
Classification of Human Decision Behavior: Finding
Modular Decision Rules with Genetic Algorithms

Franz Rothlauf
Department of Information

Systems I
University of Mannheim
Mannheim, Germany

rothlauf@uni-
mannheim.de

Daniel Schunk
Mannheim Research Institute
for the Economics of Aging,
Department of Economics

University of Mannheim
Mannheim, Germany

dschunk@uni-
mannheim.de

Jella Pfeiffer
School of Computer Science,

Faculty of Mathematics
University of Waterloo

Waterloo, Ontario

jella@gmx.de

ABSTRACT
In search tasks, for example when individuals search for the
best price of a product, individuals are confronted in sequen-
tial steps with different situations and they have to decide
whether to continue or stop searching. The decision be-
havior of individuals in such search tasks is described by a
search strategy.

This paper presents a new approach of finding high-quality
search strategies by using genetic algorithms (GAs). Only
the structure of the search strategies and the basic build-
ing blocks (price thresholds and price patterns) that can be
used for the search strategies are pre-specified. It is the pur-
pose of the GA to construct search strategies that well de-
scribe human search behavior. The search strategies found
by the GA are able to predict human behavior in search
tasks better than traditional search strategies from the lit-
erature which are usually based on theoretical assumptions
about human behavior in search tasks. Furthermore, the
found search strategies are reasonable in the sense that they
can be well interpreted, and generally that means they de-
scribe the search behavior of a larger group of individuals
and allow some kind of categorization and classification.

The results of this study open a new perspective for future
research in developing behavioral strategies. Instead of de-
riving search strategies from theoretical assumptions about
human behavior, researchers can directly analyze human be-
havior in search tasks and find appropriate and high-quality
search strategies. These can be used for gaining new insights
into the motivation behind human search and for developing
new theoretical models about human search behavior.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving and Search-
Heuristics
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1. INTRODUCTION
The study of individuals’ decision behavior in search situ-

ations is important for the economic and socio-psychological
sciences. A common and intuitive example for search tasks
is taken from consumer economics: How do people behave
when they want to find the best price for an item that they
want to buy? There are costs associated with visiting each
store and there is an optimal number of search steps that
maximizes the profit of the human searcher. The search
strategy of an individual describes when the individual stops
searching for a better price. Unfortunately, humans in the
real world do not behave as described by analytical models
since they are in most cases not able to compute the opti-
mal solution. Therefore, search strategies that allow us to
predict and explain human search behavior are important.

The different approaches for predicting and classifying hu-
man behavior in sequential decision situations can be cat-
egorized in two different groups. Traditional methods [16,
2, 3] which use a set of pre-specified decision rules and are
based on theoretical explanation models for human behav-
ior. Human behavior in decision tasks is classified according
to these sets of decision rules. Finding appropriate decision
rules means searching for rules (from the set of pre-specified
rules) that best describe human behavior. These methods
are efficient if the pre-specified rules describe human deci-
sion behavior well. Newer approaches [4, 12] choose a dif-
ferent way that is less restrictive concerning the nature of
the search strategies. Only the basic structure of decision
rules is pre-specified and decision rules that explain human
behavior are derived from the observed empirical data.

This paper presents an approach on how to derive decision
rules (search strategies) for human behavior in search tasks
by the use of genetic algorithms. The paper assumes that
only the basic structure of the search rules is pre-specified
and the strategies are constructed based on the observed
human behavior; therefore, the proposed approach is less
restrictive concerning the character of the rules than exist-
ing approaches. For finding appropriate search strategies a
traditional simple genetic algorithm [6] is used. The purpose
of this paper is to present how complex search strategies can
be created from a set of basic “building blocks” by the use
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of a genetic algorithm and to compare the prediction quality
of the resulting search strategies to existing standard search
strategies from the literature. Furthermore, the paper inves-
tigates the search strategies constructed from basic building
blocks and examines the relationship between finding gen-
eral rules that describe the search behavior of a larger group
of individuals well and specific rules that are only used by a
few individuals.

The paper is organized as follows: in the following section,
we define human behavior in search tasks and discuss how
the predictive quality of different search strategies can be
measured. The basic building blocks that are used to create
human search strategies are presented in section 3. Section
4 describes the laboratory experiment on human search be-
havior which provides the data for the investigations, and
presents details of the genetic algorithm which is used for
finding appropriate search strategies. The results of the ex-
periments are shown in section 5. The paper ends with
concluding remarks.

2. HUMAN DECISION BEHAVIOR IN
SEARCH TASKS

Describing the behavior of humans in complex decision
situations is of interest to economics, for example in mar-
keting science for determining price behavior of consumers
[23] or in labor economics for explaining human job search
behavior [1].

In search tasks, humans (searchers) iteratively face dif-
ferent situations. In each situation the searcher gets some
amount of reward and has to decide whether to stop or to
continue the search. Furthermore, there are search costs
implied by every search step. The goal of the searcher is
to maximize its profit which is the difference between the
reward resulting from the different alternatives that are ob-
served during the search process, and the search cost, which
depends on the number of search steps. A common example
of a search task is comparing the price of an item in different
stores. The price of the item is different in each store and
search costs are associated with visiting a store.

Formally, we want to assume that a searcher sequentially
observes a number of realizations xi of a random variable X
which has the cumulative distribution function F (x). F (x)
is a discrete normal distribution with mean µX and standard
deviation σX and describes for example the price x of a
product in different locations. i ∈ {1, . . . , t} denotes the
number of the search step. The cost c of each search step is
constant. We want to assume that the searcher can assess in
search step t all previous situations xi, where i ≤ t, without
additional costs. This means for the example of finding the
lowest price of an item that the searcher can go back to a
store visited in earlier search steps without additional costs.
Therefore, in each search step t the searcher has to decide
whether she wants to continue the search (or to stop) and to
choose xi, where i ∈ {1, . . . , t}. If the searcher stops after t
steps, she chooses the lowest price of the item, i.e. she buys
the item at the price xmin = min{x1, . . . , xt}.

Basic search theory assumes that individuals treat the cost
of each search step, once completed, as sunk costs [15, 14].
Therefore, to decide whether to continue the search process
in iteration t, an individual compares the cost c of one ad-
ditional search step to the expected benefit. It will only
continue if the expected benefit is greater than the cost of

the additional search step. Then, subjects solve the prob-
lem based on a one-step forward-induction strategy. The
expected benefit G from searching one more step can be
calculated as:

G = xmin − c − (1− F (xmin)) xmin| {z }
A

−
Z xmin

−∞
xdF (x)| {z }

B

, (1)

where xmin = min{x1, . . . , xt}. There are two different cases
for the variable xt+1 observed in the next search step. xt+1 is
either larger or lower than xmin. Term A describes the case
that a value xt+1 larger than xmin is found (with probabil-
ity (1− F (xmin))). In this case, xmin = min{x1, . . . , xt} =
min{x1, . . . , xt+1} remains the lowest price. Term B as-
sumes that a value xt+1 lower than xmin is found. The
expected value xt+1 = min{x1, . . . , xt+1} is calculated asR xmin

−∞ xdF (x).
As G describes the expected benefit from continuing the

search, a human searcher continues the search if G > 0
and stops otherwise. If we assume that xmin = ∞, the
expected benefit G is always greater than zero (G > 0) and
the searcher continues the search. On the other hand, if
xmin = −∞, the expected benefit G = −c < 0 and the
searcher stops the search. As we assume that G(xmin) is
continuous and monotonic, there is an unique x∗

min, where
G(x∗

min) = 0. Therefore, the best strategy is to stop search-
ing at search step t if xt < x∗

min. This means the searcher
should stop searching whenever a price is below a certain
threshold price x∗

min.
In general, x∗

min cannot be analytically calculated and
is usually determined by numerical methods. The model
presented here is simple as it assumes that a searcher only
plans ahead for one search step and that she fully ignores
sunk costs. However, in reality, humans do not completely
ignore sunk costs and also try to predict the outcome of
future search steps. For an overview over more comprehen-
sive models describing human behavior in search tasks the
reader is referred to the literature [9, 11, 13, 18].

This section presented a basic model for describing hu-
man search behavior. Based on the model, an optimal stop-
ping criterion for the search can be derived. As already
mentioned in the introduction, classical decision models use
a set of decision rules that are based on such theoretical
models trying to model human search behavior. However,
consumers in the real world do not behave according to
the theoretical models. Therefore, in section 3 this paper
presents basic building blocks that can be used for construct-
ing search strategies (and stopping criteria) that are based
on the observed human behavior and not on theoretical mod-
els.

2.1 Standard Strategies in Search Tasks
Although in the previous paragraphs we described that

there is an optimal stopping criterion for search tasks (stop-
ping at time t if xt < x∗

min), individuals do not follow this
rule but in reality show a different stopping behavior. Con-
sequently, a large number of studies [8, 10, 11, 14, 7, 19, 20,
13] investigated human behavior in search tasks and tried to
identify search strategies that are used by individuals in real-
ity. All these studies used controlled laboratory experiments
where individuals (subjects) search for the best price of a
product and search costs are associated with every search
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step. Furthermore, it is assumed that the subjects do not
change their search strategy over time. For the experiments,
the search tasks are repeated a certain number of times for
each subject.

The goal of such investigations is to find general rules that
describe the search behavior of individuals. The studies re-
vealed a few simple search strategies, which describe the
observed behavior of individuals more accurately than, for
example, the optimal stopping rule described in the previ-
ous section. Surprisingly, though individuals do not follow
the optimal stopping rules, their search behavior is efficient
in the sense that their earnings are similar to the earnings if
they would follow the optimal stopping rule. This, however,
does not indicate that their search strategy is close to opti-
mal, it indicates rather that the payoff of search experiments
is not sensitive to deviations in the stopping strategy.

Based on experimental research in search behavior (e.g.,
[10, 17]), there are three different basic search strategies that
are used by individuals in search tasks. These three search
strategies have subsequently been used by most of the later
approaches trying to model the behavior of humans in search
tasks:

• Constant reservation price heuristic (CRPH):
The search is stopped in iteration t if xt is lower than
or equal to the reservation price pr (xt ≤ pr). This
stopping criteria is optimal (pr = x∗

min) if the searcher
ignores sunk costs and only plans one step ahead (com-
pare the previous paragraphs).

• Satisficer heuristic (SH): The search is stopped
in iteration t if either the payoff is greater than a
certain threshold T , or after a maximum number of
search steps tmax. The payoff is the difference be-
tween the profit resulting from a situation xi, where
i ∈ {1, . . . , t}, and the overall search cost, tc.

• Bounce heuristic (BH): The search is stopped in
iteration t, where t > 1, either only if xt ≥ xt−1 or
only if xt ≤ xt−1.

These different models for human search behavior can be
formulated by either defining reservation prices pr for the
different search steps t (CRPH and SH), or by specifying
price patterns that represent falling and rising xi (BH). For
further information about models describing human search
behavior we refer to the literature [8, 10, 11, 13, 18].

2.2 Measuring the Quality of Search
Strategies

The quality of a search strategy is determined by how well
it predicts the observed human behavior in real-world search
tasks. The quality of a search strategy is high if individuals
decide according to the search strategy and low otherwise.
In search tasks, the individuals decision is whether to con-
tinue the search or whether to stop.

The quality of a search strategy can be measured as fol-
lows: each search strategy cj ∈ C, where C is the set of all
possible search strategies, is a unique mapping from indi-
vidual i’s information set Sit (which usually depends on t)
to his continuation decision dit ∈ {0, 1} : d

cj

it (Sit) → {0, 1}.
The continuation decision is performed in each search step
t and the search is continued if dit(t) = 1 and stopped if

dit(t) = 0. Let d∗
it(t) denote the observed decision of indi-

vidual i in iteration t. Then, we can define the indicator
function:

X
cj

it (Sit) =

(
1 if d∗

it = d
cj

it (Sit)

0 if d∗
it �= d

cj

it (Sit)
(2)

Let tmax be the maximum number of decisions that we ob-
serve for individual i. Then, for each individual i,

T̂i =

tmaxX
t=1

X
cj

it (Sit) (3)

is the number of decisions that are correctly explained by
search strategy ci. Therefore, the quality of a search strategy
cj can be measured by

fit(cj) =
T̂i

tmax
, (4)

given the observed search behavior of an individual i.
Therefore, the fitness of a search strategy measures the

number of individuals’ decisions that are consistent with
the search strategy cj . The higher the fitness of a search
strategy, the better it allows us to predict the individuals’
behavior in search tasks.

3. BUILDING SEARCH STRATEGIES
FROM BUILDING BLOCKS

Section 2.1 described standard search strategies used for
explaining human behavior in search tasks. They are based
on the assumption that individuals behave either condition-
ally on some simple preference parameters such as risk at-
titudes [13], or according to some pre-specified heuristics.
A step towards finding reasonable search strategies that are
more powerful and flexible in the sense that they better fit
the data is to assume that decision rules can be constructed
by using simple building blocks and combining them to form
complete search strategies. From a behavioral point of view,
this approach can be motivated by recent economic and
psychological work [5], which claims that domain-specific
heuristics are composed of cognitive building blocks.

Building blocks that can be used to construct complete
search strategies can be defined based on the search strate-
gies described in section 2.1. Therefore, either price thresh-
old levels (so-called “reservation prices”) or price patterns
can be used. The price threshold level or price pattern that
is used by an individual during the search can be different in
different stages of the search. Consequently, these building
blocks can be combined to construct search strategies that
allow a more accurate modeling of human search behav-
ior. The following three elements are necessary to construct
search strategies from simple building blocks (modules):

1. price threshold module: For each search step t
a price threshold level pt is defined. The search is
stopped at step t if pt is activated (compare 3.) and
xt ≤ pt.

2. pattern module: The decision whether to continue
the search at time-point t depends on whether a spe-
cific pattern of xi exists in the last few search steps. A
possible example for such a pattern is: rising-falling-
rising. The search is stopped if the last realizations of
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xi follow a pre-specified pattern. When using the pat-
tern rising-falling-rising, the search would be stopped
at t if xt ≥ xt−1 ≤ xt−2 ≥ xt−3.

3. activation module: As there are different stopping
criteria (price thresholds and patterns) at each time t
available, it must be defined which modules are acti-
vated at time t and influence the individuals’ decision
whether to stop the search or to continue. The idea is
that an individual might use a reservation price in cer-
tain search steps (for example in the first three search
steps), but switch after that to a pattern-based rule.

By using these simple building blocks, a complete search
strategy can be constructed that can be used for describ-
ing human behavior in search tasks. In each search step, a
price threshold module or a pattern module (or both) can
be activated determining whether the search stops or contin-
ues. By using these modules, all standard search strategies
described in section 2.1 can be modeled. For example a
constant reservation price heuristic is modeled using a price
threshold level pi = pr (i ∈ {1, . . . , t}) and activating the
price threshold module in all search steps.

4. EXPERIMENTAL DESIGN

4.1 Measuring Human Search Behavior
The data about human behavior in search tasks was col-

lected in extensive experimental studies. In search exper-
iments 64 human individuals (denoted as subjects) were
asked to perform 10 independent search tasks. The goal
of the subjects was to purchase an item at the lowest price.
The price of the item follows a normal distribution X with
mean µX = 500 and standard deviation σX = 10. Addition-
ally, X is truncated at xlow = 460 and xhigh = 540. The
subjects knew that in each search step the price was drawn
randomly from the described distribution. The subjects had
500 units of money available and each search step has cost
c = 1. They can stop in each search step t and buy the item
at a price xmin = min{x1, . . . xt}. Their payoff can not be
negative (subjects can not loose money) and is calculated as
500− xmin − tc. There are a maximum of tmax = 40 search
steps possible as the overall payoff is zero for t ≥ 40 (the
lowest possible price is 460).

To ensure that subjects were experienced with search tasks
and to minimize the impact of learning, subjects were al-
lowed to perform an unlimited number of training search
tasks before performing a sequence of 10 tasks that deter-
mined their payoff. After the experiment was completed,
one of these 10 rounds was selected randomly and the pay-
off of this round was paid (in Euro) to the subjects.

All results presented in the following sections of this paper
are based on the data obtained in the experiment described
above.

4.2 A Genetic Algorithm for Finding High-
Quality Search Strategies

Section 3 described the building blocks that can be used to
build search strategies describing human behavior in search
tasks. To construct high-quality search strategies a genetic
algorithm (GA) was developed. The quality of the search
strategies created by the GA is measured by applying the
quality measure for search strategies from section 2.2 using

the experimental data from section 4.1. The following para-
graphs describe the encoding, the search operators, and the
fitness evaluation of the GA.

4.2.1 Encoding of Search Strategies
Each individual of a GA represents one complete search

strategy1 and each search strategy is created from the ba-
sic building blocks described in section 3. Therefore, each
individual must contain for each search step t ≤ tmax a
price threshold pt, the corresponding activation athresh

t for
the price threshold, a possible pattern pa, which describes
whether xi is either falling or rising in subsequent search
steps, and the corresponding activation apattern

t for the pat-
tern pa. Table 1 illustrates the encoding of search strategies
in the genotype. Each genotype consists of three vectors
of length l = tmax and a pattern pa of maximum length
l = 4. Two of the vectors define the threshold components
(threshold value pT and activation athresh

t ) and two define
possible patterns (structure of the pattern pa and activation
apattern

t ).

genotype

threshold
pt 494 494 494 494 490 · · ·
athresh

t 1 0 0 0 1 · · ·
pattern

pa 110 (rising-rising-falling)

apattern
t 0 0 0 1 1 · · ·

Table 1: Encoding of search strategies

The activation variables athresh
t and apattern

t indicate whe-
ther the corresponding threshold value or pattern are used
as stopping criteria in the tth search step. For the threshold
component, pt defines the threshold relevant in search step
t. The activation athresh

t = {0, 1} determines whether the
threshold pt is considered for the stopping decision of the
subject. If athresh

t = 1, the subject stops searching if xt ≤
pt; if athresh

t = 0, the threshold pt is not relevant in search
step t. For patterns, pa describes the structure of a pattern.
Each pattern has a maximum length of four and consists
of a sequence of zeros and ones. A one indicates that xt

is rising and a zero indicates a falling xt. The activation
apattern

t describes whether the corresponding pattern pa is
relevant for the stopping decision of the individual at time t.
If both building blocks, threshold and pattern, are activated
at time t (athresh

t = 1 and apattern
t = 1), the individual only

stops if xt ≤ pt and the pattern pa is correct in the last few
search steps (logical AND).

We want to give a brief example for the construction of a
search strategy from the genotype. According to the search
strategy defined in table 1 the subjects stop the search af-
ter the first search step t = 1 if x1 ≤ 494. Otherwise, it
continues. In the second and third search steps (t = 2 and
t = 3), the individual never stops as athresh

2 = athresh
3 = 0

and apattern
2 = apattern

3 = 0. In step t = 4, only the pattern
110 is considered for the stopping decision and the individ-
ual stops if x4 ≤ x3 ≥ x2 ≥ x1 (rising-rising-falling). For
t = 5 the individual stops only if x5 ≤ 490 and xi is falling
from t = 4 to t = 5 and rising from t = 2 to t = 3 and from
t = 3 to t = 4 (x5 ≤ x4 ≥ x3 ≥ x2).

4.2.2 Operators
1Except for the results presented in section 5.2 where one
individual encodes r different search strategies.
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Search operators can be defined straightforwardly for the
encoding defined in the previous paragraphs. Possible cross-
over operators are uniform [21], or n-point crossover. For our
experiments we have chosen a five-point crossover to ensure
a proper mixing of the alleles [22], and to consider the fact
that many subjects stop searching after a few search steps
and do not search tmax = 40 search steps. Therefore, to
ensure a proper mixing of the alleles, crossover operators
with a high number of crossover-points are necessary. We
found five-point crossover a good compromise between uni-
form crossover, which destroys most of the sub-structures
in the genotype, and one-point crossover which results in
an improper mixing of the first and most meaningful alle-
les. The crossover probability in the experiments was set to
pcross = 0.8.

A mutation means either flipping a bit (activation vari-
ables and pattern pa), adding a random variable drawn from
a Gaussian distribution with zero mean and standard de-
viation of two to the threshold pt, or adding/removing a
randomly chosen bit to a pattern pa. As tmax = 40, the
maximum number of alleles is 124 (40 bits for both activa-
tion variables, 40 integers for the thresholds pt, and a maxi-
mum number of four bits for the pattern pa). The mutation
operator mutates all alleles with probability 1/124 ≈ 0.008.

In all experiments a tournament selection without replace-
ment and tournament size 3 was used.

4.2.3 Fitness evaluation
The fitness of a search strategy that is encoded as de-

scribed in the previous paragraphs is calculated according
to section 2.2. We want to give a brief example.

t 1 2 3 4

experiment
xt 499 498 496 495
decision cont. cont. cont. stop

pt 498 500 496 500
search athresh

t 1 1 0 0
strategy pa 00 (last two round falling)

apattern
t 0 0 0 1

indicator funct. Xt 1 0 1 1

Table 2: Example for fitness evaluation

Table 2 presents the experimental data observed for a sub-
ject which stops the search after t = 4 search steps (denoted
as experiment). Furthermore, the table presents an example
of a search strategy and the value of the indicator function
Xt (compare equation 2). For example, the search strategy
says that for t = 1 the subject stops if x1 ≤ 498. However,
x1 > p1 and the search strategy correctly predicts that the
user continues the search (X1 = 1). According to equation

3, T̂ is calculated for the example as T̂ = 3 as the evalu-
ated search strategy correctly predicts the subjects behavior
three times. Therefore, the fitness fit of the search strategy
is 0.75 (tmax = 4).

5. RESULTS
This section presents different types of results. In section

5.1 we use the genetic algorithm for finding high-quality
search strategies and compare their fitness to the existing
standard search strategies from section 2.1. In the remain-

ing sections we extend the investigation and assume that
different subjects have different preferences (i.e. human be-
ings are heterogeneous with respect to their preferences) and
therefore use different search strategies. We use a GA to
identify relevant search strategies and investigate how well
the found search strategies predict human search behavior.

For each of the experiments we run 10 independent GA
runs and present the best found search strategy. The indi-
viduals in the initial population are chosen randomly. The
population size of the GA was always set to N = 4, 000 and
the GA run was stopped either after the population was fully
converged, or a maximum number of tconv = 1, 000 gener-
ations. We are aware of the fact that using such a large
N and tconv is computationally demanding and may not be
necessary to obtain good results. However, the goal of the
experiments was to identify “optimal” search strategies and
the computational effort was only of minor importance.

5.1 One Search Strategy Fits All
Table 3 compares the average fitness µ(fit) (compare equa-

tion 4) of the optimal (in the sense of highest fitness) con-
stant reservation price heuristic (CRPH), the optimal satis-
ficer heuristic (SH), and the best search strategy that was
found by the genetic algorithm for the data set described in
section 4.1. The fitness µ(fit) is averaged over the fitness
fit of a search strategy for all 64 subjects participating in
the experiment.

GA CRPH SH
µ(fit) 0.902 0.883 0.886

Table 3: Average fitness of the optimal search
strategies

The optimal CRPH search strategy is a reservation price
xr = 491, which results in an average fitness of µ(fitCRPH ) =
0.883. Therefore, averaged over all 64 subjects, about 88%
of the humans search decisions are correctly predicted by
the CRPH search strategy with xr = 491. The optimal SH
search strategy is using a payoff of five (this means the search
is stopped in step t if 500 − min{x1, . . . , xt} − tc > 5) and
has an average fitness of µ(fitSH) = 0.886. The best strat-
egy found by the GA is to use only reservation prices and
no patterns (all apattern

t are zero). The reservation prices pt

are decreasing with t and are found as p1 = 498, p2 = 494,
p3 = 491, p4 = 488, . . . The average fitness of this search
strategy is 0.902 and is significantly higher than the optimal
CRPH and SH search strategy.

5.2 Different Search Strategies for Different
Subjects

In this section, we assume that human subjects decide dif-
ferently in the same search task due to different individual
preferences. This means, there exists not only one search
strategy c that is followed by all subjects S, but there are
a number r of different search strategies cr that are each
used by a subset Sr of the subjects. Consequently, exactly
one out of the r different search strategies is used to ex-
plain the search behavior of an individual. The average fit-
ness of a set of search strategies is calculated as µ̃(fit) =
1/|S| P

S maxr fit(cr), where |S| denotes the number of sub-
jects participating in the search experiment. maxr fit(cr)
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denotes the maximal fitness of one of the r search strategies
cr for one individual.

fit(cj)
c1 0.8 0.95 1
c2 0.85 0.7 0.8

Table 4: Example fitness evaluation

We want to give a brief example for the calculation of
µ̃. We assume that there are r = 2 search strategies cr

and |S| = 3 subjects. Table 4 shows the fitness fit(cr) of
the search strategies c1 and c2 for three different subjects.
maxr fit(cr) is shown in bold. The average fitness of the
search strategies is calculated as µ̃(fit) = 1/3(0.85 + 0.95 +
1) = 0.93.

GA CRPH SH
µ̃(fit) 0.949 0.933 0.927

Table 5: Average fitness of the optimal search
strategies for r=5

Table 5 shows the average fitness of the optimal search
strategies for r = 5, this means five different search strate-
gies are used to explain the search behavior of the 64 sub-
jects. When allowing five different CRPH search strategies,
the average fitness of the five search strategies is µ̃(fit) =
0.933 using the reservation prices p1

r = 498, p2
r = 494,

p3
r = 491, p4

r = 488, and p5
r = 485. When using five different

SH search strategies, the optimal strategies show a payoff of
1, 3, 5, 7, and 13. Their average fitness is µ̃(fit) = 0.927.
When using a GA for finding r = 5 search strategies, each
individual of the GA consists of 5 search strategies and the
fitness of an individual is µ̃(fit). The GA is able to find
search strategies with µ̃(fit) = 0.949. This outperforms the
classification based on standard search strategies.

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

854321

µ(
fit

) 

r

Figure 1: µ̃(fit) over the number r of search strate-
gies

Finally, figure 1 shows the average fitness µ̃(fit) of the set
of search strategies for the 64 subjects that have been found
by the GA over the number r of different search strategies.
The results show that with increasing r, this means using a
larger number of search strategies, the behavior of the sub-
jects can be better explained. This is per se no surprise
since a larger number r of possible search strategies allows

the GA to adopt each strategy to a smaller number of sub-
jects. However, the results illustrate nicely that the GA is
able to identify appropriate search strategies that are able
to explain a large portion of human search behavior.

5.3 Searching for General Search Strategies
In the remainder of this section we want to examine more

closely the character of the search strategies found by the
GA. The question is whether the GA is able to identify char-
acteristic search strategies that are used by a large propor-
tion of the subjects.

When searching for r “optimal” search strategies for a
group of people there is a trade-off between finding general
search strategies that are used by a larger number of subjects
and finding specific search strategies that more accurately
describe the behavior of only a few subjects. Thus, with
increasing r it is possible that either more general search
strategies are found that better explain the behavior of a
larger group of subjects, or we obtain very specific search
strategies that are well adapted to the search behavior of
only a few subjects. To find general rules that correctly pre-
dict the behavior of a large proportion of subjects is more
important as such rules allow us to develop general classifi-
cations of humans’ behavior.
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Figure 2: Average number of subjects whose search
behavior is explained by the r different search strate-
gies that are found by the GA.

Figure 2 shows the average number of subjects whose
search behavior is explained by one of the r search strategies
over r. For example, when using a GA for finding r = 3 dif-
ferent search strategies, on average 28.3 subjects use search
strategy c1, 23.8 of the subjects use search strategy c2 and
the behavior of only 11.9 subjects can be explained by search
strategy c3. When increasing r to r = 8, one of the eight
search strategies still explains the behavior of, on average,
18.6 subjects. In contrast, the GA also finds very specialized
search strategies that can explain the behavior of on aver-
age only 1.7, 2.6, or 4.2 subjects. Such search rules are very
specific and no generalizations of these search strategies are
possible.

To investigate how general the found search strategies
are, figure 3 shows the number of subjects per search strat-
egy, whose fitness is higher than 0.93 (maxj fit(cj) > 0.93).
Therefore, only subjects are considered for whom a search
strategy correctly predicts more than 93% of the decisions.
When determining one search strategy (r = 1) only the
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Figure 3: Average number of subjects, whose search
behavior is explained by the r different search strate-
gies better than 93% (maxj fit(cj) > 0.93)

search behavior of on average 22.5 subjects can be well
explained (the prediction quality is on average larger than
93%). The numbers reveal that when increasing the number
r of search strategies, the number of subjects whose behavior
can be well explained by the two most general search strate-
gies decreases only slightly. For r = 2, the behavior of on
average 39.6 subjects can be explained with maxj fit(cj) >
0.93. For r = 8, the behavior of on average 28.6 subjects can
still be explained by the two most common search strategies.
For r = 8, the remaining six other search strategies are able
to explain the behavior of only, on average, 32.2 subjects
with prediction quality maxj fit(cj) > 0.93.

The results indicate that there are only a few (about two
or three) general search strategies that well explain the be-
havior of a large number of subjects. To assume that there
are a larger number (more than three) of different and mean-
ingful search strategies is not justified as searching for a
larger number of rules only allows us to find very specific
rules that only can explain the search behavior of a few sub-
jects.

5.4 Finding General Search Strategies
In the following paragraphs, we take a closer look at the

search heuristics that have been found by the GA for differ-
ent r.

Section 5.1 already presented the best search strategy that
is found by the GA and which on average predicts 90.2% of
an individuals decision for the case r = 1. Table 6 presents
the best search strategies found for r = 2. We only show
the first five search steps t, as on average the subjects stop
after 5.07 search steps. The search strategy c1 is similar
to the constant reservation price rule with pT = 494. In
addition, the pattern “falling” is relevant for t = 2, t = 4,
and t = 5. c2 is a combination of falling (t = 1, t = 2, and
t = 3) and constant (t = 4 and t = 5) reservation prices.
No patterns are acitvated. Very similar search strategies are
found by the GA for r = 3 (compare table 7) as the search
strategies c1 and c2 are similar to the case r = 2. There is
an additional search strategy c3 with increasing reservation
prices, which starts from a low threshold pT = 484.

Examining the search strategies found by the GA reveals
that the search strategies are reasonable and can be used
for interpreting human search behavior. Although there are

search strategy c1 search strategy c2
pt 494494 494493 493 491490 488489489
athresh

t 1 1 1 1 1 1 1 1 1 1
pa 0 (last step falling) no pattern

apattern
t 0 1 0 1 1 activated

Table 6: Found search strategies for r = 2

search strategy c1 search strategy c2 search strategy c3
494494494 494 493 492490491 489488 484485486 488489
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 (last step falling) no pattern no pattern
0 1 0 1 1 activated activated

Table 7: Found search strategies for r = 3

no pre-specified rules available and only the basic building
blocks of the search strategies are pre-defined, some of the
found rules are similar to the existing rules from the litera-
ture (like the CRPH search heuristic). In addition, the GA
is able to identify unexpected search strategies (like c3 for
r = 3) that can help us to gain a better understanding of
human search behavior. Summarizing the results, the GA is
able to reproduce search strategies that are commonly used
in the literature and to create new search strategies that
can be used for developing better models to explain human
behavior in search tasks.

6. CONCLUSIONS
This paper develops a new, modular approach for describ-

ing the behavior of humans in search tasks. In search tasks,
individuals are confronted in sequential search steps with
different situations and they have to decide in each step
whether they want to continue or stop the search. The hu-
man behavior in search tasks (continuing or stopping) is de-
scribed by a search strategy. A variety of theoretical models
have been developed that try to describe human behavior
and from which optimal search strategies can be derived.
However, in the real world, humans behave differently due to
limited cognitive abilities and the search strategies derived
from theoretical models do not often well predict human
behavior. This paper presents a different approach where
search strategies are not derived from models about human
behavior but the search strategies are directly derived from
the observed human behavior. Only the basic structure of
decision rules are pre-specified and decision rules that ex-
plain human behavior are constructed from the observed
empirical data by a genetic algorithm (GA).

To present the new approach this paper has done a variety
of different things. It discussed human behavior in search
tasks and exemplary illustrated how an optimal search strat-
egy can be derived from some theoretical assumptions about
human behavior. Furthermore, the paper presented the ba-
sic elements (building blocks) that can be used to construct
search strategies. The building blocks used characteristic
elements of standard search strategies and consisted of price
thresholds and price patterns. Finally, the paper compared
the decision rules, that are directly constructed from the ob-
served human behavior by a GA, to standard search strate-
gies from the literature. Various results are presented for the
predicting quality which describes how well a search strategy
predicts human behavior in search tasks.
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In summary, this paper presented a GA-based approach
that allows us to construct search strategies directly from
the observed experimental data. A comparison to existing
standard search strategies revealed that the new, modular
approach resulted in search strategies with higher prediction
quality. In addition, the found search strategies are general
in the sense that they describe the behavior of a larger group
of individuals well, and therefore, allow a categorization of
human search behavior. Furthermore, the results show that
the GA is able to reproduce search strategies that are similar
to commonly used strategies in the literature as well as to
create new search strategies which can be used as a basis for
gaining new insights into human behavior in search tasks.

In the past, the most common approach in economic and
socio-psychological sciences was to construct a theoretical
model that explains human behavior. Based on the theoret-
ical model and the underlying assumptions, rules describing
the behavior of humans in decision situations, like search
tasks, are derived. The results presented in this paper show
that with the help of optimization methods like GAs, mod-
els about human behavior can be derived directly from the
observed human behavior. Due to the observed high quality
of the modular search strategies found by the GA, we rec-
ommend using heuristic optimization methods like GAs for
the identification of human decision rules. A greater use of
such optimization methods in economic and social sciences
would allow us to keep the focus on human behavior, and
validate the meaningfulness of theoretical models.
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