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ABSTRACT 
The particle swarm algorithm is usually a dynamic process, where 
a point in the search space to be tested depends on the previous 
point and the direction of movement.  The process can be decom-
posed, and probability distributions around a center can be used 
instead of the usual trajectory approach.  A version that is both 
dynamic and Gaussian looks very promising. 
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1.  INTRODUCTION 
 Since its introduction in 1995 (Kennedy and Eberhart, 
1995; Eberhart and Kennedy, 1995), the particle swarm al-
gorithm has gone through many changes.  Though early 
results were surprisingly good, and though the method had 
very few moving parts, it turned out to be quite difficult to 
understand how it worked, in order to improve it.  Over the 
past decade, numerous modifications have been introduced, 
several of which have turned out to cause genuine im-
provements in performance, and several of which have 
helped to understand the dynamics of the swarm and how it 
is able to solve problems. 
The canonical particle swarm algorithm is given as: 

For each population member i do 
If eval(i) < pbesti then 

For each dimension d do 
pid=xid 

End 
pbesti=eval(i) 

End 
Identify best neighbor g 
For each dimension d do 

vid = khi× (vid + 
rand×(phi/2)×(pid – xid) + 
rand×(phi/2)×(pgd – xid)) 

xid=xid + vid 
Next d 

Next i 
 

where khi is usually a constant 0.729, phi=4.1, and rand is a 
uniform random number generator (Clerc and Kennedy, 
2002; Kennedy and Eberhart, 2001). 
 In the original versions, as well as in the current canoni-
cal version, there are three sources of bias toward improve-
ment.  First, a particle is influenced by the best positions 
itself and its neighbors have attained thus far.  Second, in 
standard versions the best-performing neighbor, or even the 
best-performing particle in the entire population, is chosen 
to be a source of influence on the particle.  Finally, in most 
standard versions the individual particle’s own previous best 
is used as a source of “influence,” that is, the particle is at-
tracted to the point of its own previous success. 
 The success of Mendes’ (e.g., Mendes, Kennedy, and 
Neves, 2004; Kennedy and Mendes, 2002) fully-informed 
particle swarm (FIPS) suggests that the second source of 
bias toward improvement may be spurious.  In FIPS, all of a 
particle’s neighbors’ previous best positions are used, aver-
aged with random weighting, rather than only the best 
neighbor.  Thus it turns out not to be necessary to identify 
and choose the best one.  Further, in FIPS the individual’s 
previous best is not a factor in adjusting its own trajectory.  
FIPS is a demonstrably powerful algorithm which, when 
implemented with an appropriate neighborhood topology, 
outperforms the canonical particle swarm on test problems. 
 FIPS modifies the canonical algorithm by changing the 
velocity formula somewhat: 

 
vid = khi× (vid + 

sum (rand×phi×(pkd – xid)/K) 
 

where the k subscript identifies the particle’s neighbors and 
K is how many of them there are. 
 
1.1 Dynamic trajectories 
 The particle swarm is considered to model a general 
theoretical perspective of socially situated minds (Smith and 
Semin, 2004), that is, the human cognitive system as a par-
ticipant in a rich, dynamic social system where knowledge 
and learning are collaborative dynamical processes.  Simul-
taneously, the particle swarm has gained attention as a 
method for engineering and applied mathematics, for its 
ability to solve very difficult problems. 
 The view of the particle as moving continuously through 
space has never fit perfectly well with the psychological 
model.  Some theorists have suggested that thought can be 
conceptualized in terms of trajectories through a cognitive 
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space, but there is little in the way of empirical evidence to 
support the idea.  True, an individual’s beliefs and attitudes, 
etc. – their cognitive elements (Festinger, 1957) – are auto-
correlated from one moment in time to the next, with simi-
larity higher for proximal points in time than distal ones, but 
it is difficult to argue that a change in mental state beginning 
at point A and proceeding to E traverses all the points in 
between.  Partly this reflects difficulty in the assignment of 
mental states to points on multidimensional continua, but 
partly it reflects a real quality of minds, that they do in fact 
sometimes make discontinuous changes, leaping from one 
region of the cognitive space to another. 
 The trajectory aspect of the particle swarm formulas 
came from their origin in experiments with Reynolds’ 
(1987) boids and Heppner’s (Heppner and Grenander, 1990) 
bird-flocking simulations, computer programs that repre-
sented the trajectories of birds on a computer screen.  These 
early models provided sudden and important insights into 
the behaviors of flocking, schooling, and herding animals, 
and provided momentum to the new field of complex adap-
tive systems that hoped to answer theoretical questions with 
computer programs. 
 But birds fly in three-dimensional space, and the kinds 
of mathematical problems typically solved by the particle 
swarm were unlimited in dimension.  From the psychologi-
cal model, we would say that the problem space was the 
space of mental elements, where collision of individuals was 
agreement and not something painful to be avoided.  Thus 
the kinds of collision-avoiding algorithms needed to keep 
birds afeather were not necessarily appropriate.  And as 
cognitive elements seem to be innumerable, dimension can 
be high. 
 
1.2 Probabilistic Search 
 Analysis of particle behavior with fixed “previous best” 
points found that the particle oscillated around a point that 
was the mean of the two bests, with a standard deviation that 
was proportional to, in fact about equal to, the distance be-
tween them.  Kennedy (2003) demonstrated that a Gaussian 
random number generator could be substituted for the veloc-
ity formula with good results.  That early version eliminated 
the dynamical trajectory that had seemed definitive of the 
algorithm. 
 But performance in the Gaussian version was not as 
good as the canonical algorithm.  The next paper in the se-
ries of investigations found that the canonical particle 
swarm search trajectory contained bursts of outliers, that is, 
series of iterations with extreme values (Kennedy, 2004).  
Artificially adding such bursts improved the performance to 
a point comparable – almost – with the canonical algorithm. 
 Thus it appeared possible that a random number genera-
tor could be substituted for the velocity formula without 
losing the essential quality of the particle swarm algorithm.  
That essence was found in the collaborative sharing of suc-
cesses among population members, with an individual’s 
search influenced by its neighbors. 

1.3 Dynamic-Probabilistic Search: Trimmed 
Uniform Probabilities 
 The question is how the particle chooses the next point 
in the search space to sample.  While the points chosen are 
distributed symmetrically around the mean of the previous 
bests, the position at time t is dependent on the particle’s 
position at t-1.  This is what is meant by the term dynamic in 
this discussion: the particle’s movement over time is defined 
as a series of points, each selected on the basis of the previ-
ous one. 
 The probabilistic models described in Kennedy (2003; 
2004) are not dynamic in this sense.  Those models select 
the next point solely on the basis of the previous bests, using 
a random number generator to produce a candidate problem 
solution vector from a probability distribution.  The previous 
position of the particle is not taken into account.  This is 
what is meant in this discussion by probabilistic. 
 In the canonical particle swarm, the choice of the next 
point x(t+1) is determined by reference to: 
• x(t), the “current” or last-tested position of the particle 
• pi, the particle’s previous best point 
• pg, some neighborhood or population best 
• khi and phi, which are coefficients that control conver-

gence 
• v, the current velocity 

The two “p” or previous best vectors vary among im-
plementations.  The FIPS formula can be considered a gen-
eralized model, where the various neighbors summed may 
be self and best neighbor, as in lbest versions; self and popu-
lation best, as in gbest versions; or all neighbors, in FIPS.  
Further, the velocity component can be eliminated algebrai-
cally.  In the usual formulation, there is a line that says: 

x = x + v 

This assignment statement means that x(t+1) = x(t) + 
v(t+1).  From this we can see that v(t+1) = x(t+1) – x(t).   
Since the same thing happened on the previous time-step, 
we know that v(t)=x(t)-x(t-1).  Thus the two formulas of the 
algorithm can be compressed into one by substitution: 

x(t+1) = x(t) +  
khi× (x(t) – x(t-1)) +  
khi×phi× (sum(rand×(pk – x(t)))/K) 

 This reformulation shows us that the dynamical system 
is dependent on three terms summed.  The first is x(t), the 
particle’s current position in the search space; the second is 
a weighted difference term representing the direction that 
the particle is already going; and the third includes the influ-
ence of the previous bests. 
 It is noteworthy that the random number function is ap-
plied only to the last term of the formula.  We can use that 
knowledge to calculate an expected value of x(t+1).  Since 
rand is a uniform RNG in (0,1), its mean value is 0.5 or one 
half, we can write the expected position at t+1 as: 
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E(x(t+1)) = x(t) +  
khi× (x(t) – x(t-1)) +  
khi×phi× (sum(0.5× (pk – x(t)))/K) 

 
Figure 1.  Typical histogram of points sampled by averaging 
three random numbers drawn uniformly from different ranges, 
compared to the normal pdf. 

 
 
 Though the exact position of the particle at t+1 is de-
pendent on the output of the RNG, its probabilities are dis-
tributed around E(x(t+1)).  If there were twenty or more 
neighbors, and each of their bests was equidistant from the 
particle’s current position x, then the probability distribution 
for picking a point around E(x) would be normal.  If there 
were a smaller number, the search would sample from a t 
distribution, and if there were two, for instance, self and best 
other, then the sample would be t-distributed with one de-
gree of freedom, also known as Cauchy. 
 It would be handy if we could simply simulate the algo-
rithm by sampling from a Cauchy distribution, as many soft-
ware packages have Cauchy RNGs.  There are several prob-
lems with this, however, the most important being that the 
two random terms being averaged are almost never drawn 
from the same interval, that is, (pi-x) is almost never equal to 
(pg-x).  Further, both values (or all values in the FIPS ver-
sion) will have changed by the next iteration.  Each number 
then is drawn from an independent Cauchy or other t distri-
bution, each with unique parameters.  Empirical trials show 
that the effective probability distribution, as seen in Figure 
1, is a truncated triangle, with uniform probability across the 
middle, decreasing in the tails. 
 This can be approximated by using a uniform RNG and 
trimming off the tails. 
 Having seen what the expect value of the particle will 
be, we need to determine minimum and maximum values 
for x at the next time-step.  This will be determined by a 
couple of things.  First, a certain limit is found when all ran-
dom numbers equal 0.0, and another when they equal 1.0.  
In fact, if all terms averaged are of the same sign, then those 
set the limits for the iteration: 

x(t+1) = x(t) +  
khi× (x(t) – x(t-1)) +  
0 

and 
x(t+1) = x(t) +  

khi× (x(t) – x(t-1)) +  
khi×phi× (sum((pk – x(t)))/K) 

 It is possible, though, that some previous bests are 
greater than x, and some are less than it.  For instance, it is 
possible that, with both random numbers equal to 1.0, one 
(rand×(p-x)) will cancel out another, and the mean will be 
zero.  We can account for both kinds of instances, by use of 
a program such as the following: 

   
  lim1=pi – xi 
  lim2=pg – xi 
 
    *  OPPOSITE SIGN; 
    if sign(lim1) ne sign(lim2) then do; 
    center=(lim1+lim2)/2; 
    width=abs(lim1-lim2); 
    end; 
 
    * SAME SIGN; 
    else do; 
    center=( lim1+lim2)/2; 
    width=abs(lim1+lim2); 
    end; 
 

 This code defines the center of the probability distribu-
tion and its range, or width.  Points may be sampled then, 
from an area within width/2 units of center. 
 This algorithm may then be run, using the RNG like this: 

 
 ranvar=center+ (rand×2-1) ×width/2; 
 
 x=x +  

khi× (x - x(t-1)) + 
khi× (phi/2) × ranvar; 
  

In other words, take a random number in (-1,+1), multiply 
width by that, divide the product by two, and add it to 
center.   
 As seen in Figure 1 though, the distribution we want to 
simulate is not uniform over its entire range.  In fact, if the 
algorithm is run sampling uniformly within width/2 
units of the center, the algorithm does not perform well.  
Variables quickly explode out of the range of their data type, 
and the program crashes. 
 Trimming off the tails is accomplished easily by divid-
ing width by a number greater than 2.  Dividing by 2.2 
prevents crashing, but does not provide good optimization 
results.  It appears that values near 2.5 allow the algorithm 
to perform well: results will be given in  a later section.  
This version will be called the trimmed-uniform particle 
swarm (TUPS). 
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1.4 Dynamic-Probabilistic Search: Gaussian 
Probabilities 
 Another approach is to focus the search most intensively 
in the region of the expected value of x, with probabilities 
decaying for positions more distant from it.  A Gaussian 
distribution fills the need here.  The center can be at the ex-
pected value: 

E(x(t+1)) = x(t) +  
khi × (x(t) – x(t-1)) +  
khi×phi× (sum(0.5× (pk – x(t)))/K) 

and the standard deviation should be a function of the spatial 
distribution of the previous bests.  Some experimentation 
found that a measure formed by summing the absolute val-
ues of the differences (pi – pk), and dividing by the number 
of them (this is called frange ), gave good results.  The 
traditional values of khi and phi lose their meanings in this 
fundamental reworking of the algorithm, so they were re-
placed by arbitrary weights which could be tweaked: 

x(t+1) = x(t)  +  
W1 × (x(t)-x (t-1) )+  
W2× (avgp-x(t)) +  G(0,1) × (frange/2.0) 

 In the tests that are reported below, W1 retained its pre-
vious value of 0.729, and W2=2.187.  This algorithm will be 
called the Gaussian-dynamic particle swarm (GDPS). 
 
2.  EXPERIMENTS 
 Six functions were selected that are part of the traditional 
testbed for evolutionary computation and present a variety 
of well-known difficulties to a problem-solver.  These are 
shown in the Appendix.  All functions were initialized in the 
range shown in the third column of the table in the Appen-
dix, in order not to capitalize too much on the happy oppor-
tunity of the optimal solution falling within the initial ranges 
of the variables.   
 All populations consisted of 20 individuals.  The canoni-
cal particle swarm was connected by a Square topology 
(Kennedy, 1999), which has been shown to be a relatively 
good one, and the FIPS versions were connected using the 
“gr.2ed2” topology, a randomly generated network which 
performed very well in the FIPS research reported in Men-
des (2004), and which is shown in Figure 2. Trials were run 
for 3,000 iterations, and were repeated 20 times in each 
condition. 
 
2.1  Experiment One: TUPS 
 The trimmed-uniform particle swarm is compared in 
Figure 3 with the canonical and FIPS versions.   
 

Figure 2.  Topology “gr.2ed2” used for FIPS versions in the ex-
periments reported below. 

 
  

Figure 3.  Comparison of TUPS with canonical and FIPS ver-
sions of particle swarms on some standard test functions. 
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Figure 3.  (continued) 
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 As can be seen, TUPS behaved quite similarly to the 
canonical algorithm, and FIPS outperformed both. 
 
2.2 Experiment Two: GDPS 
GDPS found better solutions than the others on all functions 
except the 10-dimensional Griewank, where FIPS per-
formed best.  It also found them faster. The graphs show that 
the algorithm was still progressing even when the runs were 
terminated after 3,000 iterations; this version seems resistant 
to premature convergence. 

Figure 4.  Comparing the Gaussian-dynamic particle swarm to 
the canonical and FIPS versions. 
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Figure 4. (continued) 

Rastrigin

1.38

1.58

1.78

1.98

2.18

2.38

0 500 1000 1500 2000 2500 3000  
 

Rosenbrock

1.5

2.5

3.5

4.5

5.5

6.5

7.5

0 500 1000 1500 2000 2500 3000  
 
 As each trial went for 3,000 iterations, data from the last 
iteration were compared using t-tests, between algorithms.  
The results are seen in Table 1. 
 

Table 1.  P-values from t-tests comparing algorithms on the test 
functions.  P<0.05 is considered significant. 

 TUPS GDPS 
Func. Canon FIPS Canon FIPS 

Sphere 0.0290* 0.0295* 0.0006x <.0001x 

Grie,30 0.2098 0.0003* <.0001x 0.5162 

Grie.10 0.7425 <.0001* 0.0040x 0.0342* 

F6 0.3888 1.0000 0.0385x 0.1678 

Rast. 0.2166 <.0001* <.0001x 0.0301x 

Ros. 0.5169 0.8614  0.6697 0.7306 

* “Old” algorithm was significantly better;  x New algorithm was bet-
ter. 

 
 As can be seen, TUPS differed from the canonical PSO 
only on the sphere function, and was significantly inferior to 
FIPS on four of the six test functions.  GDPS was signifi-
cantly better than the canonical algorithm on all but one 
function, and was significantly better than FIPS on two, with 
FIPS better than it on one function. 
 
3.  DISCUSSION 
 The particle is often conceptualized in terms of its trajec-
tory through the problem space, its position at each point in 
time stochastically dependent on its position at the previous 
moment.  It moves in an oscillatory pattern centered around 
the centroid of the previous bests that influence the particle; 

the probability distribution of points sampled around this 
centroid however is complex and so far has not been suc-
cessfully simulated using random number generators.  If 
such a technique is found, it would result in a particle swarm 
that could be described as probabilistic, and not dynamic.  
Some parameters, for instance, locations of previously dis-
covered good solutions, would simply be passed from the 
searchers to the RNG, and a new candidate solution would 
be generated. 
 The versions described in this paper used a RNG to gen-
erate a point in a probability distribution which was centered 
around the expected position on a dimension, assuming 
knowledge of the previous position of the particle and what 
direction it was already moving.  The first of these at-
tempted to simulate the canonical two-term particle swarm 
by mimicking the trimmed uniform probability distribution 
that emerges from the particle trajectory in the standard ver-
sion.  Results on some test problems suggested that it was a 
pretty good copy. 
 The second version improved on existing particle 
swarms by taking what had been learned and extending it.  
Understanding that the expected value of a particle’s posi-
tion on a dimension at time t was a function of various fac-
tors including its position at time t-1, the Gaussian-dynamic 
particle swarm sampled from a normal distribution around 
the expected position of the particle at the next iteration. 
 The TUPS version, while it emulated a canonical parti-
cle swarm, is limited in its searching ability.  The point to be 
chosen always falls within a certain range –  this is true of 
the canonical algorithm, as well.  Both always sample from 
a hyperrectangular range of values in the problem space.  
The Gaussian model, though, can jump out of that area on 
any given iteration; search is focused around the expected 
value of x, with tails extending theoretically to infinity.  This 
strategy for problem solving seems superior to the standard 
one, and may be better than the FIPS. 
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Functions used in experiments.  Populations were initialized in the range between the two values under “Init. Range.” 
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