
The Molecule Evoluator: an Interactive Evolutionary
Algorithm for Designing Drug Molecules

Eric-Wubbo Lameijer1 Ad IJzerman1 Joost Kok2 Thomas Bäck2,3

1Leiden/Amsterdam Center for Drug
Research

Leiden University, Einsteinweg 55
Leiden, the Netherlands

+31-(0)71-5274660 ,
+31-(0)71-5274651

e.lameijer@chem.leidenuniv.nl,
ijzerman@chem.leidenuniv.nl

2Leiden Institute of Advanced
Computer Science

Leiden University, Niels Bohrweg 1
Leiden, the Netherlands
+31-(0)71-52746517057,
+31-(0)71-52746517108

joost@liacs.nl,
baeck@liacs.nl

3NuTech Solutions

Martin-Schmeisser-Weg 15
44227 Dortmund, Germany

+49-(0)231-72546310

baeck@nutechsolutions.de

ABSTRACT
To help chemists design new drugs, we created a tool that uses
interactive evolution to design drug molecules, the “Molecule
Evoluator”. In contrast to most other evolutionary de novo design
programs, the molecule representation and the set of mutations
enable it to both search the chemical space of all drug like
molecules extensively and to fine-tune molecular structures to the
problem at hand. Additionally, we use interaction with the user as
a fitness function, which is new in evolutionary algorithms in drug
design. This interactivity allows the Molecule Evoluator to use the
domain knowledge of the chemist to estimate the ease of synthesis
and the biological activity of the compound. This knowledge can
guide the optimization process and thereby improve its results.
Chemists of our department using the Molecule Evoluator were
able to find six novel and synthesizable druglike core structures,
indicating that the Molecule Evoluator can be used as a tool to
enhance the chemist’s creativity.

Categories and Subject Descriptors
J.2 [Physical Sciences and Engineering]: chemistry, J.3 [Life
and Medical Sciences]: health.

General Terms
Algorithms, Design, Experimentation, Human Factors.

Keywords
Drug design, molecule, interactive evolution.

1. INTRODUCTION
In today’s world, pharmaceuticals have a major impact on both
public health and the economy. The pharmaceutical industry is a
very large industry, with global sales of 491.8 billion dollars in
2003, estimated to grow to 496.6 billion dollars in 2004 [5].
Despite the large sales and the past and current successes in
curing and alleviating diseases, the pharmaceutical industry is still
looking for newer and better drugs. Most bacterial diseases can be

cured and the life span of people with cardiac illnesses is greatly
improved by cholesterol-lowering and blood-pressure normalizing
medication. Yet viral diseases such as AIDS, mental diseases such
as Alzheimer’s disease, and diseases in which body cells
themselves turn traitor, such as cancer, are still difficult or even
impossible to fight, and even in the case of AIDS the virus can
only be kept at bay at the price of serious side effects.
However, drug design continues to be a slow and expensive
process in which it takes 10-15 years and about 800 million
dollars to bring a drug to the market [7]. This is because it is
difficult to find compounds which obey the strict criteria of safety
and effectivity. It is therefore estimated that only one in about
5000 screened candidate compounds reaches the drug market
[16].
To aid drug design, researchers in the pharmaceutical industry
have been turning to computational methods. Among these
methods are evolutionary algorithms, which have been applied as
optimizers in several areas of drug design, such as designing
compound libraries and finding structure-activity relationships.
Evolutionary algorithms have played an especially interesting role
in de novo design, the design of new compounds that could be
suitable as a drug.
There have been several experiments in de novo drug design using
evolutionary algorithms [8, 9, 10, 14, 15, 17, 19]. However,
reviewing these experiments leads to the conclusion that despite
the power inherent to global optimization methods, evolutionary
algorithms are still difficult to apply to molecule design.
One problem in applying evolutionary algorithms to molecules is
that molecules are graphs which have to obey certain chemical
rules. Converting a molecule into a bitstring or fixed-size vector
of numbers as used in conventional evolutionary algorithms will
therefore probably result in mutations and crossover producing
invalid molecules, which would need complex repair algorithms
to correct.
The second major problem in applying evolutionary algorithms in
drug design is obtaining a useful fitness function. While currently
the most common methods use a similarity index to a reference
compound [8, 9, 10, 17] or calculations of binding strength to a
target [15, 19], only few examples have been published of
successful applications of evolutionary algorithms to find new
structures. Only Schneider [17] claimed success since his
algorithm found a compound with a similar kind of activity as the
lead compound, be it a 1000-fold less potent.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’05, June 25-29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006…$5.00.

1969

The main reasons for this only limited success seem to be that the
compounds designed by computer are often not very easy to
synthesize in the laboratory and that the fitness functions used are
such poor approximations of structure-activity relationships that
the noise in the fitness landscape makes true optimization
impossible.
In this paper we propose a new approach for using evolutionary
algorithms in de novo drug design, a program called the
“Molecule Evoluator”. We introduce an atom-based method with
a set of mutation operators which contains all one-atom and one-
bond mutations and should therefore allow full exploration of the
chemical space. This will enable fuller search of the chemical
space and finer optimization of the molecular structure than is
possible with most other published methods. Secondly, we use a
fitness function which is new in evolutionary algorithms in drug
design: we make the medicinal chemist/human drug designer
him/herself the “fitness function” of the proposed structures. This
would both largely eliminate structures which are difficult to
make in the laboratory and enable the program to optimize the
molecular structure by using the chemist’s knowledge about
structure-activity relationships.
We believe that this approach can be a useful one. On the one
hand the power of the computer can be used to perform a quick
yet elaborate search of chemical space and suggest ideas which
might have been overlooked by the mental blocks and prejudices
of the chemist. On the other hand, the creativity and pattern-
recognition capacities of the human chemist can ensure ease of
synthesis and incorporate biochemical knowledge.
Based on this molecule representation and interactive fitness we
designed a tool called the “Molecule Evoluator” to help medicinal
chemists in drug design.
The overview of the remainder of the paper is as follows: we first
discuss the representation of the molecules and the evolutionary
operators, subsequently we will discuss how the user’s choices
affect the fitness of the molecules. We will then shortly describe
the graphical user interface of the tool, together with the result of
some of our experiments in interactive drug design.

2. MOLECULE REPRESENTATION
A molecule can be considered to be a connected graph consisting
of one or more atoms (vertices) connected by bonds (undirected
edges). One of the main rules of chemistry specifies that each type
of atom has a particular number of bonds: for example, hydrogen
atoms can only have one bond, while a carbon atom must have
four. In some cases this is more complicated: atoms such as sulfur
can have several valence states, of which bivalent sulfur and
hexavalent sulfur are the most common. In our genotype we
handle this by creating a separate symbol for each valence state,
so that divalent sulfur atoms are denoted by “S” and hexavalent
sulfur atoms by “Sh”. So whether a graph represents a valid
molecule does not merely depend on the structure of the graph,
but also on the identity of each particular node, as can be seen in
figure 1.
Chemists have created various ways to represent molecules on the
computer. Nowadays, the two most common representations are
the MOL-file format of MDL [6] which is an adjacency list
representation of the molecule, and the SMILES-notation [20], a
line notation/string that is human-readable and can easily be
transformed into a 2D-structure by a chemist. SMILES encodes

the nonlinear parts of a molecule with brackets to indicate
branches and numbers to label rings, as is illustrated in figure 2.
The hydrogen atoms are by default not incorporated into the
SMILES notation, since their presence can be deduced from the
rules of chemical valence.

Figure 1. Comparison of a valid molecule with an invalid

molecule: Since C must have four, hydrogen one and oxygen
two bonds, the first molecule is valid (it is commonly known as
formaldehyde). The second molecule cannot exist: one H and
the O have too many bonds, the N (which should have three)

has too few bonds.

Figure 2. Example of the SMILES representation of a

molecule. One bond of each ring is chosen at random (in this
case, the bond from the top left to the bottom left atom) and is
designated by a unique number. Both atoms participating in
ringbonds get the bond number(s) immediately after them in

the line notation. Branches are indicated by brackets.

When mutating and crossing molecules, however, neither of those
representations is ideal. Since chemical valence rules explicitly
state how many bonds any atom has, both the most common 2D-
MOL-file format and the SMILES notation take the hydrogen
atoms and the bonds to which they are attached for granted. We
should therefore calculate for each atom whether it has the right
number of hydrogen atoms to be mutated in some way. To avoid
these recalculations, we decided to explicitly add the hydrogen
atoms to the representation. Also, since a graph representation can
be more difficult than a string representation to cross with another
graph or to mutate, we decided to use a SMILES-like structure as
our main molecule representation. Making the hydrogens explicit
we get a bracket-rich, expanded SMILES (figure 3) to which we
can apply mutation by relatively simple algorithms. We coin this
notation “TreeSMILES”.

Figure 3. SMILES versus TreeSMILES. By making the
hydrogens explicit the notation becomes less compact and
less human-readable. However, a computer can now more

easily see which positions can undergo a particular mutation.

C
O

H H
O
H

H N

CH2

CH CH
CH

CH3

C1C(C)C=C1

C
C C

C
C

CH2

CH2 CH
C

CH3

C1C(C)=CC1

(C(1)(H)(H)(C(C(H)(H)(H))(=C(H)(C(1)(H)(H)))))

1970

3. CROSSOVER AND MUTATION
Crossover is implemented like crossover in standard genetic
programming [2]: subtrees of two different molecules are selected
and swapped. The only complication in this case is that the trees
represent graphs and can contain cycles, and subgraphs are not
allowed to contain incomplete cycles. So when a subtree at a
random “root” atom is selected, the subtree is first checked for
unmatched ring bonds, and if these are present the current root is
discarded and another subtree is selected for crossover.
Mutation is the most important variance operator in the Molecule
Evoluator. Theoretically, changing a graph into any other graph
can be performed by a limited set of operations: adding nodes,
adding edges, deleting nodes, deleting edges. While this would be
sufficient from a graph-theoretical point of view, these operations
are more complicated in a chemical system since the valence rules
must be obeyed, and the graph must remain connected: deleting a
carbon atom would also require deleting its attached hydrogens
and adding a hydrogen that replaces the carbon. In the Molecule
Evoluator, deleting an atom involves deleting the hydrogen atoms
attached to it and renaming the atom itself into a hydrogen atom.
The implemented mutations, graphically shown in table 1, are as
follows:

1) Add atom/group: this replaces a hydrogen atom in the
molecule with a non-hydrogen atom or a larger chemical
group such as a phenyl group. In the case of atom addition,
the remaining bonds of the added atom are filled with
hydrogens.

2) Insert atom: adds an atom by inserting the new atom (which
should have a valence of two or higher) into a bond. The
remaining bonds of the new atom are fulfilled by adding
hydrogens to it.

3) Delete atom: this removes an atom that is attached to only
one non-hydrogen atom (with a single bond) by first deleting
the hydrogen atoms attached to it, and renaming the atom to
a hydrogen atom.

4) Uninsert atom: This removes an atom that has exactly two
non-hydrogen neighbours. It removes the atom and its
hydrogens and subsequently creates a bond between its two
neighbouring non-hydrogen atoms.

5) Increase bond order: if two atoms which are bonded to each
other both have at least one hydrogen atom, those hydrogen
atoms are removed and an extra bond is created between the
atoms (the bond order is increased from single to double, or
from double to triple).

Mutation name Initial structure Final structure Initial TreeSmiles Final TreeSMILES

Add atom ...(C(H)(H)(C… ...(C(H)(N(H)(H))(C…

Insert atom ...(C(H)(H)(C...)... ...(C(H)(H)(N(H)(C...))...

Delete atom ..(C(H)(N(H)(H))(C... ...(C(H)(H)(C...

Uninsert atom ...(C(H)(H)(N(H)(C...))... ...(C(H)(H)(C...)...

Increase
bond order

 ...(C(H)(H)(C(H)(H)(... ...(C(H)(=C(H)(…

Create ring (C(H)(H)(H)(C(H)(H)

(C(H)(H)(H)))

(C(1)(H)(H)(C(H)(H)(

C(1)(H)(H)))

Decrease
bond order

 ...(C(H)(=C(H)(… ...(C(H)(H)(C(H)(H)(...

Break ring (C(1)(H)(H)(C(H)(H)

(C(1)(H)(H)))
(C(C(H)(H)(H))(H)(H)

(C(H)(H)(H)))

Mutate atom ...(C(H)(H)(C(H)(H)(C... …(C(H)(H)(S(C...

Table 1. Schematic overview of the different mutations in the Molecule Evoluator. Most leave
the TreeSMILES string fairly intact and can be performed by string editing. The only exception

is the "break ring" mutation, which can substantially rearrange the TreeSMILES.

NH2

NH2

NH

NH

S

1971

6) Create ring: similar to increase bond order, but works
between two atoms which are not bonded to each other.
These atoms are connected using a single bond (the two
hydrogen atoms are changed into ring indices).

7) Decrease bond order: if there is a double or triple bond
between two atoms, its bond order is decreased by one and a
hydrogen atom is attached to each of the two atoms.

8) Break ring: the "break ring" mutation chooses a single bond
in a ring, breaks that bond and adds hydrogen atoms to
correct the valences. The algorithm should be able to break
any bond in the ring, which is not easy to do with a tree
structure [14]. To solve this problem, we converted the
TreeSMILES into an adjacency list. In the adjacency list, any
ring bond can be broken easily and afterwards a new
TreeSMILES can be built. This is the only mutation where
we found it necessary to temporarily convert the
TreeSMILES representation of the molecule into an
adjacency list format for easier modification. Since other
operators such as crossover are much more easily
implemented for a TreeSMILES string, we decided not to use
the adjacency list for the other mutations. Changing
representations is probably a convenient way to
accommodate different mutations, though to our knowledge
this technique has not been used before in evolutionary
algorithms in de novo design.

9) Mutate atom: a non-hydrogen atom is changed into another
non-hydrogen atom which has a valency of at least the
number of bonds of the original atom with other non-
hydrogen atoms.

We also allow the user to select atoms and bonds which will
remain unaltered by crossover and mutation. Therefore we have
slightly modified the data structure of the TreeSMILES by using
instead of a normal string/array of characters an array of character
pairs, in which the first character of the pair is the normal
TreeSMILES character, and the second character is a flag that
indicates whether the atom or bond designated by the first
character can be modified.

4. FITNESS
The final component of the evolutionary algorithm is the fitness
function. So far, investigations on de novo design with
evolutionary algorithms have used four types of fitness function:
1) Similarity to a target molecule [8, 10]
2) QSAR-functions [14]
3) Docking [15, 19]
4) Experiment [11]
For drug design, each of these methods has its advantages and
disadvantages. Similarity to a target molecule results in molecules
very similar to the target molecule, in many cases even the target
molecule itself, which is not useful for designing new molecules.
Nevertheless, one of the few successes of evolutionary algorithms
in de novo design has come from such an approach [17], though
finding a molecule that binds a thousand fold worse than its
example is maybe not a big success. QSAR-functions should be
able to optimize activity, yet have important disadvantages. First

they require quite a lot of reprogramming for each new class of
molecules that is to be investigated. Secondly, they are generally
difficult to use for finding very active compounds since they grow
less and less reliable as the molecular structures deviate more
from the average structure (and thereby activity) of the training
dataset [18]. Unfortunately, this is exactly what would happen
during optimization. Docking (calculating how well the molecule
fits in the target protein) is still too inaccurate for optimization,
and usually results in molecules which have an activity which is
100-1000-fold lower than the calculated value [19]. Experiments,
finally, are generally slow and expensive, and so far have only
been performed for a class of molecules which are especially easy
to synthesize but are not druglike [11]. Thus experimental fitness
has yet to prove to be practical in a more realistic drug design
scenario.
As a different approach, we decided to use the user as a fitness
function. This concept has been applied before in interactive
evolution [1, 3]. While a user cannot know the binding strength of
a given molecule, this defect is not much worse than the
inaccuracy of scoring functions. Another advantage in letting the
user choose would be that intensive feedback from a medicinal
chemist would make the compounds easier to synthesize, and
steer the evolution away from areas which have already been
explored. Furthermore, the algorithm could still be easily coupled
to experimental results or advanced computed fitness functions if
so desired.
Since a user cannot evaluate as many structures as a computer
program and preliminary experiments have shown that users only
want to see “good” structures, we added several descriptor
calculations to the Molecule Evoluator. The selected descriptors
are the number of hydrogen donors/acceptors, the molecular
weight, the logP (lipophilicity), the polar surface area, the number
of rotatable bonds, and the number of aromatic systems and
substituents. The number of hydrogen donors/acceptors, the
molecular weight and the logP are commonly considered to reflect
how well a compound can pass the gut wall and enter the body
and thus be more ‘drug like’, after Lipinski [13]. The polar
surface area is a more modern descriptor that can also be used to
predict this passage. Upper and lower bounds for all these
descriptors can be set by the user as a filter to create molecules
which are more drug like. Additionally, we implemented some
filters to eliminate molecules with chemically undesirable
structures, such as so-called paracyclophanes.
The Molecule Evoluator can use two kinds of evolution. The
normal evolution uses the population viewed by the user, which
consists of twelve molecules, and lets the user select the best
molecules, which are subsequently either mutated or crossed over.
If the user wants to generate a large library of molecules which
obey certain strict fitness criteria, an internal evolution is used
with a population of 50 molecules, of which the best 25% (the
fitness is the sum of squares of the deviations from the constraints,
scaled for each physicochemical property by its range over the
molecules of the population) are selected by tournament selection
(tournament size 2), and are mutated or crossed for the next
generation. This evolution lasts until a molecule has been found
which obeys the filters. Since computing times so far are
acceptable to the users, the evolution parameters have not yet

1972

been fine-tuned for optimal performance. However, this might be
a interesting subject to be investigated further.

5. THE INTERFACE OF THE MOLECULE
EVOLUATOR
When the user starts the Molecule Evoluator, he or she can create
the initial population of the program by drawing or loading
molecules. Alternatively, the Molecule Evoluator itself can
initialize the population with random molecules .
After the user presses the "Go" button, a window appears that
contains the selected old molecules (elitism is on by default)
together with the newly generated molecules (Figure 8). The user
can again select the most attractive molecules, press “Go”, and
this process is repeated until the user has gathered enough ideas.

Figure 4. Pressing “Go” generates mutants. Elitism (optional)

conserves the original molecule, and some molecules are
generated from scratch (like that in the bottom right corner).
Most molecules however are mutants of the original molecule;

the one in the bottom left corner is a ring closing mutant.
Comments from medicinal chemists have led us to add three extra
features that give the user more control over the evolution: editing
the molecules directly, fixing parts of the molecule, and using
filters to prevent that unsuitable molecules are shown to the user.
We next discuss these features in more detail.
Editing molecules is useful when the user wants to start the
evolution with a molecule that has not been stored yet in the
computer and must be drawn. Additionally, if during the
evolution the user sees a molecule which inspires him/her to a
better or more interesting structure, he or she can edit the
molecule into the desired structure. This will allow the user to
evolve molecules immediately from the desired structure, instead
of having to wait until it is finally generated by the program.
Editing the molecules is performed in the "Molecule Edit"
window, which pops up when the user clicks on a molecule in the
main window. Editing is similar to that in normal chemical
drawing programs such as ISIS/Draw [21], be it that only the
basic facilities (adding, removing and changing atoms and bonds)
are supported. After the popup window has been closed, the
drawn structure is converted into TreeSMILES-format.

Fixing part of the molecule can be useful in cases where
knowledge of structure-activity relationships might make the user
want to ensure that a particular, necessary part of the molecule is
present in all its descendants. The Molecule Evoluator allows this
conservation with the “fix atoms/bonds” option, which enables
the user to generate new molecules with the conserved part
constant, and only variation on the “free” atoms.
The third extra feature for user influence is the “Filter Window”.
In the “Physical Filters” the ranges are set in which the
physicochemical properties of a molecule must lie for the
molecule to be incorporated into the population (for example:
molecular weight between 100 and 400). Molecules which for
example have too many rotatable bonds (and will probably bind
weakly and aselectively) can be automatically eliminated by the
Molecule Evoluator and will therefore not be shown to the user.
Additionally, some chemical structures which are usually
undesirable, such as hemiketals, can be forbidden in the
“Chemical Filters”. The Molecule Evoluator creates offspring
molecules using mutation and crossover until feasible molecules –
fulfilling all filter conditions – have been found.
In addition to these three main control features, there is an
“Evolution Parameters” window in which the user can influence
the evolutionary process itself instead of the molecules. Via this
window the user can steer evolution by, amongst others,
enabling/disabling certain kinds of mutations. For example, the
“decrease bond order” mutation tends to partially reduce phenyl
rings, which is chemically undesirable. Disabling this mutation (as
an alternative to fixing the phenyl bonds explicitly) will protect
the bonds from being reduced. This will however also prevent
useful mutations, such as those which reduce a ketone (C=O) to
an alcohol (CHOH). An alternative would be a special version of
the "decrease bond order" mutation that does not reduce aromatic
rings, this might however just make the program harder to
understand and use.
The “Evolution Parameters” window (Figure 5) has several
options to influence the evolution.
The main group of parameters decides the relative amounts of
crossover and mutation, which can be set between 0 and 100%.
Since in most cases mutation is preferred over crossover, the
default settings are mutation 80% and crossover 20% (and so are
applied with probabilities of 0.8 and 0.2 respectively).
The second option is whether it is allowed for the Molecule
Evoluator to occasionally add random molecules to the
population. The relative amount of random molecules is
approximately 16% (so 1-2 new random molecules in a new
population). This option is on by default.
Thirdly, the user can toggle elitism on and off. Elitism conserves
the selected molecules in the next generation and makes them also
the first molecules on the screen, so the user can quickly see
which were the source molecules.
The other user-controllable parameters are fraction of fragments,
which determines how many of the “add group” mutations add a
functional group instead of an atom (default 0.1 = 10%), the
“inducing evolution”-limit: how many times creating a random
molecule/mutant is tried before unsupervised evolution is started
to find a molecule that obeys all filters, and finally the “number of
mutation steps allowed”, which allows the user to specify how
many mutations the molecule is allowed to undergo before it is

1973

placed in the next generation. This option increases the step size
of the evolutionary algorithm.
The mutations “add group”, “delete group”, “insert atom”,
“change atom”, “increase bond order”, “decrease bond order”,
“make ring”, and “break ring” can be toggled on and off. In the
window the mutations “delete atom” and “uninsert atom” are
fused under the heading “delete group”, since they are strongly
related chemically. By default, each of these eight categories of
mutations is applied with the same frequency (0.125). When
mutation types are disabled, the remaining active mutation types
are still applied with identical frequency, so if only three
mutations are checked, the probability of each of them is 0.33.

6. EXPERIMENTS
To test whether we could use the Molecule Evoluator to discover
interesting new molecules with possible biological activity, we
performed an experiment using the random molecule generation
feature of the Molecule Evoluator.
First we generated a library of 10000 molecules with druglike
features: either one or two aromatic rings, 5 or fewer rotatable
bonds, 2 or fewer hydrogen donors, 4 or fewer hydrogen
acceptors, a polar surface area of at most 70Å2 and a molecular
weight between 150 and 500.
Out of this library, three sublibraries of 100 compounds were
chosen randomly. Each of these sublibraries was presented to a
different chemist, who could choose and modify the molecules
created by the program. Out of the 300 compounds, 35 were
chosen for further investigation.
Checking the molecules in the Beilstein database (over nine
million compounds, contains almost all molecules which have
been synthesized so far), we found that six structures represented
chemical classes yet unknown in literature. Based on these six
core structures ten derived structures were designed.
From these structures eight compounds were synthesized
successfully. This procedure appeared highly interesting to one of

our industrial partners. They offered to have the compounds tested
on more than 80 drug targets. This evaluation is currently taking
place.

In a small experiment, we used a dataset of biological activities of
neuramidase inhibitors [12]. Using the measured activities as
input for the evolutionary algorithm we found the experimental
minimum (1 nM, a 6300-fold improvement over the original
structure) within four generations.

Finally, we were able (without using the edit function) to evolve
drug molecules such as acetylsalicylic acid (in 12 generations),
diazepam (in 65 generations) and quinidine (in 22 generations).
This provides evidence that our set of mutations is sufficient to
transform a random starting molecule into a drug molecule and
would suggest that our algorithm can access the major part if not
the whole of the chemical space of drug molecules.

7. DISCUSSION
In this paper we have presented an evolutionary algorithm to help
design new molecules. The literature in this area, using
evolutionary algorithms to design new (drug) molecules, is quite
extensive, with a large variety in methods used. The two most
important components of all these methods are the molecule
representation and the fitness function.

7.1 The molecule representation
One of the main choices made by investigators is whether to make
their algorithm atom-based or fragment-based. Atom-based
algorithms work by mutating atoms, and can therefore fine-tune
each structure optimally. This approach has been chosen in many
articles [4, 8, 10, 14]. On the other hand, several investigators
construct molecules using larger fragments [17, 19]. This has the
advantage that the representation can be simpler, since there is
generally no need for the genome to contain cycles (for these are
incorporated into the fragments) with the additional advantage
that the compounds would be easier to synthesize than the
molecules generated by the atom-based methods. While the
current version of the Molecule Evoluator uses both atoms and
fragments to construct molecules, its mutations are atom-based.
We believe that atom-based evolution is superior to fragment-
based evolution for adapting the molecular structure. The main
disadvantage of using fragments instead of atoms is that most
mutations in fragment-based evolution are macromutations which
change the molecule into something completely different, with a
vastly different fitness value. In most cases, it is not clear whether
fragment-based evolution improves over random search, unless
the fitness function is fragment-based. However, this is certainly
not the case in drug design where biological activity is subtly
dependent on the molecular structure. We expect that making an
atom-based algorithm interactive, as in the Molecule Evoluator,
will partially compensate for the disadvantage that molecules
generated on the basis of atoms are generally more difficult to
synthesize, for the chemist could discard or modify structures at
will.

Figure 5. The “Evolution Parameters” window.

1974

7.2 The user as fitness function
The most important problem of the de novo design programs
which have been described in literature is the difficulty of creating
a fitness function that is relevant to drug design. In this work, we
propose to use an evolutionary algorithm not as a black box that
will give the user the right answer when given the right question,
but as a means of aiding the creativity of the user by interactive
evolution, thereby automatically incorporating the user's explicit
as well as implicit (subconscious) knowledge about the problem
domain.
Using user feedback as fitness function has several advantages
and disadvantages, and some consequences that require special
adaptations and modifications of the software.
One disadvantage of user interaction is that the population must
be small. It is unlikely that any chemist would want to see 50 to
100 molecules before pressing “next”. These small population
sizes (12) may lead to premature convergence.
The second disadvantage is that the more the user can interact
with the program, the more is required from the user interface. In
this project, more time was spent on constructing the user
interface than on creating and fine-tuning the evolutionary
algorithm. Modifications of the evolutionary algorithm should in
many cases be reflected by changes in the user interface, and this
makes programming and testing new ideas more time-consuming
than in a non-interactive system.
A third disadvantage is that testing is more difficult – one cannot
well run hundreds of tests automatically to objectively verify
whether the algorithm outperforms other algorithms. A user is not
an objective function that can be easily shared with others. While
it might be possible to compare the idea generation rate of
chemists using the Molecule Evoluator to chemists not using the
Molecule Evoluator, scores are likely to vary greatly per
individual and per molecule to be optimized.
There are however also many advantages to user interaction. One
attractive advantage is that the feedback from the user can
produce molecules which can be synthesized more easily in the
laboratory than is possible with computer-generated, random
molecules. The difficulty of synthesis would also be automatically
adapted to the user’s level of knowledge and experience.
A second advantage is that the program can use all kinds of rules
and problem domain knowledge that the user has. The
alternatives, expert systems and flexible input, have distinct
disadvantages in this case. Creating an expert system is time-
consuming and must be done anew for each optimization project.
Flexible input would require the domain expert, the chemist, to
learn a complicated language or user interface which would
definitely diminish the accessibility of the software and thereby its
use greatly. The program can even benefit from the user’s
subconscious rules, which cannot be programmed since they are
unknown and may be very difficult to derive. Furthermore, as the
user's problem knowledge grows, this knowledge is automatically
updated and applied to the process without time-consuming
intervention by programmers. In experimental sciences, seldom all
required knowledge is known beforehand, and allowing
experiments with the computer can also lead to finding new rules
and discarding obsolete ones.
A third advantage is that the software can stimulate computer use
by medicinal chemists. Far too often, compounds suggested by the

"computational department" are rejected by medicinal chemists
for reasons of synthesis, and collaboration between the
departments is hampered by busy schedules and the necessity to
have meetings for feedback - this makes collaboration slow and
difficult, and probably results in chemists mainly designing their
own compounds without the help the computer could give. We
believe that creating a program for the problem domain experts
instead of for computer experts can lead to better use of the help
that the computer could give in the drug design process.
Finally, a program like the Molecule Evoluator may make a
chemist more conscious of his/her own design process, i.e. which
rules he or she follows. Consciousness of the rules and methods
can lead people to experiment with them and occasionally break
them for enhanced creativity.

7.3 Adding extra user control to the evolution
We found that when we added interactivity to the evolutionary
algorithm, it was not enough to restrict the user’s influence to
selection. The users were generally quite "impatient" and wanted
more control to accelerate or even directly manipulate the
evolution, so we added features to enable this. First, we added edit
functions to enable the user to directly modify the molecular
structure. Second, we added an option for selecting a part of the
molecule to remain constant. A third feature is allowing the
settings (which mutations are allowed, what is the range a
property may have) to change interactively. We think that these
options will make the Molecule Evoluator more attractive for drug
design since they give the user more control over the evolution.
We must however beware of the complication that having a
feature is not enough if the user does not know the feature is
there. Good user interface design, probably significantly
enhancing the current beta version, may be necessary for users to
learn to use the multiple filters without having to read the manual.
The second danger is perhaps graver: by eliminating “bad
molecules” you may eliminate paths to escape from local optima.
Also, if all molecules shown are good according to a specific
user’s criteria, it may be exactly what the user had designed
him/herself anyway, thus eliminating the added value of the
Evoluator. However, lack of control may frustrate and bad
structures may irritate the user, so we should probably be looking
for a middle road between control and creativity.

Medicinal chemists are still testing the Molecule Evoluator and its
features. One of the most interesting comments so far was that
chemists liked that while a molecule is edited, the changes in its
physicochemical properties are shown on screen. While this praise
is not related to the evolutionary algorithm, it does suggest that
there are ample opportunities for improvement in the current
chemical software.
The Molecule Evoluator is currently being beta tested by several
pharmaceutical companies.

8. CONCLUSIONS AND FUTURE
PERSPECTIVES
In this paper we have described the “Molecule Evoluator”, a
program based on evolutionary algorithms that has been created to
aid chemists in designing new drug molecules. With this program
all relevant chemical mutations are possible. The most

1975

distinguishing feature of the Molecule Evoluator relative to other
de novo design programs is having the user as fitness function,
which can combine the domain knowledge of the chemist with the
memory and processing speed of the computer. We therefore
added a graphical user interface for the evolution and extended
the program with options for directly editing the molecule,
marking part of a molecule as conserved, and calculating relevant
physicochemical parameters.
Considering the algorithms used and the feedback from users so
far, there are several directions open for future investigation. First,
many molecules generated by the program seem difficult to
synthesize, perhaps that encoding explicit chemical knowledge in
the program or using chemical databases could help improve this.
A second direction would be to create a command-line version
which can link to other software such as docking programs, since
the “high-resolution” optimization resulting from our atom-based
model might be very useful for optimizing lead compounds.
Third, more selection criteria could be added such as additional
physicochemical properties or an input method for QSAR-
formulas.

9. REFERENCES
[1] Banzhaf, W. Interactive Evolution. In Bäck, T., Fogel D.B.,

Michalewicz, Z. (Eds.), Handbook of Evolutionary
Computation, Oxford University Press, New York, and
Institute of Physics Publishing, Bristol, 1997.

[2] Banzhaf, W., Nordin P., Keller, R.E., and Francone, F.D.
Genetic Programming-An Introduction. Morgan-Kaufmann,
San Francisco CA, 1998.

[3] Bentley, P.J. Evolutionary Design by Computers, Morgan
Kaufmann Publishers, San Francisso, CA, 1999.

[4] Brown, N., McKay, B., Gilardoni, F., and Gasteiger, J. A
Graph-Based Genetic Algorithm and Its Application to the
Multiobjective Evolution of Median Molecules. Journal of
Chemical Information and Computer Sciences 44 (2004),
1079-1087.

[5] Class, S. Health care in Focus. Chemical & Engineering
News, Dec 6th 2004, 18-29.

[6] Dalby, A., Nourse, J.G., Hounshell, W.D., Gushurst, A.K.I.,
Grier, D.L., Leland, B.A., and Laufer, J. Description of
Several Chemical Structure File Formats Used by Computer
Programs Developed at Molecular Design Limited. J. Chem.
Inf. Comput. Sci. 32 (1992), 244-255.

[7] DiMasi, J.A., Hansen, R.W., and Grabowski, H.G. The price
of innovation: new estimates of drug development costs.
Journal of Health Economics, 22 (2003), 151-185.

[8] Douguet, D., Thoreau, E. and Grassy, G. A genetic algorithm
for the automated generation of small organic molecules:
Drug design using an evolutionary algorithm. Journal of
Computer-Aided Molecular Design 14 (2000), 449-466.

[9] Glen, R.C., and Payne, A.W.R. A genetic algorithm for the
automated generation of molecules within constraints.
Journal of Computer-Aided Molecular Design 9 (1995),
181-202.

[10] Globus, A., Lawton, J. and Wipke, T. Automated molecular
design using evolutionary techniques. Nanotechnology 10
(1999), 290-299.

[11] Kamphausen, S., Höltge, N., Wirsching, F., Morys-
Wortmann, C., Riester, D., Goetz, R., Thürk, M. and
Schwienhorst, A. Genetic algorithm for the design of
molecules with desired properties. Journal of Computer-
Aided Molecular Design 16 (2002), 551-567.

[12] Kim, C.U., Lew, W., Williams, M.A., Liu, H., Zhang, L.,
Swaminathan, S., Bischofberger, N., Chen, M.S., Mendel,
D.B., Tai, C.Y., Laver, W.G., and Stevens, R.C. Influenza
Neuramidase Inhibitors Possessing a Novel Hydrophobic
Interaction in the Enzyme Active Site: Design, Synthesis,
and Structural Analysis of Carbocyclic Sialic Acid
Analogues with potent Anti-Influenza Activity. J. Am. Chem.
Soc 119 (1997), 681-690.

[13] Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney,
P.J. Experimental and computational approaches to estimate
solubility and permeability in drug discovery and
development settings. Advanced Drug Delivery Reviews 23
(1997), 3-25.

[14] Nachbar, R.B. Molecular Evolution: A Hierarchical
Representation for Chemical Topology and Its Automated
Manipulation. In Genetic Programming 1998: Proceedings
of the Third Annual Conference (University of Wisconsin,
Madison, Wisconsin, July 22-25, 1998). Morgan Kaufmann,
San Francisco, CA, 1998, 246-253.

[15] Pegg, S.C.-H., Haresco, J.J., and Kuntz, I.D. A genetic
algorithm for structure-based de novo design. Journal of
Computer-Aided Molecular Design 15 (2001), 911-933.

[16] Rees, P. Big pharma learns how to love IT. Scientific
Computing World (2003), 16-18.

[17] Schneider, G., Clément-Chomienne, O., Hilfiger L. Scheider,
P., Kirsch, S., Böhm, H.-J., and Neidhart, W. Virtual
screening for bioactive molecules by evolutionary de novo
design. Angew., Chem. Int. Ed. 39 (2000), 4130-4133.

[18] Sheridan, R.P., Feuston, B.P., Maiorov, V.N., and Kearsley,
S.K. Similarity to Molecules in the Training Set Is a Good
Discriminator for Prediction Accuracy in QSAR. Journal of
Chemical Information and Computer Sciences, 44 (2004),
1912-1928.

[19] Vinkers, M.H., De Jonge, M.R., Daeyaert, F.F.D., Heeres, J.,
Koymans, L.M.H., Van Lenthe, J.H., Lewi, P.J.,
Timmerman, H., Van Aken, K., and Janssen, P.A.J.
SYNOPSIS: SYNthesize and Optimize System in Silico.
Journal of Medicinal Chemistry 46 (2003), 2765-2773.

[20] Weininger, D. SMILES: a Chemical Language and
Information System. 1. Introduction to Methodology and
Encoding Rules. J. Chem. Inf. Comput. Sci. 28 (1988), 31-
36.

[21] http://www.mdli.com/downloads/public/ctfile/ctfile.jsp

1976

