
Incorporating Fuzzy Knowledge into Fitness:
Multiobjective Evolutionary 3D Design of Process Plants

Ingo Mierswa
Artificial Intelligence Unit

Department of Computer Science
University of Dortmund

ingo.mierswa@uni-dortmund.de

ABSTRACT
Designing technical plants is a complex and demanding pro-
cess. It has been shown that the optimization of the simple
facility placement problem is already NP-hard. Optimiza-
tion of plant designs must obey a number of criteria derived
from several fields of process engineering. We discuss an ex-
pansion of the simple facility placement problem with non-
regular floor spaces and more than one layer. Additionally,
we allow forbidden zones and predefined ways. In contrast
to other approaches our system can cope with competitive
criteria. These can be defined by a plant designer in an intu-
itive way according to concepts from fuzzy logic. This leads
to the multiobjective optimization of costs and fulfillment
of weighted design rules. We describe an evolutionary al-
gorithm to construct Pareto-optimal blueprints of chemical
plants. The smart indexing of rules and assignment of con-
clusions to components allows an efficient calculation of the
rule fulfillment as part of the fitness function. Optimized
blueprints for a real existing chemical plant dominate the
original design.

Categories and Subject Descriptors: I.2 [Computing
Methodologies]: Artificial Intelligence

General Terms: Experimentation

Keywords: Multiobjective evolutionary construction, evo-
lutionary plant design, fuzzy constraint indexing

1. INTRODUCTION
Designing a process plant is a complex and demanding

task. Right from the planning stage the designer must con-
sider the complete lifecycle of the plant and costs for realiza-
tion and operation. Wrong decisions in these stages cause
high costs during installation and operation. First of all,
the designer selects necessary components for the process
at hand. The optimization of this selection is done during
basic engineering and is not part of this paper. After this
selection step the main components and their properties are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

known and must be placed on a factory ground. This design
phase is called extended basic engineering and all following
steps of detail engineering depend on an optimal placement
of the selected components. Factory grounds often contain
a steel construction which expands the layout problem into
the third dimension. In this paper we concentrate on the
design of chemical plants where a steel construction usually
exist. Typical dimensions of the used equipments cover the
range from 1m2 to 50m2. The layout optimization in the
extended basic engineering step must obey a great number
of constraints derived from several fields of engineering [2,
21]. Process engineering may define requirements depending
on the process at hand, e. g. a pump may ask for a primary
pressure which can be set with help of an altitude differ-
ence. Safety engineering defines constraints which should
ensure a safe operation for both the plant and the employ-
ees. Placement constraints for components can be derived
from machine engineering, e. g. heavy machines should be
placed in ground level. All relevant pipes should be con-
sidered during planning, especially those with large diam-
eters or those built from expensive materials. The instal-
lation requirements should ensure a low priced installation
of the plant. Components which must be manually oper-
ated or maintained should be placed at reachable locations.
These requirements can be defined as rules (see section 3). A
blueprint for a process plant is optimal if all rules are fulfilled
and other costs are minimized. Often these constraints can
only be formulated in a fuzzy way and, moreover, are usually
contradictory. For example, a plant providing enough place
for maintaining cannot minimize the connection lengths. In
practice an optimal plant design can hardly be found be-
cause of the competitive criteria and costs defined above.

1.1 Related work
The optimization of process plants discussed in this pa-

per is a variant and enhancement of known problems. The
placement problem is known from VLSI design, where the
total space needed by a set of rectangular components is to
be minimized. This problem is NP-hard [8]. Heuristics must
be used to ensure efficiency in practical domains, including
evolutionary algorithms [6, 10, 11, 29].

Similar to the placement problem of VLSI design is the
facility placement problem. Classical methods for this prob-
lem include the definition as quadratic assignment problem,
linear programming, and mixed integer linear programming
[19]. The main problem with these approaches is the re-
duction on a single class of costs [1]. Improvements were

1985

done to overcome this problem [22, 25] but finding an ex-
act solution with respect to general cost functions remains
a hard problem [26]. Other approaches relax this problem
by using a fixed grid [14]. Since the plant components used
in this paper are very different in size this restriction is not
an option. None of the approaches optimize the layout with
respect to all criteria defined above.

Many solutions based on evolutionary algorithms were
presented including approaches which uses several weighted
criteria [4] for required area, pipe lengths, and safety costs.
The proposed approaches did not perform a multiobjective
optimization and do not allow three dimensions or layers.
Additionally, the user can not define additional constraints
which may depend on the process at hand. Other evolution-
ary approaches did not allow fuzzy user defined constraints
too [30, 3, 31]. Hence we still lack an efficient knowledge-
based assistant for three dimensional real world plant design.

1.2 Outline
In the next section we formalize the layout problem dis-

cussed in this paper as enhancement of the classical facility
layout problem. We discuss a representation of plants which
allows the definition of fuzzy constraints and can be used to
represent the individuals during optimization. Afterwards,
we will introduce the indexing of fuzzy rules in section 3.
This is a necessary preprocessing step to guarantee an ef-
ficient calculation of the fitness function. Users can easily
define the constraints of plant design in a simple XML for-
mat. In section 3.1 we will discuss the possible rule conclu-
sions which are defined with fuzzy techniques. In Section 4
we merge the different criteria like connection costs (section
2.1) and rule fulfillment (section 3.1). We will also shortly
introduce some other criteria which were not discussed in
detail. This leads to the multiobjective optimization prob-
lem of 3D plant design using fuzzy background knowledge.
We use an evolutionary strategies approach described in sec-
tion 4.1 on the individuals defined in section 2 to tackle this
problem. We adapted Pareto dominant tournament selec-
tion for the multiobjective setting where no criteria weights
were given. Section 5 provide results for an existing plant
for both the single- and multiobjective setting.

2. ENLARGEMENT OF THE CLASSICAL
FACILITY LAYOUT PROBLEM

In the classical facility layout problem we try to arrange a
set of rectangular shapes in a specified area [28]. At the same
time the costs induced by the matrix M = [mij]i,j=1,...,n

should be minimized. This matrix defines the costs for a
connection between the components i and j. The matrix
entry mij depends on the diameter and the material of the
connection. The goal is a non-overlapping layout of all com-
ponents with minimized costs

X

i,j

dij · mij (1)

with dij as distance between the components i and j (see
section 2.1). The facility layout problem is a special case
of the quadratic assignment problem, which proved to be
NP-hard [13]. We discuss a variant of this problem with
non-regular floors, three dimensions by using a steel con-
struction for higher levels, forbidden zones, and predefined
ways. Similar variants were studied by [19, 23].

We represent all parts of the plant which may be relevant
to user defined constraints as components. We do not dis-
tinguish between a way and a machine for example: both
are represented as component of the plant. This allows the
described and further enhancements as well as user defined
constraints. All components which are movable during the
design phase build a vector which is the representation of
the points of our search space. Components are defined by
a shape and a location. In our experiments we use only
rectangular shapes, but please note that our system is not
limited to these shapes. The location is defined by a triple
(x,y,layer). Ways and blocked zones are special components
which can not be moved but are necessary to define the rules
and constraints in a straightforward manner. Unless other-
wise noted we refer to the movable machines of a plant if
we speak of components. This component-based concept of
process plants including user defined optional components
covers the complex optimization task discussed in this pa-
per as well as simple facility layout problems.

2.1 Routing approximation by Manhattan
distance

We have to determine the costs for connections by build-
ing the sum

P

i,j
dij ·mij using a cost matrix M . Therefore,

we have to efficiently calculate the distances dij between the
components i and j. This routing problem is usually solved
with variants of the algorithm introduced by Lee [20]. How-
ever, the 3D routing is already NP-hard for only two layers
[33]. Since the costs for connections must be calculated for
each fitness evaluation we need an approximation for the
distance which can be efficiently calculated. Fortunately,
it turns out that the Manhattan distance is a very good
approximation for the pipes of a chemical plant. The Man-
hattan distance is the shortest orthogonal connection of two
points in space. Due to the triangle inequality in euclidian
spaces the minimization of the Manhattan distance is equiv-
alent to the minimization of the euclidian distance. Since
pipes of chemical plants are almost exclusively orthogonally
layed the Manhattan distance is actually a better estima-
tion for the real costs than the euclidian distance and the
calculations needs less runtime than more complicate rout-
ing algorithms. Furthermore, we do not have to consider
routing collisions.

3. RULES FOR PLANT DESIGN
We motivated and discussed some of the requirements for

plant design already in section 1. This section describes
how the different constraints can be formalized and evalu-
ated. We used a rulebase developed by Leuders [21] who
defined about 100 rules for chemical plant design. Of course
similar rulebases can be defined for other purposes too. The
rulebase can be divided in two groups:

absolute position constraints: absolute constraints refer
to a movable component and one of the general prop-
erties of the plant like ways or forbidden zones. An air
cooler, for example, must be placed in the top level of
the plant, other components must be placed next to
ways to ease maintenance.

relative position constraints: relative constraints corre-
late two movable components without defining the ab-
solute positions of the components. For example, a

1986

tank with a connection to a pump should be placed
above the pump.

It is possible to specify both groups with the same function
class due to the component based representation for both
movable machines and other plant elements like ways or steel
constructions. Absolute position constraints like next to

way or next to border can also be defined as relative con-
straints between a normal component and a non-movable
component like another plant element. Hence, we can de-
fine the same conclusions for both groups. These conclusions
are next, close, above, in, and out. The fulfillment of each
of these conclusions can be calculated like the membership
function of a linguistic variable. In the next section this
fuzzy technique is defined for the described conclusions.

3.1 Fulfillment of rules with fuzzy conclusions
There are two good reasons for using fuzzy constraints

as part of the fitness function. The background knowledge
which is used to define the rulebase for the fitness function
should reflect the experience of a plant designer. The well
known fuzzy logic concept of a linguistic variable is a natu-
ral representation of such knowledge [9]. The main reason,
however, is the smooth form of the fitness function which is
induced by the membership function of fuzzy constraints. In
contrast to sharp logic representations the fuzzy constraints
can easily be weighted and avoid discontinuous fitness func-
tions which are more problematic to optimize at all.

Following the concept of a linguistic variable we define
functions which map two components on the membership
to a concept like “neighborhood” or “vertical alignment”.
This is called a fuzzy constraint:

Definition 1. Let K be the set of all components. A fuzzy
constraint is a mapping f : K × K → [0, 1] of two compo-
nents on a membership interval.

Fuzzy constraints can be used as conclusion of user defined
rules. Another advantage is the intuitive weighting by scal-
ing the membership value with the rule weight. The fulfill-
ment er of a rule’s conclusion for two components ki and
kj is the membership value of the corresponding fuzzy con-
straint cr multiplied with the rule’s weight wr ∈ R, i. e.:

er (ki, kj) = wr · cr (ki, kj) (2)

In many cases a fuzzy constraint does not only apply for
exactly two components but for one component and a class
of other components. An example is a conclusion like “the
component must be next to a way”. This constraint is ful-
filled if the component at hand lies next to an arbitrary
way. Please remember that each way is also defined as com-
ponent. We can use a class Ways of components and claim
that the fuzzy constraint next(k, Ways) should provide a
high membership value if the component k lies next to one
of the ways out of Ways. We formalize this idea of disjunc-
tion with fuzzy class constraints:

Definition 2. Let K be the set of all components and C ⊂
Kp a class of components. A fuzzy class constraint is a
mapping f̂ : K×C → [0, 1] of a component and a component

class on a membership interval. The function f̂ is defined
as f̂(k, c) = maxi(f(k, ci)) for a k ∈ K and all ci ∈ C.

Please note that other S-norms can also be used instead of
the maximum.

3.1.1 Fuzzy conclusions for plant design
Now we can use the idea of fuzzy constraints to define

possible conclusions of weighted design rules. These should
reflect the requirements induced by process and safety engi-
neering. Especially for chemical processes a vertical align-
ment of two components is often demanded. Since the exact
vertical arrangement is actually not necessary we define a
fuzzy constraint named above depending on the angle be-
tween the components. Let dij be the distance and hij the
altitude difference between the components i and j. The
value hij is negative if component i lies in a lower level than
component j. The following fuzzy constraint delivers 0 for
all angles greater than αmax:

Definition 3. The fuzzy constraint above is defined as:

above(i, j) =

8

>

<

>

:

0 for hij < 0

max

0, 1 −
arctan

dij
hij

αmax

!

for hij ≥ 0
(3)

If two components should lie side by side in the same layer
the distance dij can be normalized by the diameter d2 of the
corresponding layer:

Definition 4. The fuzzy constraint next is defined as:

next(i, j) =

(

0 for hij 6= 0

1 −
dij

d2

for hij = 0
(4)

Similar to next which only makes sense in 3D settings with
discrete layers the fuzzy constraint close defines the neigh-
borhood in all dimensions with help of the diagonal d3 of
the used space:

Definition 5. The fuzzy constraint close is defined as:

close(i, j) = 1 −
dij

d3

(5)

Additional special purpose constraints can easily be added
in a similar way. In order to demand the placement of a
specific component as part of the steel construction or a
particular layer the following fuzzy constraints were defined
for chemical plant design:

Definition 6. The fuzzy constraints in and out are de-
fined as:

in(i, j) = o(i, j)/ min(a(i), a(j)) (6)

out(i, j) = 1 − in(i, j) (7)

The function a(i) calculates the area of the shape of com-
ponent i and the function o(i, j) the size of the intersection
between the components i and j. The value range of this
overlap function lies between 0 and min (a(i), a(j)).

Sometimes the user is able to define weights for the dif-
ferent rules. In case of the chemical plant design task we
discuss in this paper the designer was able to define three
different degrees of importance. Some rules must be obeyed
to ensure the correct functioning of the plant or the safety of
the employees. For other constraints it would only be nice
if they are fulfilled but this is not really necessary. These
degrees of rule importance can be defined via rule weights.
Figures 1 and 2 show parts of the rulebase for chemical plant
design. The used weights are named high, medium, and low.
The complete rulebases are stored in an XML format.

1987

// Long tanks should be placed next to a border

<rule name="L71" weight="low" constraint="Border">

<method name="type" type="=" value="tank"/>

<method name="length" type=">" value="500"/>

</rule>

// Stations should be placed in level 0

<rule name="L80" weight="low" constraint="Ground">

<method name="type" type="=" value="station"/>

</rule>

// A short forklift must be placed next to a way

<rule name="L05" weight="high" constraint="Way">

<method name="device" type="=" value="forklift"/>

<method name="length" type="<" value="5000"/>

</rule>

Figure 1: Part of the XML rulebase for absolute
position constraints. “Border” is a shortcut for the
class of all border components, i. e. for the con-
straint next(k, Border).

3.1.2 Rulebase preprocessing and indexing
Such XML rulebases can be specified for a complete field

of technical engineering, e.g. chemical plant design. They
apply for chemical plants in general and only little adop-
tions should be necessary when a concrete plant should be
designed. On the one hand this is a desired feature since
a system providing aid to a designer should have only one
setup phase. On the other hand this means that many of the
rules might not be applicable to a given plant at all. The
naive approach for fitness evaluation is to iterate through
all rules and check if the current rule applies for one or
several of the components and their connections. Since this
approach is far away from an efficient implementation it can-
not be used during the fitness evaluation of an evolutionary
algorithm. Therefore, we apply a preprocessing step on the
rulebase before we start with optimization. We perform the
following steps:

• Iterate through all rules and do:

1. Iterate through all components and connections
and check if the premises of the current rule can
be applied

2. Assign the conclusion, i. e. the fuzzy constraint
of a firing rule to the corresponding components
and connections respectively

This simple rule indexing step reduces the number of con-
straints to those which are suitable to the given plant at
all. Moreover, the premises are checked only once before
optimization and not for each fitness evaluation. We illus-
trate this indexing step with a simple example. The generic
rulebase for chemical plant design contains a rule

If

a connection exists from a heat exchanger to a pump

then

the heat exchanger must be located above the pump.

The rule need not to be checked at all during optimization
if the plant at hand does not contain any heat exchangers
or pumps. If there are heat exchangers and pumps which
are connected in the specified direction then only the rule
conclusion must be evaluated for exactly these components.

// Clear tanks should be placed above pumps

<rule name="L40" weight="medium" constraint="Above">

<first>

<method name="type" type="=" value="tank"/>

<method name="specs" type="=" value="clear"/>

</first>

<second>

<method name="type" type="=" value="pump"/>

</second>

</rule>

// Components must be placed close if connected

// with metal connections of large diameter

<rule name="L02" weight="high" constraint="Close">

<connection>

<method name="diameter" type=">" value="5"/>

<method name="material" type="=" value="met"/>

</connection>

</rule>

Figure 2: Part of the XML rulebase for relative
position constraints. Arbitrary combinations of
premises for both the components and the connec-
tion itself can be defined.

Rule indexing derives a concrete rule from the generic rule-
base for a singular heat exchanger e and a singular pump
p:

The heat exchanger e must be located above pump p.

Hence this rule need not to be checked for components of
other types too. By indexing the rulebase and assigning the
conclusions to the corresponding components the effort for
rule evaluation is minimized.

3.1.3 Runtime analysis of rule evaluation
Let n be the number of components. If each component

is connected to each other component a total number of
O(n2) connections exist. Since premise checks and index-
ing is done during a preprocessing step the calculation of
the membership function is the only thing we have to do for
each connection. This can be done in O(1). Only a constant
number of possible constraints exist for each connection –
in case of chemical plant design the five constraints next,

close, above, in, out. This results in a worst case run-
time of O(kn2). Practically, not all components are con-
nected to each other but each component provide only a
small amount of connections. In case of chemical plants this
number is approximately 4.

4. PLANT DESIGN AS MULTIOBJECTIVE
OPTIMIZATION

The rules we described in the last section cover the oper-
ational requirements discussed in section 1. However, more
than these criteria may be applied to the optimization task
of plant design. All of them must be efficient to calculate,
i. e. have polynomial runtime. We define the following cri-
teria for the design optimization of chemical process plants:

fa: the fulfillment of the absolute position constraints. The
runtime is linear in the number of components.

fr: the fulfillment of the relative position constraints. The
runtime is linear in the number of connections (see
section 3.1.3).

1988

fl: the distribution of layer contents. Approximately be-
tween 30% and 70% of each layer should be filled to
ease maintenance and operation. Actual values depend
on the type of the plant [18]. Since each component
must be examined the runtime is also linear.

fc: connection costs based on Manhattan distance and cost
matrix M (see section 2.1). The quadratic runtime in
the worst case is not reached in practice. In average
the complexity is similar to the calculation of relative
rule fulfillment.

fo: the overlap degree. Overlapping components are a relax-
ation of the classical facility placement problem. This
eases a continuous mutational drift of components into
other areas of the plant – including the drift across for-
bidden zones or ways. Since the overlap of each com-
ponent with all other components must be calculated
the runtime is quadratic in the number of components.

It can easily be shown that these criteria compete. A plant
that fulfills all operational requirements can usually not min-
imize the connection costs. On the other side a strongly
overlapping plant would minimize those costs. An experi-
enced plant designer may be able to define weights wi for
the different criteria and transform the optimization task
into one with a single criterion

Z = wafa + wrfr + wlfl + wcfc + wofo (8)

which is to maximize. Usually such weights cannot be de-
fined and vary with different plants. Therefore, the task
of 3D plant design is a multiobjective optimization problem.
These problems cannot be solved with singleobjective evo-
lutionary algorithms. Since the user has only a vague idea
of criteria weights, a multiobjective optimization algorithm
tries to find all solutions which are optimal for arbitrary
weight vectors. These solutions are called Pareto-optimal
(see section 4.1.1). The blueprints of the Pareto-optimal
set of solutions can only be enhanced with respect to one
criterion if the values of other criteria decreases. We de-
scribe an evolutionary approach to find such Pareto-optimal
blueprints of process plants in the next section.

4.1 Evolutionary search for Pareto-blueprints
This section describes the developed operations to per-

form the search for optimal plant designs with an evolu-
tionary algorithm [15, 16]. Each individual is given as vec-
tor of the positions and orientations of all movable compo-
nents (section 2). Since the shape of a component cannot
be changed in the setting of plant design, search operations
only refer to the location and the rotation of the compo-
nents. We adapted the NSGA-II algorithm for these type of
real-valued individuals [7].

The start population of N individuals is randomly created.
We perform three steps for each component of an individ-
ual: first, we randomly select the layer of the component by
selecting one of the possible layers defined by a steel con-
struction. Second, we chose a position in this layer. The
last step is to select one of the four possible rotations. All
selections were done uniformly distributed. This leads to
plant designs where components may overlap.

We apply uniform crossover by changing the position and
the rotation of the parent’s components. This is done for
each component with probability 0.5. If an individual has

n movable components one of the following mutations is
performed with probability 1/n for each component:

Drift: the component drifts in a randomly chosen direction.
The length of the drift vector is a Gaussian variable
with standard deviation σ. This parameter is adapted
during evolution by an 1/5-rule [27].

Layer: the component’s location is randomly changed to a
location in another layer.

Rotation: the component is rotated by 90◦, 180◦, or 270◦.
Since our algorithm considers the connection points of
the components, rotations may decrease connections
costs.

We apply the parts of the fitness function described in the
first sections of this paper on the individuals. If a weight vec-
tor of the criteria was defined we transform the fitness func-
tion into the single objective function and optimize equation
8. In this case we tried both roulette wheel selection and
tournament selection. Tournament selection proved to work
much better in our setting. We stop the algorithm after a
user defined number of generations or after a given number
of generations without improvement.

To allow non-singular fitness functions in the multiobjec-
tive case we must modify the selection operator. This is
described in the next section.

4.1.1 Pareto-dominant selection
The multiobjective search space of a maximization prob-

lem is subject to a partial order:

Definition 7. A solution a dominates a solution b (written
as a � b) if for the p criteria ri the following is true:

∀i ∈ {1, . . . , p} : ri(a) ≥ ri(b) ∧ (9)

∃i ∈ {1, . . . , p} : ri(a) > ri(b).

Our selection scheme needs to decide if a solution is domi-
nated by a set B of solutions. We define:

Definition 8. A solution a is non-dominated by a set of
solutions B if the following is true:

6 ∃b ∈ B : b � a. (10)

Now we are able to define what we mean with Pareto-optimal
solutions:

Definition 9. A solution a is Pareto-optimal if a is non-
dominated by the complete solution space.

Multiobjective evolutionary algorithms can optimize more
than one target function by introducing special selection op-
erators [5, 34]. Traditional approaches in the field of math-
ematical programming must be applied more than once for
multiobjective optimization [12, 32]. Due to the population
based approach of evolutionary algorithms a broad selec-
tion of Pareto-optimal solutions can be found during one
run. The user can select one of these solutions after op-
timization. Additionally, multiobjective evolutionary algo-
rithms do not strongly depend on form and continuity of
the Pareto-optimal set [5]. The used NSGA-II approach
employ a selection technique which first sorts all individuals
into levels of non-domination. Until the desired population
size is reached, individuals from the first levels are added
to the next generation. Before adding individuals from the
last possible level, this level is sorted with respect to the
crowded distance to preserve diversity in the population.

1989

Requirement original (1 + 1) (µ + λ) multi
absolute 0.75 (6) 0.76 ± 0.01 (2) 0.76 ± 0.02 (3) 0.78 (3) ± 0.02
relative 0.47 (0) 0.53 ± 0.01 (1) 0.54 ± 0.01 (0) 0.53 (0) ± 0.01
layer 0.50 0.47 ± 0.09 0.51 ± 0.09 0.51 ± 0.04
tubes 0.78 0.80 ± 0.02 0.82 ± 0.01 0.83 ± 0.01
overlap 0.58 0.80 ± 0.01 0.83 ± 0.01 0.79 ± 0.01
total 0.56 0.63 ± 0.01 0.63 ± 0.01 0.63 ± 0.01

Table 2: Average results for the different optimization strategies from 20 runs. All criteria were normalized
between 0 and 1 and should be maximized. The best results of each line were printed in a bold style. The
values in parentheses are the number of highly weighted constraints which were not fulfilled in the best of
the 20 runs.

Property Value
number of components 28
predefined locations 5
movable components 23
number of connections 108
layers 5
steel construction yes
forbidden zones yes
ways yes
total number of rules 88 in rulebase (11968)
applicable rules 141

Table 1: The properties of the original plant. The
rulebase had a size of 88 rules which sums up to
88·(28+108)=11968 rule checks. Actually, only 141
constraints were checked during fitness evaluation.

5. EXPERIMENTS AND RESULTS
The experiments discussed in this paper were performed

on a chemical plant which was already built. This allows
the comparison with a existing plant instead of synthetical
data. Table 1 collects the properties of this plant. With-
out rule indexing the 88 design rules must be checked for
each component (absolute position constraint) and connec-
tion (relative position constraint). All in all a number of
(28 + 108) · 88 = 11968 design rules exists. We were able
to reduce the number of fuzzy constraints which have to be
checked to 141 (approximately 1.2%) by the preprocessing
step and rule indexing. The evolutionary optimization of
the plant design was performed with three strategies:

1. (1+1)EA with population size 1 and without crossover.

2. (µ + λ)EA with population size 12 and with uniform
crossover and tournament selection with t = 4.

3. multiobjective optimization with the selection scheme
described in section 4.1.1 and population size 300.

All runs were performed with 10000 generations. Table 2
shows the average fulfillment of the constraints and the av-
erage values of the other criteria for the original plant and
for the different strategies, collected during 20 runs. We
have used the weights wa = 0.24, wr = 0.60, wl = 0.02,
wc = 0.02, and wo = 0.12 for the calculation of the weighted
average in the case of the single objective optimization.
The results presented for the multiobjective optimization
are from the plant design which optimize the total costs for

these weights. Figures 3 and 4 show the best individual op-
timized with the (µ + λ)EA. During the multiobjective run
a set of very diverse blueprints is created which is a useful
aid for the plant designer. Figure 5 presents the initial pop-
ulations and the Pareto fronts for four of the five criteria.
Further results are presented in [24] and a comparison with a
classical constraint programming approach can be found in
[17]. This approach finds designs with similar performance
with respect to the rule constraints but does not consider
the other criteria.

6. CONCLUSIONS
We have introduced a way of incorporating fuzzy back-

ground knowledge into the fitness function of an evolution-
ary algorithm. A preprocessing step and indexing the rule-
base allow the efficient calculation of the fulfillment as part
of the fitness function. Special search operators were defined
for the representation of process plants and a multiobjec-
tive selection scheme was adapted. Thereby we were able to
cope with a variant of the facility placement problem which
was proven to be NP-hard. This variant allows non-regular
grounds, three dimensions, forbidden zones, and predefined
ways and component locations. Our approach constructs
blueprints which beats a real existing plant with respect to
all criteria. Therefore this is a valuable example of a real
world application of multiobjective evolutionary optimiza-
tion.

7. ACKNOWLEDGMENTS
This work was supported by the Deutsche Forschungsge-

meinschaft (DFG) within the Collaborative Research Center
“Design and Management of Complex Technical Processes
and Systems by Means of Computational Intelligence Meth-
ods”.

8. REFERENCES
[1] L. Amorese, V. Cena, and C. Mustacchi. A heuristic

for the compact location of process components.
Chemical Engineering Science, 2(32):119–124, 1977.

[2] W. D. Baasel. Preliminary Chemical Engineering
Plant Design. Elsevier, 1974.

[3] J. Balakrishnan, C. H. Cheng, D. G. Conway, and
C. M. Lau. A hybrid genetic algorithm for the
dynamic plant layout problem. International Journal
of Production Economics, 86:107–120, 2003.

[4] C. M. L. Castell, R. Lakshmanan, J. M. Skilling, and
R. Bañares-Alcántara. Optimisation of process plant

1990

(a) Layer 0 (b) Layer 1 (c) Layer 2 (d) Layer 3 (e) Layer 4

Figure 3: The layers of the optimized plant design. Gray regions represent the ways, the predefined steel
construction, and movable and predefined components. Dots of components mark the connection points.

(a) Original plant design (b) Optimized plant design

Figure 4: 3D plots of the orginal plant (left) and the optimized version (right).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Lo
ca

tio
n

Layer

Start
Finished

(a) Layer vs. Location

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.68 0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9

T
ub

es

Overlap

Start
Finished

(b) Tubes vs. Overlap

Figure 5: Pareto fronts for four of the criteria and the initial start population.

1991

layout using genetic algorithms. Computers and
Chemical Engineering, 22:S993–S996, 1998.
Supplement 1.

[5] C. A. Coello Coello. A comprehensive survey of
evolutionary-based multiobjective optimization
techniques. Knowledge and Information Systems,
1(3):129–156, 1999.

[6] J. P. Cohoon and W. D. Paris. Genetic placement. In
Proceedings of the IEEE International Conference On
Computer-Aided Design, pages 422–425, 1986.

[7] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multi-objective genetic algorithm:
Nsga-ii. Technical report, Kanpur Genetic Algorithms
Laboratory, Indian Institute of Technology, 2002.

[8] W. E. Donath. Complexity theory and design
automation. In Proceedings of the 17th Conference On
Design Automation, pages 412–419, 1980.

[9] D. Dubois and H. Prade. An introduction to
possibilistic and fuzzy logics. In Readings in Uncertain
Reasoning, chapter IX, pages 742–762. Morgan
Kaufmann, 1990.

[10] K. Eguchi, J. Suzuki, S. Yamane, and K. Oshima. An
Application of Genetic Algorithms to Floorplanning of
VLSI. Number 1424 in Lecture Notes in Computer
Science. Springer, 1998.

[11] H. Esbensen. A genetic algorithm for macro cell
placement. In Proceedings of the European Desing
Automation Conference, pages 52–57, 1992.

[12] J. P. Evans and R. E. Steuer. A revised simplex
method for linear multiple objective programs.
Mathematical Programming, 5:375–377, 1973.

[13] M. R. Garey and D. S. Johnson. Computers and
Intractability – A Guide to NP-Completeness.
International Computer Science Series. Freeman, 1979.

[14] M. C. Georgiadis, G. Schilling, G. E. Rotstein, and
S. Macchietto. A general mathematical programming
approach for process plant layout. Computers and
Chemical Engineering, 7(23):823–840, 1999.

[15] D. E. Goldberg. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-Wesley,
1989.

[16] J. H. Holland. Adaptation in Natural and Artifcial
Systems. MIT Press, 1992.

[17] H. Köpcke and A. Schröder. Constraint Programming
versus Logik. Vergleich zweier Ansätze zur
Aufstellungsplanung von Chemieanlagen. Technical
report, SFB 531, Universität Dortmund, 2004.
CI-183/04.

[18] D. Köster. Ein Assistenzsystem zur methodischen
Unterstützung der Aufstellungsplanung von
Chemieanlagen. PhD thesis, Fachbereich
Chemietechnik, Universität Dortmund, 1998.

[19] A. Kuziak and S. S. Heragu. The facility layout
problem. European Journal of Operational Research,
29:229–251, 1987.

[20] C. Y. Lee. An algorithm for path connections and its

applications. IEEE Transactions On Electronic
Computers, 10(2):346–365, 1961.

[21] P. Leuders. Rechnergestützte Optimierung der
Layoutplanung von Chemieanlagen. Shaker Verlag,
2002.

[22] R. Malingriaux, K.-R. Hilbring, and L. Schuart. Zur
optimalen Anordung der Elemente in Anlagen der
stoffumwandelnden Industrie. Wissenschaftliche
Zeitung der Technischen Hochschule Otto von
Guericke, 8(14), 1970.

[23] R. Meller and K. Gau. The Facility Layout Problem:
Recent and Emerging Trends and Perspectives.
Journal of Manufacturing Systems, 15:351–366, 1996.

[24] I. Mierswa and T. Geisbe. Multikriterielle evolutionäre
Aufstellungsoptimierung von Chemieanlagen unter
Beachtung gewichteter Designregeln. Technical report,
SFB 531, Universität Dortmund, 2004. Reihe CI.

[25] F. D. Penteado and A. R. Ciric. An MINLP approach
for safe process plant layout. Industrial and
Engineering Chemistry Research, 4(35):1354–1361,
1996.

[26] M. S. Peters, K. D. Timmerhaus, and R. E. West.
Plant Design and Economics For Chemical Engineers.
McGraw-Hill, 2003.

[27] I. Rechenberg. Evolutionsstrategie: Optimierung
technischer Systeme nach Prinzipien der biologischen
Evolution. Frommann-Holzboog, 1973.

[28] V. Schnecke and O. Vornberger. Hybrid genetic
algorithms for constrained placement problems. IEEE
Transactions on Evolutionary Computation,
1(4):266–277, 1997.

[29] K. Shahookar and P. Mazumder. VLSI cell placement
techniques. ACM Computing Surveys, 2(23):143–220,
1991.

[30] H. Tansri and K. C. Chan. A quantitative approach to
the plant layout problem using genetic algorithms. In
Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems, IEA/AIE 93.
Proceedings of the Sixth International Conference.
Gordon and Breach, 1993.

[31] W. X. Yan, C. L. Ning, Y. J. W. X. Yan, C. L. Ning,
and Y. Jian. Application of genetic algorithms in
plant layout. Industrial Engineering and Management,
4(7):30–34, 2002.

[32] P. L. Yu and M. Zeleny. The set of all nondominated
solutions in linear cases and a multicriteria Simplex
method. Journal of Mathematical Analysis and
Applications, 49:430–468, 1975.

[33] Q. Yu, S. Badida, and N. Sherwani. Algorithmic
aspects of three dimensional mcm routing. In DAC
’94: Proceedings of the 31st annual conference on
Design automation, pages 397–401. ACM Press, 1994.

[34] E. Zitzler and L. Thiele. Multiobjective evolutionary
algorithms: a comparative case study and the strength
Pareto approach. IEEE Transactions on Evolutionary
Computation, 3(4):257–271, 1999.

1992

