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ABSTRACT 
To help chemists design new drugs, we created a tool that uses 
interactive evolution to design drug molecules, the “Molecule 
Evoluator”. In contrast to most other evolutionary de novo design 
programs, the molecule representation and the set of mutations 
enable it to both search the chemical space of all drug like 
molecules extensively and to fine-tune molecular structures to the 
problem at hand. Additionally, we use interaction with the user as 
a fitness function, which is new in evolutionary algorithms in drug 
design. This interactivity allows the Molecule Evoluator to use the 
domain knowledge of the chemist to estimate the ease of synthesis 
and the biological activity of the compound. This knowledge can 
guide the optimization process and thereby improve its results. 
Chemists of our department using the Molecule Evoluator were 
able to find six novel and synthesizable druglike core structures, 
indicating that the Molecule Evoluator can be used as a tool to 
enhance the chemist’s creativity. 

Categories and Subject Descriptors 
J.2 [Physical Sciences and Engineering]: chemistry, J.3 [Life 
and Medical Sciences]: health. 

General Terms 
Algorithms, Design, Experimentation, Human Factors. 

Keywords 
Drug design, molecule, interactive evolution. 

1. INTRODUCTION 
In today’s world, pharmaceuticals have a major impact on both 
public health and the economy. The pharmaceutical industry is a 
very large industry, with global sales of 491.8 billion dollars in 
2003, estimated to grow to 496.6 billion dollars in 2004 [5]. 
Despite the large sales and the past and current successes in 
curing and alleviating diseases, the pharmaceutical industry is still 
looking for newer and better drugs. Most bacterial diseases can be  

cured and the life span of people with cardiac illnesses is greatly 
improved by cholesterol-lowering and blood-pressure normalizing 
medication. Yet viral diseases such as AIDS, mental diseases such 
as Alzheimer’s disease, and diseases in which body cells 
themselves turn traitor, such as cancer, are still difficult or even 
impossible to fight, and even in the case of AIDS the virus can 
only be kept at bay at the price of serious side effects. 
However, drug design continues to be a slow and expensive 
process in which it takes 10-15 years and about 800 million 
dollars to bring a drug to the market [7]. This is because it is 
difficult to find compounds which obey the strict criteria of safety 
and effectivity. It is therefore estimated that only one in about 
5000 screened candidate compounds reaches the drug market 
[16]. 
To aid drug design, researchers in the pharmaceutical industry 
have been turning to computational methods. Among these 
methods are evolutionary algorithms, which have been applied as 
optimizers in several areas of drug design, such as designing 
compound libraries and finding structure-activity relationships. 
Evolutionary algorithms have played an especially interesting role 
in de novo design, the design of new compounds that could be 
suitable as a drug. 
There have been several experiments in de novo drug design using 
evolutionary algorithms [8, 9, 10, 14, 15, 17, 19]. However, 
reviewing these experiments leads to the conclusion that despite 
the power inherent to global optimization methods, evolutionary 
algorithms are still difficult to apply to molecule design.  
One problem in applying evolutionary algorithms to molecules is 
that molecules are graphs which have to obey certain chemical 
rules. Converting a molecule into a bitstring or fixed-size vector 
of numbers as used in conventional evolutionary algorithms will 
therefore probably result in mutations and crossover producing 
invalid molecules, which would need complex repair algorithms 
to correct. 
The second major problem in applying evolutionary algorithms in 
drug design is obtaining a useful fitness function. While currently 
the most common methods use a similarity index to a reference 
compound [8, 9, 10, 17] or calculations of binding strength to a 
target [15, 19], only few examples have been published of 
successful applications of evolutionary algorithms to find new 
structures. Only Schneider [17] claimed success since his 
algorithm found a compound with a similar kind of activity as the 
lead compound, be it a 1000-fold less potent.  
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The main reasons for this only limited success seem to be that the 
compounds designed by computer are often not very easy to 
synthesize in the laboratory and that the fitness functions used are 
such poor approximations of structure-activity relationships that 
the noise in the fitness landscape makes true optimization 
impossible. 
In this paper we propose a new approach for using evolutionary 
algorithms in de novo drug design, a program called the 
“Molecule Evoluator”. We introduce an atom-based method with 
a set of mutation operators which contains all one-atom and one-
bond mutations and should therefore allow full exploration of the 
chemical space. This will enable fuller search of the chemical 
space and finer optimization of the molecular structure than is 
possible with most other published methods. Secondly, we use a 
fitness function which is new in evolutionary algorithms in drug 
design: we make the medicinal chemist/human drug designer 
him/herself the “fitness function” of the proposed structures. This 
would both largely eliminate structures which are difficult to 
make in the laboratory and enable the program to optimize the 
molecular structure by using the chemist’s knowledge about 
structure-activity relationships.  
We believe that this approach can be a useful one. On the one 
hand the power of the computer can be used to perform a quick 
yet elaborate search of chemical space and suggest ideas which 
might have been overlooked by the mental blocks and prejudices 
of the chemist. On the other hand, the creativity and pattern-
recognition capacities of the human chemist can ensure ease of 
synthesis and incorporate biochemical knowledge.  
Based on this molecule representation and interactive fitness we 
designed a tool called the “Molecule Evoluator” to help medicinal 
chemists in drug design.  
The overview of the remainder of the paper is as follows: we first 
discuss the representation of the molecules and the evolutionary 
operators, subsequently we will discuss how the user’s choices 
affect the fitness of the molecules. We will then shortly describe 
the graphical user interface of the tool, together with the result of 
some of our experiments in interactive drug design.  

2. MOLECULE REPRESENTATION 
A molecule can be considered to be a connected graph consisting 
of one or more atoms (vertices) connected by bonds (undirected 
edges). One of the main rules of chemistry specifies that each type 
of atom has a particular number of bonds: for example, hydrogen 
atoms can only have one bond, while a carbon atom must have 
four. In some cases this is more complicated: atoms such as sulfur 
can have several valence states, of which bivalent sulfur and 
hexavalent sulfur are the most common. In our genotype we 
handle this by creating a separate symbol for each valence state, 
so that divalent sulfur atoms are denoted by “S” and hexavalent 
sulfur atoms by “Sh”. So whether a graph represents a valid 
molecule does not merely depend on the structure of the graph, 
but also on the identity of each particular node, as can be seen in 
figure 1. 
Chemists have created various ways to represent molecules on the 
computer. Nowadays, the two most common representations are 
the MOL-file format of MDL [6] which is an adjacency list 
representation of the molecule, and the SMILES-notation [20], a 
line notation/string that is human-readable and can easily be 
transformed into a 2D-structure by a chemist. SMILES encodes 

the nonlinear parts of a molecule with brackets to indicate 
branches and numbers to label rings, as is illustrated in figure 2. 
The hydrogen atoms are by default not incorporated into the 
SMILES notation, since their presence can be deduced from the 
rules of chemical valence. 

 
Figure 1. Comparison of a valid molecule with an invalid 

molecule: Since C must have four, hydrogen one and oxygen 
two bonds, the first molecule is valid (it is commonly known as 
formaldehyde). The second molecule cannot exist: one H and 
the O have too many bonds, the N (which should have three) 

has too few bonds. 

 
Figure 2. Example of the SMILES representation of a 

molecule. One bond of each ring is chosen at random (in this 
case, the bond from the top left to the bottom left atom) and is 
designated by a unique number. Both atoms participating in 
ringbonds get the bond number(s) immediately after them in 

the line notation. Branches are indicated by brackets. 
 
When mutating and crossing molecules, however, neither of those 
representations is ideal. Since chemical valence rules explicitly 
state how many bonds any atom has, both the most common 2D-
MOL-file format and the SMILES notation take the hydrogen 
atoms and the bonds to which they are attached for granted. We 
should therefore calculate for each atom whether it has the right 
number of hydrogen atoms to be mutated in some way. To avoid 
these recalculations, we decided to explicitly add the hydrogen 
atoms to the representation. Also, since a graph representation can 
be more difficult than a string representation to cross with another 
graph or to mutate, we decided to use a SMILES-like structure as 
our main molecule representation. Making the hydrogens explicit 
we get a bracket-rich, expanded SMILES (figure 3) to which we 
can apply mutation by relatively simple algorithms. We coin this 
notation “TreeSMILES”. 

Figure 3. SMILES versus TreeSMILES. By making the 
hydrogens explicit the notation becomes less compact and 
less human-readable. However, a computer can now more 

easily see which positions can undergo a particular mutation. 
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3. CROSSOVER AND MUTATION 
Crossover is implemented like crossover in standard genetic 
programming [2]: subtrees of two different molecules are selected 
and swapped. The only complication in this case is that the trees 
represent graphs and can contain cycles, and subgraphs are not 
allowed to contain incomplete cycles. So when a subtree at a 
random “root” atom is selected, the subtree is first checked for 
unmatched ring bonds, and if these are present the current root is 
discarded and another subtree is selected for crossover. 
Mutation is the most important variance operator in the Molecule 
Evoluator. Theoretically, changing a graph into any other graph 
can be performed by a limited set of operations: adding nodes, 
adding edges, deleting nodes, deleting edges. While this would be 
sufficient from a graph-theoretical point of view, these operations 
are more complicated in a chemical system since the valence rules 
must be obeyed, and the graph must remain connected: deleting a 
carbon atom would also require deleting its attached hydrogens 
and adding a hydrogen that replaces the carbon. In the Molecule 
Evoluator, deleting an atom involves deleting the hydrogen atoms 
attached to it and renaming the atom itself into a hydrogen atom. 
The implemented mutations, graphically shown in table 1, are as 
follows:  

1) Add atom/group: this replaces a hydrogen atom in the 
molecule with a non-hydrogen atom or a larger chemical 
group such as a phenyl group. In the case of atom addition, 
the remaining bonds of the added atom are filled with 
hydrogens.  

2) Insert atom: adds an atom by inserting the new atom (which 
should have a valence of two or higher) into a bond. The 
remaining bonds of the new atom are fulfilled by adding 
hydrogens to it. 

3) Delete atom: this removes an atom that is attached to only 
one non-hydrogen atom (with a single bond) by first deleting 
the hydrogen atoms attached to it, and renaming the atom to 
a hydrogen atom. 

4) Uninsert atom: This removes an atom that has exactly two 
non-hydrogen neighbours. It removes the atom and its 
hydrogens and subsequently creates a bond between its two 
neighbouring non-hydrogen atoms. 

5) Increase bond order: if two atoms which are bonded to each 
other both have at least one hydrogen atom, those hydrogen 
atoms are removed and an extra bond is created between the 
atoms (the bond order is increased from single to double, or 
from double to triple). 

Mutation name Initial structure Final structure Initial TreeSmiles Final TreeSMILES 

Add atom   ...(C(H)(H)(C… ...(C(H)(N(H)(H))(C… 

Insert atom   ...(C(H)(H)(C...)... ...(C(H)(H)(N(H)(C...))... 

Delete atom   ..(C(H)(N(H)(H))(C... ...(C(H)(H)(C... 

Uninsert atom   ...(C(H)(H)(N(H)(C...))... ...(C(H)(H)(C...)... 

Increase  
bond order 

  ...(C(H)(H)(C(H)(H)(... ...(C(H)(=C(H)(… 

Create ring   (C(H)(H)(H)(C(H)(H) 

(C(H)(H)(H))) 

(C(1)(H)(H)(C(H)(H)( 

C(1)(H)(H))) 

Decrease 
bond order 

  ...(C(H)(=C(H)(… ...(C(H)(H)(C(H)(H)(... 

Break ring   (C(1)(H)(H)(C(H)(H) 

(C(1)(H)(H))) 
(C(C(H)(H)(H))(H)(H) 

(C(H)(H)(H))) 

Mutate atom   ...(C(H)(H)(C(H)(H)(C... …(C(H)(H)(S(C... 

Table 1. Schematic overview of the different mutations in the Molecule Evoluator. Most leave 
the TreeSMILES string fairly intact and can be performed by string editing. The only exception 

is the "break ring" mutation, which can substantially rearrange the TreeSMILES. 

NH2

NH2

NH

NH

S
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6) Create ring: similar to increase bond order, but works 
between two atoms which are not bonded to each other. 
These atoms are connected using a single bond (the two 
hydrogen atoms are changed into ring indices). 

7) Decrease bond order: if there is a double or triple bond 
between two atoms, its bond order is decreased by one and a 
hydrogen atom is attached to each of the two atoms. 

8) Break ring: the "break ring" mutation chooses a single bond 
in a ring, breaks that bond and adds hydrogen atoms to 
correct the valences. The algorithm should be able to break 
any bond in the ring, which is not easy to do with a tree 
structure [14]. To solve this problem, we converted the 
TreeSMILES into an adjacency list. In the adjacency list, any 
ring bond can be broken easily and afterwards a new 
TreeSMILES can be built. This is the only mutation where 
we found it necessary to temporarily convert the 
TreeSMILES representation of the molecule into an 
adjacency list format for easier modification. Since other 
operators such as crossover are much more easily 
implemented for a TreeSMILES string, we decided not to use 
the adjacency list for the other mutations. Changing 
representations is probably a convenient way to 
accommodate different mutations, though to our knowledge 
this technique has not been used before in evolutionary 
algorithms in de novo design. 

9) Mutate atom: a non-hydrogen atom is changed into another 
non-hydrogen atom which has a valency of at least the 
number of bonds of the original atom with other non-
hydrogen atoms. 

We also allow the user to select atoms and bonds which will 
remain unaltered by crossover and mutation. Therefore we have 
slightly modified the data structure of the TreeSMILES by using 
instead of a normal string/array of characters an array of character 
pairs, in which the first character of the pair is the normal 
TreeSMILES character, and the second character is a flag that 
indicates whether the atom or bond designated by the first 
character can be modified. 
 

4. FITNESS 
The final component of the evolutionary algorithm is the fitness 
function. So far, investigations on de novo design with 
evolutionary algorithms have used four types of fitness function:  
1) Similarity to a target molecule [8, 10] 
2) QSAR-functions [14]  
3) Docking [15, 19] 
4) Experiment [11] 
For drug design, each of these methods has its advantages and 
disadvantages. Similarity to a target molecule results in molecules 
very similar to the target molecule, in many cases even the target 
molecule itself, which is not useful for designing new molecules. 
Nevertheless, one of the few successes of evolutionary algorithms 
in de novo design has come from such an approach [17], though 
finding a molecule that binds a thousand fold worse than its 
example is maybe not a big success. QSAR-functions should be 
able to optimize activity, yet have important disadvantages. First 

they require quite a lot of reprogramming for each new class of 
molecules that is to be investigated. Secondly, they are generally 
difficult to use for finding very active compounds since they grow 
less and less reliable as the molecular structures deviate more 
from the average structure (and thereby activity) of the training 
dataset [18]. Unfortunately, this is exactly what would happen 
during optimization. Docking (calculating how well the molecule 
fits in the target protein) is still too inaccurate for optimization, 
and usually results in molecules which have an activity which is 
100-1000-fold lower than the calculated value [19]. Experiments, 
finally, are generally slow and expensive, and so far have only 
been performed for a class of molecules which are especially easy 
to synthesize but are not druglike [11]. Thus experimental fitness 
has yet to prove to be practical in a more realistic drug design 
scenario. 
As a different approach, we decided to use the user as a fitness 
function. This concept has been applied before in interactive 
evolution [1, 3]. While a user cannot know the binding strength of 
a given molecule, this defect is not much worse than the 
inaccuracy of scoring functions. Another advantage in letting the 
user choose would be that intensive feedback from a medicinal 
chemist would make the compounds easier to synthesize, and 
steer the evolution away from areas which have already been 
explored. Furthermore, the algorithm could still be easily coupled 
to experimental results or advanced computed fitness functions if 
so desired.  
Since a user cannot evaluate as many structures as a computer 
program and preliminary experiments have shown that users only 
want to see “good” structures, we added several descriptor 
calculations to the Molecule Evoluator. The selected descriptors 
are the number of hydrogen donors/acceptors, the molecular 
weight, the logP (lipophilicity), the polar surface area, the number 
of rotatable bonds, and the number of aromatic systems and 
substituents. The number of hydrogen donors/acceptors, the 
molecular weight and the logP are commonly considered to reflect 
how well a compound can pass the gut wall and enter the body 
and thus be more ‘drug like’, after Lipinski [13]. The polar 
surface area is a more modern descriptor that can also be used to 
predict this passage. Upper and lower bounds for all these 
descriptors can be set by the user as a filter to create molecules 
which are more drug like. Additionally, we implemented some 
filters to eliminate molecules with chemically undesirable 
structures, such as so-called paracyclophanes. 
The Molecule Evoluator can use two kinds of evolution. The 
normal evolution uses the population viewed by the user, which 
consists of twelve molecules, and lets the user select the best 
molecules, which are subsequently either mutated or crossed over. 
If the user wants to generate a large library of molecules which 
obey certain strict fitness criteria, an internal evolution is used 
with a population of 50 molecules, of which the best 25% (the 
fitness is the sum of squares of the deviations from the constraints, 
scaled for each physicochemical property by its range over the 
molecules of the population) are selected by tournament selection 
(tournament size 2), and are mutated or crossed for the next 
generation. This evolution lasts until a molecule has been found 
which obeys the filters. Since computing times so far are 
acceptable to the users, the evolution parameters have not yet 
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been fine-tuned for optimal performance. However, this might be 
a interesting subject to be investigated further.  
 

5. THE INTERFACE OF THE MOLECULE 
EVOLUATOR 
When the user starts the Molecule Evoluator, he or she can create 
the initial population of the program by drawing or loading 
molecules. Alternatively, the Molecule Evoluator itself can 
initialize the population with random molecules .   
After the user presses the "Go" button, a window appears that 
contains the selected old molecules (elitism is on by default) 
together with the newly generated molecules (Figure 8). The user 
can again select the most attractive molecules, press “Go”, and 
this process is repeated until the user has gathered enough ideas. 

 
Figure 4. Pressing “Go” generates mutants. Elitism (optional) 

conserves the original molecule, and some molecules are 
generated from scratch (like that in the bottom right corner). 
Most molecules however are mutants of the original molecule; 

the one in the bottom left corner is a ring closing mutant. 
Comments from medicinal chemists have led us to add three extra 
features that give the user more control over the evolution: editing 
the molecules directly, fixing parts of the molecule, and using 
filters to prevent that unsuitable molecules are shown to the user. 
We next discuss these features in more detail. 
Editing molecules is useful when the user wants to start the 
evolution with a molecule that has not been stored yet in the 
computer and must be drawn. Additionally, if during the 
evolution the user sees a molecule which inspires him/her to a 
better or more interesting structure, he or she can edit the 
molecule into the desired structure. This will allow the user to 
evolve molecules immediately from the desired structure, instead 
of having to wait until it is finally generated by the program. 
Editing the molecules is performed in the "Molecule Edit" 
window, which pops up when the user clicks on a molecule in the 
main window. Editing is similar to that in normal chemical 
drawing programs such as ISIS/Draw [21], be it that only the 
basic facilities (adding, removing and changing atoms and bonds) 
are supported. After the popup window has been closed, the 
drawn structure is converted into TreeSMILES-format. 

Fixing part of the molecule can be useful in cases where 
knowledge of structure-activity relationships might make the user 
want to ensure that a particular, necessary part of the molecule is 
present in all its descendants. The Molecule Evoluator allows this 
conservation with the “fix atoms/bonds” option, which enables 
the user to generate new molecules with the conserved part 
constant, and only variation on the “free” atoms.  
The third extra feature for user influence is the “Filter Window”. 
In the “Physical Filters” the ranges are set in which the 
physicochemical properties of a molecule must lie for the 
molecule to be incorporated into the population (for example: 
molecular weight between 100 and 400). Molecules which for 
example have too many rotatable bonds (and will probably bind 
weakly and aselectively) can be automatically eliminated by the 
Molecule Evoluator and will therefore not be shown to the user. 
Additionally, some chemical structures which are usually 
undesirable, such as hemiketals, can be forbidden in the 
“Chemical Filters”. The Molecule Evoluator creates offspring 
molecules using mutation and crossover until feasible molecules – 
fulfilling all filter conditions – have been found. 
In addition to these three main control features, there is an 
“Evolution Parameters” window in which the user can influence 
the evolutionary process itself instead of the molecules. Via this 
window the user can steer evolution by, amongst others, 
enabling/disabling certain kinds of mutations. For example, the 
“decrease bond order” mutation tends to partially reduce phenyl 
rings, which is chemically undesirable. Disabling this mutation (as 
an alternative to fixing the phenyl bonds explicitly) will protect 
the bonds from being reduced. This will however also prevent 
useful mutations, such as those which reduce a ketone (C=O) to 
an alcohol (CHOH). An alternative would be a special version of 
the "decrease bond order" mutation that does not reduce aromatic 
rings, this might however just make the program harder to 
understand and use.  
The “Evolution Parameters” window (Figure 5) has several 
options to influence the evolution. 
The main group of parameters decides the relative amounts of 
crossover and mutation, which can be set between 0 and 100%. 
Since in most cases mutation is preferred over crossover, the 
default settings are mutation 80% and crossover 20% (and so are 
applied with probabilities of 0.8 and 0.2 respectively). 
The second option is whether it is allowed for the Molecule 
Evoluator to occasionally add random molecules to the 
population. The relative amount of random molecules is 
approximately 16% (so 1-2 new random molecules in a new 
population). This option is on by default. 
Thirdly, the user can toggle elitism on and off. Elitism conserves 
the selected molecules in the next generation and makes them also 
the first molecules on the screen, so the user can quickly see 
which were the source molecules. 
The other user-controllable parameters are fraction of fragments, 
which determines how many of the “add group” mutations add a 
functional group instead of an atom (default 0.1 = 10%), the 
“inducing evolution”-limit: how many times creating a random 
molecule/mutant is tried before unsupervised evolution is started 
to find a molecule that obeys all filters, and finally the “number of 
mutation steps allowed”, which allows the user to specify how 
many mutations the molecule is allowed to undergo before it is 
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placed in the next generation. This option increases the step size 
of the evolutionary algorithm. 
The mutations “add group”, “delete group”, “insert atom”, 
“change atom”, “increase bond order”, “decrease bond order”, 
“make ring”, and “break ring” can be toggled on and off. In the 
window the mutations “delete atom” and “uninsert atom” are 
fused under the heading  “delete group”, since they are strongly 
related chemically. By default, each of these eight categories of 
mutations is applied with the same frequency (0.125). When 
mutation types are disabled, the remaining active mutation types 
are still applied with identical frequency, so if only three 
mutations are checked, the probability of each of them is 0.33. 
 

6. EXPERIMENTS 
To test whether we could use the Molecule Evoluator to discover 
interesting new molecules with possible biological activity, we 
performed an experiment using the random molecule generation 
feature of the Molecule Evoluator. 
First we generated a library of 10000 molecules with druglike 
features: either one or two aromatic rings, 5 or fewer rotatable 
bonds, 2 or fewer hydrogen donors, 4 or fewer hydrogen 
acceptors, a polar surface area of at most 70Å2 and a molecular 
weight between 150 and 500. 
Out of this library, three sublibraries of 100 compounds were 
chosen randomly. Each of these sublibraries was presented to a 
different chemist, who could choose and modify the molecules 
created by the program. Out of the 300 compounds, 35 were 
chosen for further investigation. 
Checking the molecules in the Beilstein database (over nine 
million compounds, contains almost all molecules which have 
been synthesized so far), we found that six structures represented 
chemical classes yet unknown in literature. Based on these six 
core structures ten derived structures were designed. 
From these structures eight compounds were synthesized 
successfully. This procedure appeared highly interesting to one of 

our industrial partners. They offered to have the compounds tested 
on more than 80 drug targets. This evaluation is currently taking 
place. 
 
In a small experiment, we used a dataset of biological activities of 
neuramidase inhibitors [12]. Using the measured activities as 
input for the evolutionary algorithm we found the experimental 
minimum (1 nM, a 6300-fold improvement over the original 
structure) within four generations. 
 
Finally, we were able (without using the edit function) to evolve 
drug molecules such as acetylsalicylic acid (in 12 generations), 
diazepam (in 65 generations) and quinidine (in 22 generations). 
This provides evidence that our set of mutations is sufficient to 
transform a random starting molecule into a drug molecule and 
would suggest that our algorithm can access the major part if not 
the whole of the chemical space of drug molecules. 
 

7. DISCUSSION 
In this paper we have presented an evolutionary algorithm to help 
design new molecules. The literature in this area, using 
evolutionary algorithms to design new (drug) molecules, is quite 
extensive, with a large variety in methods used. The two most 
important components of all these methods are the molecule 
representation and the fitness function. 

7.1 The molecule representation 
One of the main choices made by investigators is whether to make 
their algorithm atom-based or fragment-based. Atom-based 
algorithms work by mutating atoms, and can therefore fine-tune 
each structure optimally. This approach has been chosen in many 
articles [4, 8, 10, 14]. On the other hand, several investigators 
construct molecules using larger fragments [17, 19]. This has the 
advantage that the representation can be simpler, since there is 
generally no need for the genome to contain cycles (for these are 
incorporated into the fragments) with the additional advantage 
that the compounds would be easier to synthesize than the 
molecules generated by the atom-based methods. While the 
current version of the Molecule Evoluator uses both atoms and 
fragments to construct molecules, its mutations are atom-based. 
We believe that atom-based evolution is superior to fragment-
based evolution for adapting the molecular structure. The main 
disadvantage of using fragments instead of atoms is that most 
mutations in fragment-based evolution are macromutations which 
change the molecule into something completely different, with a 
vastly different fitness value. In most cases, it is not clear whether 
fragment-based evolution improves over random search, unless 
the fitness function is fragment-based. However, this is certainly 
not the case in drug design where biological activity is subtly 
dependent on the molecular structure. We expect that making an 
atom-based algorithm interactive, as in the Molecule Evoluator, 
will partially compensate for the disadvantage that molecules 
generated on the basis of atoms are generally more difficult to 
synthesize, for the chemist could discard or modify structures at 
will. 

Figure 5. The “Evolution Parameters” window. 
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7.2 The user as fitness function 
The most important problem of the de novo design programs 
which have been described in literature is the difficulty of creating 
a fitness function that is relevant to drug design. In this work, we 
propose to use an evolutionary algorithm not as a black box that 
will give the user the right answer when given the right question, 
but as a means of aiding the creativity of the user by interactive 
evolution, thereby automatically incorporating the user's explicit 
as well as implicit (subconscious) knowledge about the problem 
domain. 
Using user feedback as fitness function has several advantages 
and disadvantages, and some consequences that require special 
adaptations and modifications of the software. 
One disadvantage of user interaction is that the population must 
be small. It is unlikely that any chemist would want to see 50 to 
100 molecules before pressing “next”. These small population 
sizes (12) may lead to premature convergence. 
The second disadvantage is that the more the user can interact 
with the program, the more is required from the user interface. In 
this project, more time was spent on constructing the user 
interface than on creating and fine-tuning the evolutionary 
algorithm. Modifications of the evolutionary algorithm should in 
many cases be reflected by changes in the user interface, and this 
makes programming and testing new ideas more time-consuming 
than in a non-interactive system. 
A third disadvantage is that testing is more difficult – one cannot 
well run hundreds of tests automatically to objectively verify 
whether the algorithm outperforms other algorithms. A user is not 
an objective function that can be easily shared with others. While 
it might be possible to compare the idea generation rate of 
chemists using the Molecule Evoluator to chemists not using the 
Molecule Evoluator, scores are likely to vary greatly per 
individual and per molecule to be optimized. 
There are however also many advantages to user interaction. One 
attractive advantage is that the feedback from the user can 
produce molecules which can be synthesized more easily in the 
laboratory than is possible with computer-generated, random 
molecules. The difficulty of synthesis would also be automatically 
adapted to the user’s level of knowledge and experience. 
A second advantage is that the program can use all kinds of rules 
and problem domain knowledge that the user has. The 
alternatives, expert systems and flexible input, have distinct 
disadvantages in this case. Creating an expert system is time-
consuming and must be done anew for each optimization project. 
Flexible input would require the domain expert, the chemist, to 
learn a complicated language or user interface which would 
definitely diminish the accessibility of the software and thereby its 
use greatly. The program can even benefit from the user’s 
subconscious rules, which cannot be programmed since they are 
unknown and may be very difficult to derive. Furthermore, as the 
user's problem knowledge grows, this knowledge is automatically 
updated and applied to the process without time-consuming 
intervention by programmers. In experimental sciences, seldom all 
required knowledge is known beforehand, and allowing 
experiments with the computer can also lead to finding new rules 
and discarding obsolete ones. 
A third advantage is that the software can stimulate computer use 
by medicinal chemists. Far too often, compounds suggested by the 

"computational department" are rejected by medicinal chemists 
for reasons of synthesis, and collaboration between the 
departments is hampered by busy schedules and the necessity to 
have meetings for feedback - this makes collaboration slow and 
difficult, and probably results in chemists mainly designing their 
own compounds without the help the computer could give. We 
believe that creating a program for the problem domain experts 
instead of for computer experts can lead to better use of the help 
that the computer could give in the drug design process. 
Finally, a program like the Molecule Evoluator may make a 
chemist more conscious of his/her own design process, i.e. which 
rules he or she follows. Consciousness of the rules and methods 
can lead people to experiment with them and occasionally break 
them for enhanced creativity. 

7.3 Adding extra user control to the evolution 
We found that when we added interactivity to the evolutionary 
algorithm, it was not enough to restrict the user’s influence to 
selection. The users were generally quite "impatient" and wanted 
more control to accelerate or even directly manipulate the 
evolution, so we added features to enable this. First, we added edit 
functions to enable the user to directly modify the molecular 
structure. Second, we added an option for selecting a part of the 
molecule to remain constant. A third feature is allowing the 
settings (which mutations are allowed, what is the range a 
property may have) to change interactively. We think that these 
options will make the Molecule Evoluator more attractive for drug 
design since they give the user more control over the evolution. 
We must however beware of the complication that having a 
feature is not enough if the user does not know the feature is 
there. Good user interface design, probably significantly 
enhancing the current beta version, may be necessary for users to 
learn to use the multiple filters without having to read the manual. 
The second danger is perhaps graver: by eliminating “bad 
molecules” you may eliminate paths to escape from local optima. 
Also, if all molecules shown are good according to a specific 
user’s criteria, it may be exactly what the user had designed 
him/herself anyway, thus eliminating the added value of the 
Evoluator. However, lack of control may frustrate and bad 
structures may irritate the user, so we should probably be looking 
for a middle road between control and creativity. 
 
Medicinal chemists are still testing the Molecule Evoluator and its 
features. One of the most interesting comments so far was that 
chemists liked that while a molecule is edited, the changes in its 
physicochemical properties are shown on screen. While this praise 
is not related to the evolutionary algorithm, it does suggest that 
there are ample opportunities for improvement in the current 
chemical software. 
The Molecule Evoluator is currently being beta tested by several 
pharmaceutical companies. 

8. CONCLUSIONS AND FUTURE 
PERSPECTIVES 
In this paper we have described the “Molecule Evoluator”, a 
program based on evolutionary algorithms that has been created to 
aid chemists in designing new drug molecules. With this program 
all relevant chemical mutations are possible. The most 
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distinguishing feature of the Molecule Evoluator relative to other 
de novo design programs is having the user as fitness function, 
which can combine the domain knowledge of the chemist with the 
memory and processing speed of the computer. We therefore 
added a graphical user interface for the evolution and extended 
the program with options for directly editing the molecule, 
marking part of a molecule as conserved, and calculating relevant 
physicochemical parameters.  
Considering the algorithms used and the feedback from users so 
far, there are several directions open for future investigation. First, 
many molecules generated by the program seem difficult to 
synthesize, perhaps that encoding explicit chemical knowledge in 
the program or using chemical databases could help improve this. 
A second direction would be to create a command-line version 
which can link to other software such as docking programs, since 
the “high-resolution” optimization resulting from our atom-based 
model might be very useful for optimizing lead compounds. 
Third, more selection criteria could be added such as additional 
physicochemical properties or an input method for QSAR-
formulas. 

9. REFERENCES 
[1] Banzhaf, W. Interactive Evolution. In Bäck, T., Fogel D.B., 

Michalewicz, Z. (Eds.), Handbook of Evolutionary 
Computation, Oxford University Press, New York, and 
Institute of Physics Publishing, Bristol, 1997. 

[2] Banzhaf, W., Nordin P., Keller, R.E., and Francone, F.D. 
Genetic Programming-An Introduction. Morgan-Kaufmann, 
San Francisco CA, 1998. 

[3] Bentley, P.J. Evolutionary Design by Computers, Morgan 
Kaufmann Publishers, San Francisso, CA, 1999. 

[4] Brown, N., McKay, B., Gilardoni, F., and Gasteiger, J. A 
Graph-Based Genetic Algorithm and Its Application to the 
Multiobjective Evolution of Median Molecules. Journal of 
Chemical Information and Computer Sciences 44 (2004), 
1079-1087. 

[5] Class, S. Health care in Focus. Chemical & Engineering 
News, Dec 6th 2004, 18-29. 

[6] Dalby, A., Nourse, J.G., Hounshell, W.D., Gushurst, A.K.I., 
Grier, D.L., Leland, B.A., and Laufer, J. Description of 
Several Chemical Structure File Formats Used by Computer 
Programs Developed at Molecular Design Limited. J. Chem. 
Inf. Comput. Sci. 32 (1992), 244-255. 

[7] DiMasi, J.A., Hansen, R.W., and Grabowski, H.G. The price 
of innovation: new estimates of drug development costs. 
Journal of Health Economics, 22 (2003), 151-185. 

[8] Douguet, D., Thoreau, E. and Grassy, G. A genetic algorithm 
for the automated generation of small organic molecules: 
Drug design using an evolutionary algorithm. Journal of 
Computer-Aided Molecular Design 14 (2000), 449-466. 

[9] Glen, R.C., and Payne, A.W.R. A genetic algorithm for the 
automated generation of molecules within constraints. 
Journal of Computer-Aided Molecular Design 9 (1995), 
181-202. 

[10] Globus, A., Lawton, J. and Wipke, T. Automated molecular 
design using evolutionary techniques. Nanotechnology 10 
(1999), 290-299. 

[11] Kamphausen, S., Höltge, N., Wirsching, F., Morys-
Wortmann, C., Riester, D., Goetz, R., Thürk, M. and 
Schwienhorst, A. Genetic algorithm for the design of 
molecules with desired properties. Journal of Computer-
Aided Molecular Design 16 (2002), 551-567. 

[12] Kim, C.U., Lew, W., Williams, M.A., Liu, H., Zhang, L., 
Swaminathan, S., Bischofberger, N., Chen, M.S., Mendel, 
D.B., Tai, C.Y., Laver, W.G., and Stevens, R.C. Influenza 
Neuramidase Inhibitors Possessing a Novel Hydrophobic 
Interaction in the Enzyme Active Site: Design, Synthesis, 
and Structural Analysis of Carbocyclic Sialic Acid 
Analogues with potent Anti-Influenza Activity. J. Am. Chem. 
Soc 119 (1997), 681-690. 

[13] Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, 
P.J. Experimental and computational approaches to estimate 
solubility and permeability in drug discovery and 
development settings. Advanced Drug Delivery Reviews 23 
(1997), 3-25. 

[14] Nachbar, R.B. Molecular Evolution: A Hierarchical 
Representation for Chemical Topology and Its Automated 
Manipulation. In Genetic Programming 1998: Proceedings 
of the Third Annual Conference (University of Wisconsin, 
Madison, Wisconsin, July 22-25, 1998). Morgan Kaufmann, 
San Francisco, CA, 1998, 246-253. 

[15] Pegg, S.C.-H., Haresco, J.J., and Kuntz, I.D. A genetic 
algorithm for structure-based de novo design. Journal of 
Computer-Aided Molecular Design 15 (2001), 911-933. 

[16] Rees, P. Big pharma learns how to love IT. Scientific 
Computing World (2003), 16-18. 

[17] Schneider, G., Clément-Chomienne, O., Hilfiger L. Scheider, 
P., Kirsch, S., Böhm, H.-J., and Neidhart, W. Virtual 
screening for bioactive molecules by evolutionary de novo 
design. Angew., Chem. Int. Ed. 39 (2000), 4130-4133. 

[18] Sheridan, R.P., Feuston, B.P., Maiorov, V.N., and Kearsley, 
S.K. Similarity to Molecules in the Training Set Is a Good 
Discriminator for Prediction Accuracy in QSAR. Journal of 
Chemical Information and Computer Sciences, 44 (2004), 
1912-1928. 

[19] Vinkers, M.H., De Jonge, M.R., Daeyaert, F.F.D., Heeres, J., 
Koymans, L.M.H., Van Lenthe, J.H., Lewi, P.J., 
Timmerman, H., Van Aken, K., and Janssen, P.A.J. 
SYNOPSIS: SYNthesize and Optimize System in Silico. 
Journal of Medicinal Chemistry 46 (2003), 2765-2773. 

[20] Weininger, D. SMILES: a Chemical Language and 
Information System. 1. Introduction to Methodology and 
Encoding Rules. J. Chem. Inf. Comput. Sci. 28 (1988), 31-
36. 

[21] http://www.mdli.com/downloads/public/ctfile/ctfile.jsp

 

1976


