
Nonlinear Feature Extraction
Using a Neuro Genetic Hybrid

Yung-Keun Kwon
School of Computer Science & Engineering

Seoul National University
Sillim-dong, Gwanak-gu, Seoul, 151-744 Korea

kwon@soar.snu.ac.kr

Byung-Ro Moon
School of Computer Science & Engineering

Seoul National University
Sillim-dong, Gwanak-gu, Seoul, 151-744 Korea

moon@soar.snu.ac.kr

ABSTRACT
Feature extraction is a process that extracts salient features
from observed variables. It is considered a promising al-
ternative to overcome the problems of weight and structure
optimization in artificial neural networks. There were many
nonlinear feature extraction methods using neural networks
but they still have the same difficulties arisen from the fixed
network topology. In this paper, we propose a novel com-
bination of genetic algorithm and feedforward neural net-
works for nonlinear feature extraction. The genetic algo-
rithm evolves the feature space by utilizing characteristics
of hidden neurons. It improved remarkably the performance
of neural networks on a number of real world regression and
classification problems.

Categories and Subject Descriptors
I.5.1 [Computing Methodologies]: Pattern Recognition—
Models

General Terms
Performance

Keywords
Function approximation, neuro-genetic hybrid, feature ex-
traction

1. INTRODUCTION
Artificial neural networks (ANNs) have emerged as one of

the most powerful tool for regression and classification prob-
lems. The effectiveness of ANNs has been empirically tested
in a variety of real world applications such as bankruptcy
prediction [1], stock forecasting [2], handwriting recogni-
tion [3], speech recognition [4], medical diagnosis [5], and
protein structure prediction [6]. The recent successful stud-
ies have established neural network as an alternative to var-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

ious conventional methods and they are supported by the
universal approximator theorem; a three-layer feedforward
neural network can approximate any nonlinear continuous
function to an arbitrary accuracy [7] [8]. However, the theo-
rem assumes just in theory that a hidden layer of unlimited
size is available. It provides the necessary mathematical
tool for the viability of feedforward networks but does not
specify how to determine a multilayer perceptron. There-
fore, there are two basic problems on neural networks’ per-
formance. One is to specify the weights of a network that
minimizes its error. The backpropagation algorithm [9], a
local gradient search method, is the most widely used one.
Unfortunately, it is prone to get stuck in local minima and
highly depends on the initial weights. The other problem
is to determine the structure of a network. Most networks
have one or two fully connected hidden layers but it could
as well be appropriate to use more hidden layers, partially
connected hidden layers, or direct connections from input
to output [10]. Structure design is crucial in the successful
applications of ANNs since the structure has significant im-
pact on a network’s information processing capabilities. Too
small a network may not provide good information process-
ing power. On the other hand, a large network may have
redundant connections and the implementation cost is high.
Up to now, ANN structures are still determined by a human
expert’s experience and a tedious trial-and-error process.

Feature extraction is an attractive process to overcome the
difficulties in ANNs’ weight and structure optimization. Ap-
propriate feature extraction avoids the curse of dimensional-
ity, improves the generalization, and reduces the computa-
tional cost. Many procedures have been devised for that pur-
pose. Most popular methods are linear statistical projection
such as the principal component analysis [11] and Fisher’s
discriminant analysis [12]. However, they are not appropri-
ate for complex problems with nonlinear correlation since
they are linear dimension-reduction techniques. The lin-
ear limitation can be overcome by directly using neural net-
works. The representative examples include Kohonen’s self-
organizing maps [13], the nonlinear projection method [14],
and nonlinear discriminant analysis based on the function-
ality of hidden units in feedforward network [15]. They ex-
hibit some nice properties that are different from classical
methods for problems which may not be linearly separable.
However, the neural network-based approaches still have the
limitation since the network is learned using a local gradient
learning algorithm in a fixed architecture which may not be
optimal. In other words, the feature space extracted by the

2089

neural networks still highly depends on their structure and
the learning algorithm.

In this paper, we try to extract good feature space from
multilayer feedforward neural networks. It makes distinc-
tion from the traditional feature extraction using neural net-
works since it does not assume a topology with a fixed input
space by the observed input variables. To produce diverse
input space, genetic algorithm (GA) is used as a search tech-
nique. In fact, GAs have been considered to have potential
to reinforce the performance of neural networks. However,
the combinations of GAs and ANNs were mostly designed
to optimize the networks’ weights or to find a good topol-
ogy. The hybrid approach of GA and ANN in this paper
is different from the traditional one. It starts from the fact
that the hidden nodes in feedforward neural network play
a critical role in the learning as feature detectors. In other
words, each hidden neuron may provide a nonlinear combi-
nation of the original input variables and it can be used as
a salient feature. A novel idea in this paper is that the fea-
tures generated by the hidden nodes in the network are used
as candidate input features for the offspring in the genetic
search.

This paper is organized as follows. In Section 2, we pro-
vide brief explanation about feature extraction and survey
on the combinations of genetic algorithms and artificial neu-
ral networks. In Section 3, we describe our novel neuro-
genetic hybrid for nonlinear feature extraction. In Section
4, we provide our experimental results and compare them
against existing ones. Finally, conclusions and discussions
are given in Section 5.

2. PRELIMINARIES

2.1 Feature Extraction and Neural Networks
Feature extraction is formulated as a mapping ψ from a D-

dimensional input space to an F-dimensional feature space,
ψ : �D → �F (in general, F ≤ D). There were a num-
ber of feature extraction approaches in the pattern recog-
nition literature [16] [17]. The mapping function ψ can be
either linear or nonlinear, and can be learned through either
supervised or unsupervised methods. Four categories are
made from the two criterion: unsupervised linear, super-
vised linear, unsupervised nonlinear, and supervised non-
linear. Table 1 shows some example approaches belonging
to each category. Generally speaking, supervised methods
have better performance than unsupervised ones if the cat-
egory information is available. Linear methods are attrac-
tive since they require less computation than nonlinear ones
and analytical solution is often available. However, nonlin-
ear methods are more powerful than linear ones because of
the mapping function’s flexibility, especially in the nonlin-
ear problems. Nonlinear and supervised methods including
multilayer feedforward neural networks have large potential
in performance if the situation is possible.

A large number of ANNs for feature extraction have been
proposed [18] [13] [14]. (For a good survey, see [17].) They
can also be grouped into the above four categories. ANNs
for feature extraction have been investigated with two aims.
One is to link between neural networks and the classical ap-
proaches such as principal component analysis or discrim-
inant analysis. As a result, the networks actually perform
the well-known feature extraction algorithms. The other is
to design a new neural network or to apply existing neural

network models for feature extraction. Examples include
Kohonen’s self-organizing maps [13], Kraaijveld et al.’s non-
linear project method [14]. They showed some nice prop-
erties which are different from the classical methods. On
the other hand, there were some other studies using the
functionality of hidden units in feedforward network classi-
fiers. It can be viewed as an implementation of nonlinear
discriminant functions which are learned from the training
data. Webb and Lowe have investigated a specific class of
feedforward networks with nonlinear hidden units and linear
output units [15]. They showed that the role of hidden layers
is to implement a nonlinear transformation which projects
input patterns from the original space to a space where pat-
terns are easily separated by the output layer. Similarly, a
nonlinear discriminant analysis network based on the multi-
layer feedforward network was proposed in [19]. They spec-
ified the number of input nodes to be the number of the
observed variables and the number of neurons in the output
layer to be the number of categories. The number of neu-
rons in the last hidden layer is set to the dimension of the
projected space. Thus, it implemented a nonlinear feature
extraction from the space in the input layer to a new space
in the last hidden layer.

2.2 Combinations of Genetic Algorithms and
Neural Networks

Various schemes for combining genetic algorithms and
neural networks were proposed or compared [20] [21] [22].
This paper focuses on how GAs can be used to assist neu-
ral networks. Combinations can be collaborative where they
are used simultaneously, or supportive where they are used
sequentially.

Collaborative combinations typically involve using genetic
algorithms to determine the neural network weights or the
network topology, or both. The backpropagation algorithm
is the most widely used method to train the weights. But,
it is prone to get stuck in local minima and needs gradi-
ent information. On the other hand, GA usually avoids
local minima by searching in several regions simultaneously
and needs no gradient information. A drawback of GA is
that it is weak in fine-tuning; thus, the hybrid genetic ap-
proach that uses the backpropagation algorithm for local
improvement has been popular. A straightforward genetic
representation of a neural network is a simple enumeration
of the weights in a string. Some variations were studied to
place functional units closely together [23] [24]. Recently,
two-dimensional encoding has proven to perform favorably
[25] [2]. The second type of collaborative combinations is to
determine the network topology. Genetic algorithms seem
to be an effective approach for finding good topologies [26]
[27] [28]. In a direct encoding scheme, each connection of
an architecture is directly specified by its linear binary rep-
resentation.

Supportive combinations typically use genetic algorithms
to prepare data for neural networks. They achieved some
success on real world tasks, specially classification problems.
Feature selection is a representative example. A typical ap-
proach of genetic algorithms for feature selection uses binary
vectors, where each bit of a vector means whether the cor-
responding feature is included or not [29]. It was later ex-
panded to allow linear feature extraction where a real-value
vector is used for scaling of each feature [30].

2090

Table 1: Categories of Feature Extraction Methods
Linear Nonlinear

Unsupervised Principal component analysis (PCA) Kohonen’s map
Projection Pursuit Sammon’s projection
Independent component analysis (ICA) Nonlinear PCA network

Supervised Linear discriminant analysis Nonlinear discriminant analysis

Input
Layer Layer

Hidden
Layer

Output

...

f1(x1, x2, . . . , xD) h1

hH−1

hH

h2

fF (x1, x2, . . . , xD)

f2(x1, x2, . . . , xD)

f3(x1, x2, . . . , xD)

fF−2(x1, x2, . . . , xD)

fF−1(x1, x2, . . . , xD)

Figure 1: The ANN’s Architecture Used in This
Paper

2.3 Feature Space in Feedforward ANN
In this work, we propose a feature extracting genetic al-

gorithm using multilayer feedforward ANNs having one hid-
den layer as shown in Figure 1. The feedforward neural
network can be viewed as a composite map, φ ◦ ψ : �D →
�C where ψ : �D → �F is a feature extraction map and
φ : �F → �C is a feed-forward map as shown in Fig-
ure 2. D-dimensional input x = (x1, x2, . . . , xD), the set
of observed independent variables, is transformed by ψ into
f(x) = (f1(x), f2(x), . . . , fF (x)). Then, C-vectored network
output m = (m1,m2, . . . ,mC) is obtained by ψ. In general
approach, F := D and fi(x) := xi(i = 1, 2, . . . ,D). The
network is typically built such that the mean squared errors
(MSE)

E[y − m]2

is minimized. The desired output y is one-dimensional real
vector of a dependent variable in the regression problem, and
it is a vector of binary values and is the jth basis vector ej =
(0, . . . , 0, 1, 0, . . . , 0)t if x is in group j in the classification
problem.

In the above, the neural network is trained on input space
S(f1, . . . , fF) where fi ∈ F0 := {f |f(x) = xi} and generates
hidden space S(h1, . . . , hH) where hi ∈ F1 = {ϕ(f1, f2, . . . ,
fF ; w)}. Input space transformation is one of the most im-
portant objects of feature extraction and selection because it
affects the performance and learning time. In our approach,
we do not use the input vector x directly for input nodes
in the neural network. Instead, we evolve input space by
utilizing the functions in hidden space.

3. FEATURE EXTRACTING GA (FGA)

3.1 Motivation
As mentioned, feature extraction is a promising process to

Input
Layer Layer

Output

w2

w1

x2

x1

m

w1 x 1 w2 x 2+

1

0 1

m = 0

m = 1

Figure 3: An Elementary Perceptron

Input
Layer Layer

Output
Layer

Hidden

x2

x1 g1

g2

m

1

1

−1
−1

thres = −4/3

thres = 2/3

1

1

thres = 3/2

g1= 0

g2= 0

1

0 1

1

0 1

= 1g2

= 1g1

1

0 1

m = 0

m = 1

m = 0

Figure 4: A Feedforward NN with a Single Hidden
Layer for XOR Problem

overcome the drawbacks of feedforward neural networks with
a fixed topology. It is also related to the studies about the
need for multilayer perceptron. In the elementary percep-
tron which has no hidden neurons, it cannot classify input
patterns that are not linearly separable. Figure 3 shows the
elementary perceptron and its geometrical representation.
In the example, m is the output of the output neuron and
wi’s are weights. We assume that there are two input vari-
ables (x1, x2)∈ [0, 1]× [0, 1] and the neuron is represented by
a McCulloch-Pitts model, which uses a threshold function
for its activation function. We first recognize that the use of
a single neuron with two inputs results in a straight line for
a decision boundary in the input space. In [31], they used a
single hidden layer with two neurons to solve the XOR prob-
lem which cannot be solved by the elementary perceptron.
Figure 4 shows an example solution using a hidden layer
where g1 and g2 are the outputs of the hidden neurons. It
can be explained from a different view. In the above two
examples, the original input variables, x1 and x2, are used
directly for input neurons. On the other hand, we can rec-
ognize that if g1 and g2 are used for input neurons the XOR
problem can be solved in the elementary perceptron’s topol-
ogy as shown in Figure 5. This simple example shows an

1A logistic function, ϕ[f](x) = 1
1+exp(−af(x))

where a is the

slope parameter of the sigmoid function is used in this paper.

2091

mk(x) = ϕ[h1, h2, . . . , hH ; w](x) = ϕ[

HX

i=1

w
(2)
k,i · hi](x)1 (w = (w

(2)
k,1, w

(2)
k,2, . . . , w

(2)
k,H))

hk(x) = ϕ[f1, f2, . . . , fF ; w](x) = ϕ[
FX

i=1

w
(1)
k,i · fi](x) (w = (w

(1)
k,i , w

(1)
k,2, . . . , w

(1)
k,F))

where
mk(x) : kth output node’s output function
hk(x) : kth hidden node’s output function
fk(x) : kth input node’s output function

w
(1)
i,j : weight between ith hidden node and jth input node

w
(2)
i,j : weight between ith output node and jth hidden node

ϕ : activation function
H : the number of hidden nodes
F : the number of input nodes

Figure 2: The Feedforward Process

Input
Layer Layer

Output

m
1

1

g2 = I(x1 + x2 ≤ 4
3
)

g1 = I(x1 − x2 ≥ 2
3
)

thres = 3
2

Figure 5: An Elementary Perceptron Using Feature
Extraction for XOR Problem

create initial population of fixed size;
do {

choose parent1 and parent2 from population;
offspring = crossover(parent1, parent2);
evaluation(offspring);
replace(population, offspring);

}until(stopping condition);
report the best answer;

Figure 6: A Typical Steady-State Genetic Algo-
rithm Used in FGA

effectiveness of feature extraction which can overcome the
limitation of a fixed topology in ANNs.

Feature extraction GA was motivated by the hidden neu-
rons’ characteristic as feature detectors. If a feedforward
neural network is trained, each hidden neuron in the net-
work can be viewed as a feature extractor. FGA tries to
evolve the input space using the hidden neurons. Figure 6
shows the flows of the GA we used. It is a steady-state GA.
In the following, we describe each part of the GA.

3.2 FGA Frameworks

3.2.1 Problem Representation and Evaluation
A chromosome represents the input function of each input

node for a feedforward neural network. It consists of F func-

tions of the original independent variables, f1, f2, · · · , fF . It
is evaluated using a fully-connected feedforward ANN with
a single hidden layer as shown in Figure 1. The weights
in the ANN are randomly initialized and updated by the
backpropagation algorithms with a training dataset. The
chromosome’s fitness is specified with 1/MSE in a regres-
sion problem. In a classification problem, it is defined with
the accuracy computed as NR

NR+NW
where NR and NW mean

the numbers of right classification and wrong classification,
respectively. All the chromosomes in the population initial-
ization have the same set of functions because fi is set to
xi (i = 1, 2, · · · , F (= D)) as the general approach described
in Section 2.3. However, their fitness may be different since
the weights in each ANN are randomly initialized for the
evaluation .

3.2.2 Selection and Crossover
Roulette-wheel selection is used for parent selection. A

crossover operator creates an offspring chromosome by choos-
ing some functions from two parent chromosomes. Figure 7
shows the crossover process. Parents have F1 and F2 fea-

ture functions, (f1, f2, · · · , fF1) and (f
′
1 , f

′
2 , · · · , f

′
F2), re-

spectively. Using these feature functions, two ANNs with
H hidden neurons are learned. Then, each ANN produces H

nonlinear functions, (h1, h2, · · · , hH) and (h
′
1 , h

′
2 , · · · , h

′
H),

respectively. In the example, there are totally (F1 + F2 +
2H) candidate feature functions to be chosen for offspring.
Crossover randomly chooses F0 functions from the set of
candidates (F0 is randomly specified at every generation.)
Figure 8 shows an example about the topological change in
the neural networks by the crossover. In the figure, F1, F2

and H are set to 3 and the number of output nodes is 2. Two
parents are trained by the backpropagation algorithm and

produce 12 functions, fi, hi, f
′

i , and h
′
i (i = 1, 2, 3). If the

crossover chooses f1, h2, and h
′
3 for the offspring, the net-

work topology represented by the offspring is different from
those of the parents. We note that the dotted connections
are not updated by the backpropagation algorithm.

2092

...
1

f
2

f ’ff ’f
2

f
1

... ’

backpropagation learning

crossover

’
4

f
2

f
8
’ f

5
h

1
f ’

3
h

2
f

6
’ h

1
’ f

1
h

7
h

9
hoffspring

parent1 parent2

... ...f
2

f h’ ’... ... f
1

h
1
’f hh

1
f

2
f

1
’ ’

F F

HF H F

1 2

0F(choosing features at random)

Figure 7: Crossover in FGA

The network to be trained with
offspring

The network trained with
parent1

The network trained with
parent2

’f2

’f3

’f1

h 1
’

h 2
’

h 3
’

f3

f1

f2

h 3

h 2

h 1

f1 h 2 h 3
’

f1

f2

f3

’f1

’f2

’f3

h 2

h 3
’

f1

New feature space
by crossover

Chosen nodes

Figure 8: Topological Change by FGA’s Crossover

3.2.3 Replacement and Stopping Criterion
The offspring first attempts to replace the inferior out of

the two parents. If it fails, it attempts to replace the most
inferior member of the population. It stops when there is
no improvement during a given number of generations.

3.3 Feature Space in FGA
In the general approach explained in Section 2.3, the input

space is fixed to F0. However, FGA evolves the input space
by utilizing the output function of hidden nodes in ANNs
with the crossover operation described in Section 3.2.2. As
FGA evolves, the input space on which the ANN is trained
is as follows:

F :=

n[

i=0

Fi

where Fk = {ϕ[f1, f2, . . . , fF ; w] | fi ∈ Fl, 0 ≤ l < k} if
k ≥ 2 and n is a proper constant.

Table 2: Characteristics of The Datasets

Problem Dataset # of # of # of indep.
Type records classes variables

BHC† 506 3 13
BUP† 345 2 6

Classification SAW 500 2 2
VEH† 846 4 18
WIN† 178 3 13
FRD 500 real 10
SER† 167 real 4

Regression BHR† 506 real 13
OZN 330 real 8
CHF 1607 real 8

† Available from UCI Repository
(http://www.ics.uci.edu/˜mlearn/MLRepository.html)

4. EXPERIMENTAL RESULTS

4.1 The Datasets
In the following, we briefly describe the datasets for ex-

periment and summarize the characteristics of them in the
Table 2.

Boston housing classification (BHC) This gives hous-
ing values in Boston suburbs [32]. The classes are cre-
ated from the attribute median value of owner-occupied
homes as follows: class = 1 if log(median value) ≤ 9.84,
class = 2 if 9.84 < log(median value) ≤ 10.075, class
= 3 otherwise.

BUPA liver disorders (BUP) The problem is to predict
whether or not a male patient has a liver disorder based
on blood tests and alcohol consumption.

Artificial saw-shape data (SAW) The decision bound-
ary is like the lines of the teeth of a saw as shown in
the following figure. Samples are randomly generated
in [0, 1] × [0, 1].

2093

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

STATLOG Vehicle silhouette (VEH) The problem is
to classify a given silhouette as one of four types of
vehicles using a set feature extracted from the silhou-
ette.

Wine recognition (WIN) The problem is to classify the
type of wines from a chemical analysis of wines grown
in the same region in Italy but derived from three dif-
ferent cultivars.

Friedman#1(FRD) This is a synthetic benchmark dataset
proposed in [33]. The formula for data generation
is y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 +P10

i=6 0xi+ε where ε is a Gaussian random noise N(0, 1),
and x1, . . . , x5 are uniformly distributed over the do-
main [0,1].

Servo(SER) This interesting collection of data refers to an
extremely non-linear phenomenon – predicting the rise
time of a servomechanism in terms of two continuous
gain settings and two discrete choices of mechanical
linkages.

Boston housing regression (BHR) This is the same dataset
as BHC except that the dependent variable is contin-
uous.

Ozone (OZN) This dataset was obtained from University
of California at Berkeley2. The independent variables
comprised meteorological information such as humid-
ity and temperature. The target value is the maximum
daily ozone at a location in the Los Angeles basin.

Critical Heat Flux (CHF) This dataset was obtained from
Korea Atomic Energy Research Institute. It predicts
the critical heat flux phenomenon which happens in
operations of nuclear power plants [34].

For robust experiments, we also used a 5-fold cross-validation
to estimate the accuracy. Each dataset in 5-fold cross valida-
tion is randomly divided into five disjoint subsets, D1, D2, . . . ,D5,
each containing approximately the same number of records.
Each run undergoes five pairs of training and test; the kth

experiment was trained with D \Dk and tested with Dk.

4.2 Performance Comparison
We compared our approach with four other general ap-

proaches: WGA, mWNN, TGA, and mTNN. WGA and
TGA are hybrid GAs combined with ANNs to optimize the
ANN’s weights and topology, respectively. As mentioned,
they are traditional combinations of genetic algorithms and

2ftp://ftp.stat.berkeley.edu/pub/users/breiman

neural networks. Their representations are straight and sim-
ilar to each other; if the ANN has N input nodes, H hidden
nodes, and M output nodes, a chromosome in both GAs
is represented by a linear array of H × (N + M) elements.
However, the meaning of each element’s value is different.
The value in WGA means the weight of the corresponding
connection; the chromosome is a real array [35] [36]. On
the other hand, the value in TGA means the validity of the
corresponding connection; the chromosome is a binary array
[37] [38]. They also use the same GA framework as in Fig-
ure 6 except that the offspring is mutated after crossover.
As crossover, 5-point crossover is used. Mutation operator
replaces each weight with a low probability in WGA. On
the other hand, the mutation in TGA flips each bit. Mean-
time, mWNN and mTNN use multi-start framework instead
of GA to find optimal weights and topology; the ANNs are
learned on a number of random weights and connections,
respectively, and return the best result out of them. In this
work, mWNN and mTNN took almost the same running
time as WGA and TGA, respectively, by controlling the
number of random initial points.

Table 3 shows the performance comparison result. They
are the average over 20 trials. We tested them in the ANNs
of various numbers of hidden nodes (H = 2, 6, 10). FGA
showed the best performance on the average; it showed the
best results in 32 out of 36 cases.

Figure 9 compares the transformed input space evolved by
FGA with the original input space by visualizing them. In
the figure, C1, C2, C3 and C4 mean the classes of the record.
The two input spaces are projected to two-dimension space
by Sammon’s mapping. Euclidean distance was used in the
projection algorithm. One can observe that the input spaces
evolved by FGA are more separable.

5. CONCLUSIONS
In this paper, we proposed FGA, a neuro-genetic hybrid,

for the feature extraction in the regression and classifica-
tion problems. It evolves the input space in feedforward
neural networks by utilizing characteristics of hidden nodes.
It is a novel combination of genetic algorithm and artifi-
cial neural network; this is different from traditional neuro-
genetic hybrid combinations where genetic algorithms were
mainly used to optimize networks’ weights and topologies.
It showed notably consistent performance in regression and
classification real world problems. Moreover, FGA generates
considerably separable input space which may be useful in
learning the ANNs.

Acknowledgments
This work was supported by grant No. (R01-2003-000-10879-
0) from the Basic Research Program of the Korea Science
and Engineering Foundation. This was also partly sup-
ported by the Brain Korea 21 Project. The ICT at Seoul Na-
tional University provided research facilities for this study.

6. REFERENCES
[1] R. C. Lacher, P. K. Coats, S. C. Sharma, and L. F.

Fant. A neural network for classifying the financial
health of a firm. European Journal of Operational
Research, 85:53–65, 1995.

[2] Y. K. Kwon and B. R. Moon. Daily stock prediction
using neuro-genetic hybrids. In Proceedings of the

2094

Table 3: Performance Comparison
(1) Accuracy in Classification Problems

Data H ANN mWNN WGA mTNN TGA FGA
2 0.728 0.731 0.729 0.718 0.713 0.734

BHC 6 0.742 0.770 0.762 0.749 0.761 0.781
10 0.744 0.764 0.757 0.766 0.750 0.762
2 0.703 0.701 0.688 0.697 0.707 0.706

BUP 6 0.695 0.707 0.714 0.707 0.710 0.726
10 0.698 0.715 0.710 0.700 0.723 0.718
2 0.743 0.742 0.740 0.748 0.748 0.749

SAW 6 0.749 0.742 0.750 0.743 0.742 0.758
10 0.754 0.746 0.752 0.741 0.736 0.764
2 0.577 0.681 0.657 0.675 0.670 0.700

VEH 6 0.803 0.823 0.821 0.804 0.809 0.830
10 0.803 0.824 0.829 0.820 0.820 0.833
2 0.868 0.933 0.884 0.831 0.876 0.949

WIN 6 0.968 0.962 0.972 0.976 0.969 0.982
10 0.970 0.970 0.974 0.974 0.980 0.981

(2) MSE in Regression Problems

Data H ANN mWNN WGA mTNN TGA FGA
2 17.43 17.14 17.66 16.66 16.56 14.52

FRD 6 17.02 16.89 15.33 16.13 15.94 13.88
10 17.09 16.97 15.08 16.07 15.96 13.90
2 0.487 0.394 0.478 0.446 0.436 0.357

SER 6 0.383 0.399 0.410 0.373 0.388 0.324
10 0.384 0.381 0.452 0.369 0.386 0.347
2 18.19 17.76 18.18 17.01 17.36 13.02

BHR 6 17.57 14.96 15.21 14.34 15.18 15.54
10 16.75 15.77 14.31 15.25 13.56 14.80
2 23.35 19.16 19.29 18.57 18.36 18.30

OZN 6 17.64 17.43 17.59 17.63 17.67 17.46
10 18.03 17.68 17.49 17.47 17.76 17.48
2 0.421 0.395 0.384 0.390 0.392 0.307

CHF 6 0.351 0.325 0.311 0.322 0.319 0.306
(×10−2) 10 0.330 0.319 0.310 0.314 0.314 0.305

Genetic and Evolutionary Computation Conference,
pages 2203–2214, 2003.

[3] S. Knerr, L. Personnaz, and G. Dreyfus. Handwritten
digit recognition by neural networks with single-layer
training. IEEE Transactions on Neural Networks,
3:962–968, 1992.

[4] H. Bourlard and N. Morgan. Continuous speech
recognition by connectionist statistical methods. IEEE
Transactions on Neural Networks, 4:893–909, 1992.

[5] H. B. Burke. Artificial neural networks for cancer
research: Outcome prediction. Seminars in Surgical
Oncology, 10:73–79, 1994.

[6] N. Qian and T. J. Sejnowski. Predicting the secondary
structure of globular proteins using neural network
models. Journal of Molecular Biology, 202:865–884,
1988.

[7] M. Brown and C. Harris. Neural Fuzzy Adaptive
Modeling and Control. Prentice-Hall, 1994.

[8] G. Cybendo. Approximations by superpositions of a
sigmoidal function. Mathematics of Control, Signals
and Systems, 2:303–314, 1989.

[9] D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
Learning representations by back-propagating errors.
Nature, 323:533–536, 1986.

[10] D. Whitley, T. Starkweather, and C. Bogart. Genetic
algorithms and neural networks: optimizing

connections and connectivity. Parallel Computing,
14:347–361, 1990.

[11] I. T. Jolliffe. Principal Component Analysis.
Springer-Verlag, New York, 1996.

[12] R. O. Duda and P. E. Hart. Pattern Classification and
Scene Analysis. Wiley, New York, 1973.

[13] T. Kohonen. Self-organized formation of topologically
correct feature maps. Biological Cybernetics, 43:59–69,
1982.

[14] M. A. Kraaijveld, J. Mao, and A. K. Jain. A nonlinear
projection method based on kohonen’s topology
preserving maps. IEEE Transactions on Neural
Networks, 6:548–559, 1995.

[15] A. R. Webb and D. Lowe. The optimized internal
representation of multilayer classifier networks
performs nonlinear discriminant analysis. Neural
Networks, 3:367–375, 1990.

[16] A. K. Jain and R. C. Dubes. Algorithms for Clustering
Data. Prentice-Hall, Englewood Cliffs, 1988.

[17] J. Mao and A. K. Jain. Artificial neural networks for
feature extraction and multivariate data projection.
IEEE Transactions on Neural Networks, 6:296–317,
1995.

[18] P. Baldi and K. Hornik. Neural networks and principal
component analysis: Learning from examples without
local minima. Neural Networks, 2:53–58, 1989.

2095

C1
C2
C3

BHC (None)

C1
C2
C3

BHC (FGA)

C1
C2

BUP (None)

C1
C2

BUP (FGA)

C1
C2
C3
C4

VEH (None)

C1
C2
C3
C4

VEH (FGA)

C1
C2
C3

WIN (None)

C1
C2
C3

WIN (FGA)

Figure 9: Visualization of Input Spaces

[19] J. Mao and A. K. Jain. Discriminant analysis neural
networks. In IEEE International Conference on
Neural Networks, pages 300–305, 1993.

[20] J. Branke. Evolutionary Algorithms for Neural
Network Design and Training. Technical Report
No.322, University of Karlsruhe, Institute AIFB.,
1995.

[21] D. Schaffer, D. Whitley, and L. Eshelman.
Combinations of genetic algorithms and neural
networks: A survey of the state of the art. In
Proceedings of the International Workshop on
Combinations of Genetic Algorithms and Neural
Networks, pages 1–37, 1992.

[22] X. Yao. Evolving artificial neural networks.
Proceedings of the IEEE, 87:1423–1447, 1999.

[23] D. Thierens, J. Suykens, J. Vandewalle, and
B. De Moor. Genetic weight optimization of a
feedforward neural network controller. In Proceedings
of the Conference on Artificial Neural Nets and
Genetic Algorithms, pages 658–663, 1993.

[24] B. Yoon, D. J. Holmes, G. Langholz, and A. Kandel.
Efficient genetic algorithms for training layered
feedforward neural networks. Information Science,
76:67–85, 1994.

[25] J. H. Kim and B. R. Moon. Neuron reordering for
better neuro-genetic hybrids. In Proceedings of the
Genetic and Evolutionary Computation Conference,
pages 407–414, 2002.

[26] H. Kitano. Designing neural networks using genetic
algorithms with graph generation system. Complex
Systems, 4:461–476, 1990.

[27] G. F. Miller, P. M. Todd, and S. U. Hedge. Designing
neural networks using genetic algorithms. In
International Conference on Genetic Algorithm, pages
379–384, 1989.

[28] S. A. Harp, T. Samad, and A. Guha. Towards the
genetic synthesis of neural networks. In International
Conference on Genetic Algorithm, pages 360–369,
1989.

[29] W. Siedlecki and J. Sklansky. A note on genetic
algorithms for large-scale feature selection.
10:335–347, 1989.

[30] W. F. Punch, E. D. Goodman, M. Pei, L. Chia-Shun,
P. Hovland, and R. Enbody. Further research on
feature selection and classification using genetic
algorithms. In International Conference on Genetic
Algorithm, pages 557–564, 1993.

[31] D. S. Touretzky and D. A. Pomerleau. What’s hidden
in the hidden layers? Byte, 14:227–233, 1989.

[32] D. Harrison and D. L. Rubinfeld. Hedonic prices and
the demand for clean air. JEEM, 5:81–102, 1978.

[33] J. H. Friedman. Multivariate adaptive regression
splines with discussion. Annals of Statistics, 19:1–141,
1991.

[34] Y. K. Kwon and B. R. Moon. A genetic hybrid for
critical heat flux function approximation. In
Proceedings of the Genetic and Evolutionary
Computation Conference, pages 1119–1125, 2002.

[35] V. W. Porto, D. B. Fogel, and L. J. Fogel. Alternative
neural network training methods. IEEE Expert,
10:16–22, 1995.

[36] G. W. Greenwood. Training partially recurrent neural
networks using evolutionary strategies. IEEE
Transactions on Speech Audio Processing, 5:192–194,
1997.

[37] S. W. Wilson. Perceptron redux: Emergence of
structure. Physics D, 42:249–256, 1990.

[38] S. Oliker, M. Furst, and O. Maimon. A distributed
genetic algorithms for neural network design and
training. Complex Systems, 6(5):459–477, 1992.

2096

