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ABSTRACT

We present a multi-objective evolutionary algorithm appro-
ach to the map-labelling problem. Map-labelling involves
placing labels for sites onto a map such that the result is
easy to read and usable for navigation. However, map-users
vary in their priorities and capabilities: for example, sight-
impaired users need to maximise font-size, whereas other
users may be willing to accept smaller labels in exchange for
increased clarity of bindings of labels to sites. With a multi-
objective approach, we evolve a range of labellings from
which users can select according to their particular circum-
stances. We present results from labelling two maps, includ-
ing a difficult, dense map of Newcastle County in Delaware,
which clearly illustrate the advantages of the multi-objective
approach.

Categories and Subject Descriptors: 1.2.1 [Artificial
Intelligence]: Applications and Expert Systems — cartog-
raphy, G.1.6 [Numerical Analysis]: Optimization — con-
strained optimization

General Terms: algorithms, experimentation

Keywords: evolutionary algorithms, multi-objective opti-
misation, map-labelling.

1. INTRODUCTION

The task of map-labelling involves taking a map marked
with a number of sites, each of which has a name or label,
and arranging these labels on the map such that the result
is clear enough for the map to be useful for a given user and
task. In this definition, “clear enough” means that the labels
are readable by the user, and that it is easy to identify the
label that is associated with each site and vice versa. Map-
labelling is both an important task (maps are used in a wide
range of applications) and a difficult one (the number of la-
bellings for a given map is essentially infinite). Since users
vary widely in their abilities and requirements, different la-
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bellings will suit different users. As such, map-labelling is
usually done by hand. Automatic map-labelling offers clear
advantages, both in terms of the speed and cost of labelling,
and in terms of adapting labellings to the needs of particular
users. In addition, online map generation requires maps to
be generated automatically. Such maps clearly cannot be
labelled by hand.

The goal of generating clear labellings can be broken down
into a collection of sub-goals [9], and as such, map-labelling
is a multi-objective problem. The essence of multi-objective
problems is that candidate solutions are judged according
to multiple criteria that usually conflict with each other to
some degree. Thus, a good solution can be improved in one
criterion only by accepting worse performance in at least
one other criterion. The goal with multi-objective problems
is to generate a set of solutions that compromise in differ-
ent degrees between the different criteria — the solution
to be used in a given situation can be selected according
to the particular needs of that situation, for example, the
abilities of a given user, or prevailing market conditions, or
expected weather conditions, or so on. This requirement to
generate a set of solutions for a multi-objective problem fits
well with the basic model of evolutionary algorithms, where
a population of solutions is evolved under the influence of
a fitness function. Multi-objective evolutionary algorithms
(MOEAS) have been applied successfully to many problems
in the past [4, 1, 3, 13].

We present a MOEA approach to map-labelling that eval-
uates solutions according to three objectives:

1. font-size — within reason, bigger labels implies that a
map is easier to read;

conflicts — labels should not overlap with each other,
nor with sites;

clarity — it should be easy to tell which label belongs
to a given site, and vice versa.

This approach generates a range of maps that compromise
to different degrees between the various objectives. For ex-
ample:

e it finds automatically the biggest font-size that can
give zero conflicts and maximises clarity at that font-
size;

e it allows a user to improve map clarity if they can
accept a smaller font-size;



e it allows a user to accept a partially-labelled map if
they need greater clarity or a bigger font-size; and

e it allows a range of other compromises to suit the needs
of different users.

Thus, different users can select different labellings, depend-
ing on their individual needs.
The rest of this paper is structured as follows. Section 2

describes previous approaches to the problem of map-labelling.
Section 3 describes the essential features of our multi-objective

approach. Section 4 gives results for two example maps:
Southern Guam, with 41 sites, and Newcastle County in
Delaware, with 185 sites. Section 5 concludes the paper.

2. PREVIOUS APPROACHES

A seminal paper by Imhof [9] outlined several require-
ments for good map labelling. These have formed the basis
for all further work in the area. These requirements are:

e Legible — labels must have legible font-sizes and be
positioned in such a way that they are easily read.

e Unambiguous — each label must clearly identify a sin-
gle site and not be confused with another label or site.

e Querlap avoidance — a label should not overlap any
other label or site.

e Aesthetics — labels should not be overly clustered or
distract from map features.

Cartographers attempting to solve the map labelling prob-
lem must attempt to satisfy these subjective quality criteria
in order to achieve high quality solutions. All attempts at
automated map labellers include some subset of these re-
quirements to form their optimisation criteria.

Previous approaches tackle this optimisation process us-
ing a variety of methods. Raidl [12] uses a Genetic Algo-
rithm (GA) combined with heuristic techniques to avoid
conflicts. Raidl finds that this gives better results than an-
other approach by Christensen et al. [5] that uses simulated
annealing (SA) as its optimisation technique. A variation on
the Raidl’'s GA was proposed by van Dijk et al. [15], which
applies local optimisers in the place of a mutation operator.

Each of the above approaches limits labels to eight pos-
sible positions around a site and define a fitness function
calculated using the number of overlapping labels and the
desirability of different label positions. Under this represen-
tation, the fitness of a map-labelling M is calculated as:
> e+ LN U),ci € {0,1},7; € {1..N}

=1

f(M)

where n is the number of sites for M, N is the number of
possible label positions, ¢; is a binary value equalling one
when a conflict occurs for label ¢ and zero otherwise, and r;
is the preference value of the current label position for la-
bel i. These approaches primarily differ in the optimisation
strategy used rather than the function of labelling quality
being minimised.

Preuf} [11] demonstrates an evolutionary strategy (ES) for
solving the map labelling problem using a polar coordinate
scheme to represent label positions, allowing many more la-
bel positions to be taken than the previous approaches out-
lined above. Under Preuf’s ES, the fitness function incorpo-
rates more than label to label conflicts when evaluating the
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fitness of a candidate solution. The fitness function factors
in a variety of label overlap conflicts, a label to site distance
measure, and position preferences. The fitness function in-
cludes a series of weights that are chosen based on the rela-
tive importance of each factor.

While SA and GA map labellers have proved useful when
used to minimise conflicts, they have not been used to op-
timise for other objectives that relate to the overall quality
of a labelled map. Even though conflicts are an important
measure of map quality, Imhof [9] discusses a number of
competing considerations for producing maps of high qual-
ity. For example, neither the SA or GAs described previ-
ously attempt to optimise for the font-size or clarity of map
labels, each of which has an effect on the overall usability of
a map.

3. AMULTI-OBJECTIVE APPROACH

Following the work outlined in Section 2, we restrict our
experimental investigations to problems containing only point
sites and do not include more complex sites such as lines (for
example rivers) or areas (for example regions) in our maps.
We also restrict the problem to constrain all labels within a
particular labelling to use the same font-size.

The principal issues in the application of a MOEA to a
problem are the definitions of and interactions between the
objectives, the choice of representation, and decisions about
the various parameters involved in the execution of the algo-
rithm. We omit the aesthetics objective because it is difficult
to quantify.

3.1 Definition of objectives

We use three objectives that represent different priorities
that users might place on a labelling.

Font-size Within reason, we’d like to use the largest font-
size that fits on the map, as this is likely to make the
map easier to read quickly. However, a larger font-size
is likely to involve compromise on the other two objec-
tives. In order to cast the problem uniformly in terms
of minimisation, we define F'S to be the difference be-
tween a pre-determined largest font-size and the given
font-size. So, in order to maximise font-size, we need
to minimise FS.

Conflicts Labels should not overlap with each other, nor
with the sites on the map. Following the ideas of
Preufl [11], we weight different types of conflicts ac-
cording to their perceived importance: label/label con-
flicts are weighted at 2, label/site conflicts are weighted
at 3, and label/map-edge conflicts are weighted at 8.
The weights of all the conflicts on the map are summed
and the result minimised. Where conflicts cannot be
avoided involving a given subset of the labels, a choice
has to be made between omitting some of those labels,
or living with the overlaps.

Clarity It should be clear which label belongs to each site,
and vice versa, ideally with a single glance at the map.
Labellings may be unclear in the sense that they have
local ambiguities which can resolved by taking a more-
global perspective (e.g. L1 and L2 are equidistant
from S1, but elsewhere it is clear that L2 belongs to
52, so L1 must belong to S1). Worse are labellings
which have ambiguities that cannot be resolved at all,



in which case the map is probably unusable. These
differences are illustrated in Figure 1.

We define a measure of clarity called ROD based on
the ratio of the distance to the site’s own label and
the distances to other sites’ labels. The ROD of a
map-labelling M is calculated as:
dist(ls, s
ROD(M DN 8)
Z Z dist(ls, s)
s€Ss'es
where S is the set of sites, I, is the label of site x,
and dist(y, x) gives the Euclidean distance between the

site = and the closest point on label y. Map clarity is
maximised when the ROD is minimised.

Using the definitions above, the map-labelling problem is
defined as a multi-objective optimisation problem involving
three objectives (F'S, conflicts, and ROD) that need to be
minimised. Note that the relative importance of these ob-
jectives varies from user to user and from map to map: this
is the fundamental reason for taking a multi-objective ap-
proach to the problem.

3.2 Representation of labellings

There are two components in the representation of a la-
belling. First, each individual has an integer that encodes
the F'S used in the labelling. The major component of the
representation is the set of label positions, one for each site
on the map. Label positions are represented using continu-
ous distance and angle co-ordinates, allowing the label for a
site to be placed anywhere around that site. However, using
simple polar co-ordinates to a fixed point on the label gives
continuity problems: often small changes in the values in
the representation give large changes in label position, and
vice versa. We use a sliding label scheme due to Hirsch [8]
and extended by Preufl [11], where each label position is
represented by a pair r, 0:

r is the distance between the site and the closest point on
the bounding box of its label, and

0 is the angle from the site to the closest point on the bound-
ing box of its label, modified slightly to account for
cases where the label crosses the horizontal or vertical
lines from the site.

This scheme is illustrated in Figure 2. We also define a
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Figure 2: Demonstration of various label positions
under the sliding label scheme.

minimum value for r to prevent labels conflicting with their
own sites, and a maximum value, to disallow positions that
are inherently unclear.

Thus for a map with n sites, the representation of an
individual contains 2n + 1 values which are optimised by
the evolutionary algorithm.

3.3 Algorithm details

To perform the optimisation, we use a fairly straightfor-
ward evolutionary strategy with the following parameters:

e Population size: 400.
e Mutation probability: 2/n for labels; 0.15 for font-size.

e Recombination: uniform crossover with probability 1.0;
4 parents.

e Selection: non-dominated sort with crowdedness com-
parison-operator by Deb et al. [6].

e Local optimisation: applied every 80 generations, and
additionally at the end of the last generation.

Details of experiments to determine these values can be
found in Bradstreet’s thesis [2].

Selection uses Goldberg’s Pareto-ranking of individuals [7]
and a crowdedness comparison-operator by Deb et al. [6] to
discriminate within ranks where necessary. However, we en-
hance the standard definition of dominance to accord some-
what more significance to the conflicts objective than to the
other two objectives:

dominates(X,Y) iff paretoDominates(X,Y) or
conflicts(X) < conflicts(Y) — 10
and FS(X) < FS(Y)

where paretoDominates(X,Y) is defined to return true if
and only if X is “better” than Y in at least one objective
and at least equal to Y in all other objectives.

This modified definition for dominates reflects the fact
that maps with too many conflicts are inherently difficult to
read and are unlikely to be acceptable. Note however that a
dominated labelling is not necessarily condemned; it is just
less likely to survive and reproduce.

In addition, we apply local optimisation at various stages
of the algorithm to better improve overall performance, re-
sulting in a form of memetic algorithm [10]. Local optimisa-
tion consists of a “hill-climbing” local optimiser which makes
small changes to a label’s position, accepting the new posi-
tion only if it dominates the old one. Labels are processed in
a randomised order to promote diversity, as in Raidl [12]. A
similar technique was used in the map-labelling GA of van
Dijk et al. [15] in lieu of mutation.

4. EXPERIMENTAL RESULTS

To show the effectiveness of our MOEA map-labelling sys-
tem, we report results on a series of experiments performed
on two maps of varying difficulty:

1. Southern Guam — a relatively small map with 41
sites. Figure 6 plots three potential map-labellings for
this map. Two regions are difficult to label — the
first midway down the right-hand side where a num-
ber of sites (Asagas, Mayaya, Asfaja, Tumon Chama,
Peca, Chagamin Lago, and other surrounding sites)
are tightly clustered; the second in the bottom left
corner where five sites (Talona, Toa, Joatan, Lingae,
and Julog) are close together.



Bombala

Alburye JBombala ° Bombg.la °
Albury . Albury  Collins
o o ° Collins o o
Dodge Collins Dodge Dodge

(a)

Figure 1: Three labellings of varying clarity. (a) is an ideal labelling, (b)

probably unusable.

2. Newcastle County, Delaware — a harder map with
185 sites. The combination of long label names and the
density of sites causes difficulties, especially at larger
font-sizes. Figure 7 plots two potential map-labellings
for this map.

Data for site coordinates are translated from longitude and
latitude values taken from GNIS databases [14].

Each label is represented by the single bounding-box that
contains the entire text of the label. We choose an upper-
case font for label names to ensure better visual correspon-
dence between the displayed position of the label relative to
its site and the algorithm’s “perception” of its proximity’.
Conflicts are registered when a label bounding-box either
intersects one or more of the borders of the map, intersects
another label bounding-box, or contains a site within its
bounding-box. As explained in Section 3.1, conflicts are
counted in terms of the number of labels involved, adjusted
for the severity of the type of conflict.

4.1 Experiment 1

In this experiment, we report the results of five different
runs of MOEA map-labelling system for the map of South-
ern Guam, each run lasting 500 generations. The MOEA
attempts to optimise for seven font-sizes: 12pt to 18pt in-
clusive.

Figure 3 plots the final non-dominated Pareto fronts for
the smallest and largest font-sizes for these five runs.

We observe from Figure 3 that for the 12pt font-size, each
of the five runs has converged to approximately the same
non-dominated Pareto front. Tight convergence to a simi-
lar non-dominated Pareto front suggests that the problem
is relatively simple at this font-size as the MOEA is repeat-
edly able to find (high quality) solutions of about the same
quality. We also observe that the MOEA has found a zero-
conflict map-labelling for each run for the 12pt font-size,
thus suggesting this approach is applicable to generation of
zero-conflict maps in a relatively short amount of time.

Alternatively, for the 18pt font-size, Figure 3 shows far
less convergence to the same non-dominated Pareto front
for the five different runs. In this case, we see more variance
in final Pareto fronts, especially at low numbers of conflicts.
This suggests that the problem is harder at this font-size
than at the smaller font-size. This is as expected — as the
font-size increases, labels take up more space in the map and
hence are more likely to overlap with other labels. Added
to the stochastic nature of the MOEA, the increased diffi-

!Better visual correspondence can be achieved by using
bounding-boxes for each character in the label, however
overall running time is greatly increased.
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Figure 3: Final non-dominated Pareto fronts for the
smallest and largest font-sizes for five runs of the
MOEA map-labelling system for the map of Guam.

culty in arranging the labels at this font-size without conflict
suggests that more time is needed to ensure convergence to
good solutions for this font-size.

Figure 3 also shows that the MOEA was able to find a
zero-conflict map-labelling for the 18pt font-size in only one
of the five runs (Run 2). While three of the other four
runs were able to find a two-conflict map-labelling, one run
(Run 4), was unable to find a two-conflict map-labelling.
As expected, we observe that the measure of clarity for the
18pt zero-conflict map-labelling is relatively poor, although
oddly it is better than the measure of clarity obtained for
the 18pt two-conflict map-labelling of Run 1. Again, this
highlights the difficulty of this problem at this font-size.

Returning to the 12pt font-size, Figure 3 shows that all
five runs produce a final non-dominated Pareto front con-
taining no more than six conflicts at this font-size. It seems
no better clarity can be obtained by allowing more than six
conflicts; indeed, all 7-conflict and higher map-labellings are
dominated by other members in the final population. The
relatively small font-size means labels can be arranged in
such a way that only six conflicts are needed to maximise
overall map clarity.

Figure 4 plots all the final non-dominated Pareto fronts
for the different font-sizes of Run 1 from Figure 3.

We observe from Figure 4 that the MOEA is able to find
zero conflict map-labellings for five of the seven font-sizes
for this run. Convergence to similar quality solutions is ob-
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Figure 4: Final non-dominated Pareto fronts for the
different font-sizes of Run 1 from Figure 3 for the
map of Guam.

served at the four lowest font-sizes, however more variability
in the quality of solutions at the the larger font-sizes is ev-
ident. As before, this is as expected — increased font-size
necessarily makes the problem more difficult as labels oc-
cupy more space in the map.

Figure 5 shows the evolution of Run 1 from Figure 3
through time. For each of the reported generations, the non-
dominated Pareto front considering only the clarity measure
and font-size objectives is plotted. As expected, we observe
a general convergence towards the origin of the graph (recall
that the objectives are being minimised) over the course of
the run. We also observe asymptotic improvement in solu-
tion quality typical of optimisation algorithms — relatively
large gains are obtained in the first few reported generations
compared to the later generations.

90

T
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40 generations ---x---
60 generations --
80 generations

100 generations -

140 generations -

200 generations -~

Final generation ---

80

70

ROD

15
Font-size (pt)

Figure 5: Progress through generations for Run
from Figure 3 for the map of Guam.

Similar plots comparing the other combinations of the ob-
jectives (ROD versus conflicts and conflicts versus font-size)
show a similar trend, but for brevity, have been omitted.

Figure 6 plots three non-dominated map-labellings for
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Run 1 from Figure 3. Figure 6(b) plots the final non-dominated
map-labelling with the largest font-size that contains no
conflicts. This map contains no conflicts and has a rela-
tively large font-size, but has poor (relative to the other
non-dominated map-labellings) clarity. Most sites on the
map are labelled well (there is no ambiguity about which
site each label is attached to); the relatively poor clarity
can be attributed to a few sites: Lingae (in the bottom left
corner), Tumon Chama, and Peca (both midway down the
right-hand side) contribute most to the relatively poor clar-
ity of this map. Due to the large font-size and the need for
zero conflicts, these labels are “pushed” further away from
their sites than desired, creating ambiguity about which sites
these labels are actually attached to. Indeed, examining Fig-
ure 6(b), shows that some deductive work is required to cor-
rectly determine which site the Lingae label refers too. Only
after attaching the surrounding labels to their most obvious
sites can we determine the correct site for the Lingae label.
To a lesser extent, this is also true for the ambiguity created
for the Tumon Chama and Peca labels midway down the
right-hand side of the map.

The clarity of Figure 6(b) can be improved by either de-
creasing the font-size, increasing the number of conflicts
or both. Figure 6(a) plots the final non-dominated map-
labelling that contains the same number of conflicts as Fig-
ure 6(b), but with a font-size of 12pt instead of 17pt. Cor-
respondingly, the map-labelling represented in Figure 6(a)
has a ROD value of 5.92 compared to a ROD value of 12.01
for the map-labelling shown in Figure 6(b). Examination of
Figure 6(a) shows this decrease in ROD value corresponds
to a better clarity map — the ambiguity of which sites the
Lingae, Tumon Chama, and Peca labels are attached to is
greatly reduced. Indeed, there is very little ambiguity about
the true attachment of any label in this map-labelling. How-
ever, the font-size for Figure 6(a) is significantly smaller than
Figure 6(b). This decreases readability, especially for sight-
impaired readers.

Another way of increasing the clarity in Figure 6(b) is to
compromise on the number of conflicts and allow intersec-
tions between two or more labels, or labels and sites. Fig-
ure 6(c) plots the final non-dominated map-labelling with
the same font-size as Figure 6(b), but with four conflicts
instead of none. Comparison of Figure 6(c) to Figure 6(b)
shows that the clarity of this map-labelling is also increased
— again, there is very little ambiguity about which sites the
Lingae, Tumon Chama, and Peca labels are attached too.
However, the cost for this improvement in clarity comes in
the increase in conflicts. In this map-labelling, we see that
the Lingae label intersects with the neighbouring Joatan la-
bel and that the Tumon Chama and Peca labels intersect
with each other. After some consideration, this is as ex-
pected — these labels were the cause of the poor clarity
measure of Figure 6(b), hence significant improvements in
clarity can be made by moving these labels closer to their
correct sites. Indeed, the map-labellings of Figure 6(c) and
Figure 6(b) differ by very few label positions.

At first thought, the map-labelling of Figure 6(c) may
appear of little benefit. However, map-labellings with con-
flicts can be beneficial in a number of situations. First, for
sight-impaired readers, compromising on font-size may not
be possible and hence conflicts may need to be tolerated.
Alternatively, map-labellings with conflicts may also be use-
ful when we consider partially-labelled maps. Consider the
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Figure 6: Different map-labellings for Run 1 from Figure 3 of our MOEA map-labelling system for the map
of Guam. (b) represents the final non-dominated map-labelling with the largest font-size that contains no
conflicts. (a) represents a map-labelling with better clarity obtained by compromising font-size. (c) represents
a map-labelling with better clarity obtained by compromising the number of conflicts.

TThis map has been scaled to fit page requirements; text may not appear at quoted font-size.
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map-labelling shown in Figure 6(c) with the Joatan label
removed. Using this partially-labelled map, the location of
Lingae is immediately apparent as the Lingae label is lo-
cated very near to the correct site. This is not the case in
Figure 6(b) — as described earlier, some deductive work is
required to correctly determine the true site for the Lingae
label in this map-labelling. The use of partially labelled
maps may be particularly useful in online map-generation,
where a user may only be interested in a few sites — the
algorithm may be able to present a better-clarity partially-
labelled map than possible when considering a zero-conflict
fully labelled map.

4.2 Experiment 2

In this experiment, we report the results of the MOEA
map-labelling system for the map of Newcastle County in
Delaware, run for 2500 generations. The MOEA attempts
to optimise for three font-sizes: 8pt to 10pt inclusive.

Figure 7 plots two non-dominated map-labellings for one
run of our MOEA map-labelling system for the map of New-
castle County in Delaware. Figure 7(a) plots the final non-
dominated map-labelling with the largest font-size that con-
tains no conflicts. Figure 7(b) plots the final non-dominated
map-labelling with the best clarity that contains no conflicts.

Since both map-labellings are non-dominated and con-
tain no conflicts, Figure 7(a) (which has a larger font-size
than Figure 7(b)) must have worse clarity than Figure 7(b).
Comparing Figure 7(a) to Figure 7(b), we see a number
of differences between the two map-labellings than can be
attributed to the difference in clarity between the two map-
labellings. These regions are highlighted via bolded ellipses
in Figure 7(a). Examining these regions in Figure 7(a), we
observe local ambiguity about the attachment of labels to
sites that requires some deductive work to determine the
correct map-labelling. The corresponding regions in Fig-
ure 7(b) are much less ambiguous — labels are more clearly
attached to their correct site and hence easier to determine
from casual inspection. Overall, the map of Figure 7(b) has
better clarity than Figure 7(a).

5. CONCLUSIONS AND FUTURE WORK

We have presented a multi-objective evolutionary algo-
rithm approach to the map-labelling problem. Being multi-
objective, the approach returns a range of solutions that
present different compromises between the three criteria of
maximising font-size, maximising the clarity of bindings,
and minimising the number of conflicts on the map. The
approach finds automatically the largest font-size that can
give zero conflicts for a map, and it maximises clarity at that
font-size. The set of solutions returned also allows users to
select between other labellings that sacrifice one objective
in favour of the others: for example, accepting a smaller
font-size to attain greater clarity, or accepting a map where
some labels overlap to attain greater clarity at large font-
sizes. This approach is a significant step towards improving
the usefulness of fully-automatic map-labelling systems.

Future work in this area will concentrate on three areas:

1. Currently, our map-labelling system proceeds by con-
straining all labels in a map-labelling to use the same
font-size. As seen in the experiments above, this may
induce local ambiguities in regions of the map, in par-
ticular at larger font-sizes. Alternatively, a representa-
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tion that uses a region specific (or label specific) font-
size can be used, thus allowing each region (or label)
to optimise the font-size for its surrounding neighbour-
hood, potentially reducing ambiguity in the map.

. The current clarity objective is defined entirely geo-
metrically, in terms of the relative distances between
sites and labels. An alternative might be to define an
objective that reflects the logical process that users
employ to disambiguate closely-spaced labels.

. We used a modified definition of dominance to reflect
the perceived importance of avoiding conflicts relative
to the other two objectives, as defined in Section 3.3.
This is probably the most innovative feature of the al-
gorithm, and we intend to study its effects and deter-
mine how it can be generalised to other applications.
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Figure 7: Different map-labellings for the map of Newcastle County in Delaware for one run of our MOEA
map-labelling system. (a) represents the final non-dominated map-labelling with the largest font-size that
contains no conflicts. (b) represents the final non-dominated map-labelling with the best clarity that contains
no conflicts.
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