverly ingresses just deep enough into the SAM enve-
lope to cause the victim radar to emit long enough for the
ARM to home to and destroy the target. The second and
third weasels are focused on SAM sites more directly in their
path (ARM firing range is much shorter than for the first
weasel). Their function is to “blow holes” in the defense for
the strikers. The second weasel escorts the jammer, leading
it slightly as the jammer takes up its orbit position, then
strikes SAM sites in the middle of the Gauntlet. The third
weasel lags the others, but precedes the strikers, attacking
any remaining SAM sites that might remain in their path.
This plan provides other insights and ideas to a mission plan-
ner, but those discussed here adequately show that the GA
is capable of discovering innovative and operationally useful
ideas to be implemented in real mission plans.

6.2 Point-defense Scenario
Figures 9–11 show the results from runs of cases A–C

of the Point-defense scenario. These results show different
trends from the Gauntlet scenario results, consistent with
the different approach to protecting targets. First, as with
the Gauntlet, the least attrition occurs when air defense lo-
cations are known (case A). However, as might be expected,
considerably more SEAD resources are required in this sce-
nario than in the Gauntlet. Cases B and C have similar high
attrition (around 50), although case C requires fewer SEAD
resources to achieve this level of attrition. Also, with higher
SEAD resources (above 250 SEAD cost), case C has greater
targets at risk than case B. Contrary to the Gauntlet sce-
nario, case B is better for Red and worse for Blue than case
C. In case B the location uncertainty leaves the SAM sites
close enough to protect their targets, while case C’s greater
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uncertainty would occasionally leave targets unprotected.
Figures 12–14 show the results from runs of cases D–F.

Recall that these cases correspond to cases A–C in terms of
location uncertainty, but that the SAM sites are more ag-
gressive. Comparing case D with case A shows only minor
differences in average scores, although robustness in both
targets at risk and attrition are significantly better in case
D. Comparing cases E and F with cases B and C shows that
higher SAM site aggressiveness signficantly reduces Blue’s
attrition and improves robustness, apparently due to greater
destruction of threatening SAM sites. In fact, further com-
paring these cases with cases A and D shows that more
aggressive emission effectively negates any Red advantage
gained by location uncertainty, and improves Blue’s robust-
ness as well. These results are very interesting and are con-
sistent with the emission control (EMCON) doctrine, which
states that air defense units should not emit unless neces-
sary since emission exposes one’s location to the enemy with
potentially lethal consequences. They also hint at the po-
tential value of using measures, such as decoys, to encourage
Red to emit.

7. CONCLUSIONS AND FUTURE WORK
The results presented here illustrate the potential value

of this approach that provides mission planners with a set
of non-dominated plans and the quantitative information
needed to select particular plans for further consideration.
This information includes assessments of both expected per-
formance from the average score, and the robustness of the
plans from the standard deviation. We’ve also illustrated
how a selected plan can serve as a model to provide mean-
ingful insights to the mission planner for construction of
actionable mission plans.
While our results illustrate the value of this approach,

they also lead us to consider the direction of future work.
Planned future work includes refinement of the current algo-
rithm, including GA parameters and development of tech-
niques for adaptively varying the number of generations and
number of scenario variations for objective function evalu-
ation. Also, while our current approach develops mission
plans that consider variations in locations of Red air de-
fense units, we would also like our mission plans to be ro-
bust to variations in the numbers and types of air defense
units, as well as the tactics they employ. Further, we’d like
these variations to reflect points on Red’s Pareto front. This
suggests the potential value of a coevolutionary approach
in which we simultaneously evolve Red’s plan with that of
Blue. This should lead to robustness across a greater range
of variations, and could also provide insight into Red’s best
configuration and tactics.
A second path for further exploration is to reconsider the

role of the mission planning system. Due to the dynamic
nature of warfare, the mission plan should not be considered
a script to followed, but rather a statement of mission goals
with an initial plan to be adapted to achieve those goals.
In that sense, the mission planning system should seek to
produce plans that are both robust and flexible, meaning
that we prefer plans that are designed to promote dynamic
replanning. The GA-based mission planning system must
account for onboard, dynamic replanning when developing
mission plans. The GA may also select the most appropriate
replanning algorithms (perhaps implemented as intelligent
agents) for each platform as part of the mission plan. Such

Figure 9: Non-dominated individuals from Point-defense
scenario case A.

Figure 10: Non-dominated individuals from Point-defense
scenario case B.

Figure 11: Non-dominated individuals from Point-defense
scenario case C.
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Figure 12: Non-dominated individuals from Point-defense
scenario case D.

Figure 13: Non-dominated individuals from Point-defense
scenario case E.

Figure 14: Non-dominated individuals from Point-defense
scenario case F.

a capability could significantly improve the performance of
the mission planning system and the units that implement
and adapt the mission plan.
A third path for exploration is to expand this capability

beyond mission planning and into the domain of campaign
planning and control. Many of the results presented here,
especially for the challenging Point-defense scenario, suggest
unacceptable risks for some missions. A GA-based campaign
planning tool would reduce risk by creating missions that set
the stage for later missions. For example, such a tool might
bias early missions toward pursuit and destruction of air de-
fenses so that later strike operations would be more likely
to succeed. As the environment changes, the campaign plan
would automatically be adapted by the GA. Such a cam-
paign planner/controller would be a significant extension of
the capability presented here.
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