
Applying Metaheuristic Techniques
to Search the Space of Bidding Strategies

in Combinatorial Auctions

Ashish Sureka and Peter R. Wurman
Department of Computer Science

North Carolina State University
Raleigh, NC 27695-7535

asureka@unity.ncsu.edu, wurman@ncsu.edu

ABSTRACT
Many non-cooperative settings that could potentially be studied
using game theory are characterized by having very large strat-
egy spaces and payoffs that are costly to compute. Best response
dynamics is a method of searching for pure-strategy equilibria in
games that is attractive for its simplicity and scalability (relative to
more analytical approaches). However, when the cost of determin-
ing the outcome of a particular set of joint strategies is high, it is
impractical to compute the payoffs of all possible responses to the
other players actions. Thus, we study metaheuristic approaches–
genetic algorithms and tabu search in particular–to explore the strat-
egy space. We configure the parameters of metaheuristics to adapt
to the problem of finding the best response strategy and present
how it can be helpful in finding Nash equilibria of combinatorial
auctions which is an important solution concept in game theory.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms and prob-
lem complexity; J.4 [Computer Applications]: Social and Behav-
ioral Sciences—Economics

General Terms
Algorithms, Economics

Keywords
Game Theory, Combinatorial Auctions, Genetic Algorithms, Tabu
Search

1. INTRODUCTION
Metaheuristic search algorithms have been applied successfully

to a number of optimization problems in many engineering disci-
plines [7, 18]. In this paper, we apply metaheuristics to a complex
combinatorial optimization problem in the field of game theory and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05,June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

c1 c2 c3 c4 c5

r1 6, 8 4, 12 4, 18 4, 13 8, 4
r2 6, 12 6, 18 6, 4 8, 6 6, 6
r3 4, 8 8, 6 21, 14 12, 20 4, 12
r4 2, 2 14, 5 5, 6 12, 8 18, 20
r5 8, 4 12, 6 8, 8 16, 18 14, 14

Table 1: An example game matrix.

combinatorial auctions. We provide only a short introduction to
the application domain; interested readers can consult the litera-
ture cited in this paper for further information on game theory and
combinatorial auctions. We present a formal description of the op-
timization problem and explain the need for applying metaheuris-
tics. We apply tabu search and genetic algorithms to search the
very large space of bidding strategies in combinatorial auctions to
find agoodstrategy in areasonableamount of time. We perform
simulations on a variety of problem types and tune various tabu
search and genetic algorithm parameters. In the following sections,
we present the design and experimental results of the algorithm’s
performance.

1.1 Game Theory Background
Game theory is the study of decision making in situations in

which the outcome depends on the interaction of two or more per-
sons who have opposed, or at best mixed, incentives [5, 6, 15]. A
game innormal formdescribes the actions (strategies) available to
each player and the payoffs each player will receive from each pos-
sible joint action set. For small, two agent games, we usually draw
the normal form game as a matrix. An example game is shown in
Table 1.

The objective of a game theoretic analysis of an interaction is
to predict the behavior of the participants. The most widely-used
solution concept in game theory is attributed to John Nash [14]
who proved the existence of equilibrium in all finite, normal-form
games. A Nash equilibrium describes a steady state of the play
of a strategic game in which each player’s chosen action is a best
response to the other players’ chosen actions. That is, a joint set of
strategies is a Nash equilibrium if it has the property that no player
can benefit by changing her strategy while the other players keep
their strategies unchanged. Nash’s result holds for the general case
only if we allow for mixed strategies, which allow participants to
play strategies with random elements. In this paper, we focus on
only pure strategies, that is, ones in which the participant plays a

2097

particular strategy with probability 1.0. The game shown in Table 1
has two pure-strategy Nash equilibria:{r5, c4} and{r4, c5}.

Computing Nash equilibria of a game is a hard problem and sev-
eral algorithms have been proposed over the years to solve it [12].
The current state-of-the-art algorithms for computing Nash equi-
libria are the Lemke-Howson algorithm [20] for two-player games,
the Govindan-Wilson algorithm [9] and an algorithm based on sim-
plical subdivision [21] forn-player, finite games. Several other al-
gorithms for solving finite games are implemented in Gambit [11],
which is a library of game theory software and tools for the con-
struction and analysis of finite extensive and normal form games.
The appropriate algorithm for computing the Nash equilibria for a
game depends on a number of factors, such as whether you want to
find pure strategy equilibria or mixed strategy equilibria, or whether
you want to find just one equilibrium or find all the equilibria. But
the underlying assumption in current algorithms is the availability
of a complete payoff matrix.

In the problem domains we address in this paper, computing the
payoff matrix is costly, and it is undesirable to completely enu-
merate the normal form matrix. Therefore we adopt a simple ap-
proach to finding equilibria in normal form games that allows us
to postpone the computation of the payoffs for a majority of cells.
Best response dynamicssearches for pure-strategy Nash equilibria
by iteratively examining each agent’s best response to the current
actions of the other agents until a joint strategy is reached from
which no agent can find a better action. It is well known that best
response dynamics may cycle–an issue we attempt to address in
another paper [20]–and that the process may not find all equilib-
ria unless the search is begun from every possible starting loca-
tion. Despite these flaws, best response dynamics is useful when
other algorithms become intractable, and easily applied to larger
games when our heuristic methods of searching the strategy space
are used.

To illustrate the process of using best responses to find equilibria,
we again examine Table 1. Assume the search starts from the ini-
tial action profile{r1, c1}, which is clearly not a Nash equilibrium
because each player can benefit by unilaterally deviating. Assume
we analyze the column player first. The column player’s best re-
spsonse tor1 is c3, thus the current solution candidate becomes
{r1, c3}. Now it is the row player’s turn, and he findsr3 is better
to play when the column player is playingc3. From{r3, c3}, the
column player switches to{r3, c4}, and from there the row player
switches to{r5, c4}. {r5, c4} is a point in the space of outcomes in
which both player’s actions form best responses to one another, and
thus is a Nash equilibrium. Note that different choices of starting
locations or first agents may lead to the other Nash equilibrium.

1.2 Combinatorial Auctions
Auctions are used to allocated resources and enable dynamic

pricing. Many different types of auctions are in widespread use,
including the English, Dutch, Vickrey and First-Price Sealed-Bid
auctions [2]. Most of these auctions involve trading one or more
units of a single type of item. Many trading scenarios, such as
the allocation of airport time slots [16], delivery routes, distributed
scheduling, task assignment, and the allocation of radio frequen-
cies [3, 13] involve bidders that have non-additive values for the
items being allocated. For example, the value of a property to a
bidder may be significantly increased if an adjacent property is won
by that bidder [10]. If the items are auctioned individually, bidders
who have synergies for combinations of items risk either not bid-
ding enough to win the combination, or bidding too much on a
portion of the combination only to fail to win the rest–a problem
referred to in the literature as theexposure problem[19]. Auctions

that allow participants to bid directly on combinations are called
combinatorial auctions(CAs) and are designed to eliminate the ex-
posure problem.

There are many variations of combinatorial auctions, including
several sealed-bid and iterative designs [4]. In this paper, we re-
strict our attention toproxiedCAs, that is, auctions in which bid-
ders give some information to a proxy agent which then executes
a fixed bidding policy based on the input and the trajectory of the
auction. The participants strategic choice is what statement to give
to her proxy agent. The bidder’s statement of values is referred to
as her proxy bid. Given a possible set of proxy bids, the bidders’
choices can be cast as a normal form game in which the payoffs are
the outcome of the proxied CA. Unfortunately, computing the pay-
offs for each possible joint strategy is NP-hard, and doing so for the
complete matrix is exponentially worse. In an attempt to tame this
complexity, we examine methods of partially searching the space
of best-responses using either genetic algorithms or tabu search.

2. PROBLEM FORMULATION
Denote the set of bidders byI = {1, ..., m} and the set of items

J = {1, ..., n}. There are2n − 1 possible distinct bundles of the
items inJ . Each bidder has a true value for each bundle, denoted
vi(x). Bidderi will submit a statement,bi, to her proxy agent that
specifies a value for every bundle under consideration. Letbi(x) be
i’s stated value for bundlex. The strategic decision faced by each
bidder is what statement to issue to her proxy bidder.1

Finding a best response strategy can be formulated as an opti-
mization problem. Let agenti’s surplus when playing strategybi

be determined by the functionfi(bi, b−i), whereb−i represents the
proxy bid vectors of all agents other thani. Agenti’s task is to find
the surplus maximizing strategy,b∗i , given the strategies of all other
agents. That is, agenti must find a bidding strategyb∗i such that:

fi(b
∗
i , b−i) ≥ fi(bi, b−i), ∀bi. (1)

In a Nash equilibrium, equation (1) is simultaneously satisfied for
all agents.

We assume each bidder has a discrete, finite strategy space,Si,
that maps into the space of bids. Letsk

i ∈ Si denote thekth strat-
egy for agenti. To apply the heuristic search techniques, we en-
code the strategy space in a binary string using the encoding func-
tion E : sk

i → bi. There are many potential mappings between
a binary encoding and the proxy bid value. For instance, the bi-
nary string could be used to represent the actual proxy values given
to the proxy agent. That is, thexth word in sk

i is an encoding
of the value ofbi(x). We determined that such a direct encoding
would not provide adequate resolution across the range of bundle
values. Instead, we opted for an encoding that would provide the
same number of expressable values regardless of the domain of the
bids.

In our scheme, each word of the strategy encodes a factor that
is multiplied by the bidder’s true value for a bundle to get the bid
value. That is,

bi(x) = sk
i (x) ∗ vi(x).

Typically, we definedsk
i (x) ≤ 1. Permittingsk

i (x) to be greater
than one allows bidders to encode strategies in which they offer
more than their true values for an object; although we have some
preliminary explorations with this feature, the results are beyond
the scope of this paper. The number of bits used to encodesk

i (x) is

1In practice, a statement does not need to specify a value for every
combination; combinations for which the bidder does not represent
a value are assumed to be not of interest and have value of zero.

2098

theresolution, r. Because we are limiting the factor to a maximum
value of one, the fraction represented by ther bits encoding the
word is simply the binary value of ther bits divided by2r. For
example ifsk

i (x) = [10] then the factor is= ([10]/[11]) = 2/3 =
0.667.

The length of a strategy is a function of the number of items and
the resolution used to encode each bundle factor:

l = r ∗ 2n.

All 2l permutations of thel binary variables constitute unique strate-
gies. The size of the strategy space increases exponentially with in-
creases in resolution, and super-exponentially with increases in the
number of items. Thus, the number of candidate solutions is very
large and grows exponentially with the problem size so that simple
enumeration schemes are rendered impractical.

3. EXPERIMENTAL DESIGN
Our experiments involve evaluating the applicability of tabu search

and genetic algorithms as search methods over the space of possible
best responses. In this section, we describe the application of each
of these techniques to the combinatorial auction problem domain.

3.1 Tabu Search
Tabu search is a variation of hill-climbing search enhanced with

a memory that keeps the search from backtracking into space it has
already examined. Tabu search begins at a seed solution and iter-
atively moves from one solution to its best neighbor until a termi-
nation condition is satisfied. The algorithm keeps track of the best
solution found so far, and incorporates some elements of simulated
annealing that allow it to escape from local optima. These features
are particularly useful in search problems with many plateaus or
rugged topology. The important components of tabu search are the
definition of the neighborhood function, memory, aspiration crite-
ria, and termination criteria.

3.1.1 Neighborhood function
The neighborhood function determines which solutions are con-

sidered “next” to each other and governs which direction the search
is allowed to proceed. The definition of a neighborhood function
is a crucial factor in tabu search and has a strong influence on the
search procedure [1, 8]. We examined two neighborhood functions.

The toggle-bit neighborhood is the set of solutions that differ
from solutionsk

i by the value of a single bit. The number of neigh-
bors equals to the number of bits in the solution. Thevalue-shift
neighborhood is the set of solutions that can be reached fromsk

i by
changing the value of one of the words ofsk

i by one increment. To
see the difference, consider the six bit strategy[01, 00, 10]. The six
neighbors are[11, 00, 10], [00, 00, 10], [01, 10, 10], [01, 01, 10],
[01, 00, 00], [01, 00, 11]. In comparison, the six neighbors when
using the value-shift neighborhood function are[00, 00, 10],
[10, 00, 10], [01, 01, 10], [01, 11, 10], [01, 00, 01], [01, 00, 11]. The
latter method is searching the strategy space by incrementing and
decrementing the words, and thus is “aware” of the context in which
it is searching. In contrast, the toggle-bit method is independent of
the context and is simply searching the representation space.

3.1.2 Memory mechanism
The notion of exploiting flexible memory to control the search

process is the central theme underlying tabu search [17]. When de-
signing the memory scheme for tabu search we must first decide
what to remember, and then how long to remember it. The two
types of memory commonly used in tabu search areexplicit mem-
ory and attribute-based memory. Explicit memory records com-

plete solutions in the tabu list. Attribute-based memory records
information about solution attributes that change in moving from
one solution to another. In general, attribute-based memory has a
smaller memory footprint, which may allow us to keep larger tabu
lists. On the other hand, by making entire attributes off limits, we
may prevent searching in a promising direction. In our experiments
we test both explicit memory and attributive memory.

For example, in moving from[01, 00, 10] to [01, 01, 10], ex-
plicit memory will record the former solution in the tabu list, thus
preventing the search from immediately returning to[01, 00, 10].
However, it would permit a next move to[01, 11, 10]. Attribute-
based memory might, instead, record that word two of the encoding
was manipulated, and thus prevent word two from being manipu-
lated again for the duration of the tabu tenure. This would prevent
a subsequent move to[01, 11, 10] until the attribute had expired
from the tabu list. In our experiments, we employ a more forgiving
form of attribute based memory that records both the word that was
manipulated and the direction opposite the change. Thus, it would
remember{word 2, decrement} in the tabu list, and would prevent
a move that involved decrementing word 2 until the attribute had
expired from the tabu list.

3.1.3 Aspiration criterion
When using attribute-based memory, the aspiration criteria al-

lows us to override the tabu restrictions when a sufficiently better
neighbor is found. For example, if we find that a solution better
than the best solution found so far can be reached from the current
node by{word 2, decrement}, we may move in that direction even
if {word 2, decrement} is in the tabu list. In our experiments, we
use aspiration criteria ranging from80% to 100%, relative to the
best solution found so far.

3.1.4 Termination criteria
Finally, we specify the termination criterion used in our experi-

ments.

• The number of iterations is fixed to some valuectotal.

• The number of iterations since the last improvement of the
best solution is larger than a specified numbercunimproving.

3.2 Genetic Algorithm
We also employed genetic algorithms (GAs) to explore the space

of best responses. The encoding for the GA was the same as in
the tabu search. That is, the binary expression of a strategy is an
individual in population maintained by the genetic algorithm. We
used the standard GA operators, crossover and mutation, to derive a
new population from the previous generation. Each member of the
population was run against the current strategies of the other bid-
ders and given a score. The population was then ranked by score,
and the top third was selected to produce children in the next itera-
tion. Two parents were randomly selected from the top third of the
population to produce two complementary children, using a single
crossover point. Once the subsequent generation was created, the
mutation operator was applied to each bit of each individual, and
with a probability of .05, switched the value of the bit.

4. RESULTS
To test the metaheuristic algorithms, we designed a set of prob-

lems and classified them by the size of the strategy space and the
size of the outcome space. To illustrate the considerations that go
into generating interesting problems, we present a small example in
Table 2. This example has three agents and two items with the op-
timal allocation being to give Agent 1 item A, and Agent 3 item B.

2099

A B AB
Agent 1 25 15 45
Agent 2 20 20 45
Agent 3 10 25 40

Table 2: An example combinatorial auction problem with three
agents and two items

All three agents havecomplementary preferences, that is, the val-
uation of a particular bundle of items is greater than the the sum
of valuations of the individual items. For a fixed number of items
and agents, there are several possible variations in constructing a
problem by changing the valuation profile of the agents. For exam-
ple, we can construct problems where the agents have sub-additive
preferences and every item is allocated to a different agent. We
designed the test problems by varying the number of agents, the
number of items, the resolution and the valuation profiles of the
agents to make sure that the results are not an artifact of a particu-
lar problem type.

The problem size grows exponentially with the number of agents,
the number of items and the resolution. Table 3 is a list of13 prob-
lem types in increasing order of the size of the outcome space. Re-
call that the size of the strategy space is2r2n

, and the size of the
joint strategy space is(2r2n

)m. In our model, we assume that the
size of strategy space for each agent is the same.

We applied the algorithms to several problems of each problem
type, beginning each run with random starting solutions, and aver-
aged the results. The experiments were conducted on a single Ap-
ple Macintosh machine. The processor was a 1 GHz PowerPC G4
with 1024MB memory. The development environment was Mac-
intosh Common Lisp version 5.0 on a Mac OS X version 10.2.8.
Because the task of solving computing the results of the CA for a
given joint strategy set was costly–for the larger problems in our
test set evaluating each joint strategy took up to 10 minutes–for
games larger than size 13 it was not possible to verify the quality of
the solutions found by the metaheuristic search algorithms through
exhaustive search of the normal form game. Thus, for this study,
we limited our test set to problems we for which we could verify
solutions.

Figure 1 shows the number of seconds required by both tabu
search and the genetic algorithm implementations for each of the
problem sizes. For the graph in Figure 1, we used an explicit-
memory version of the algorithm with the toggle-bit neighborhood
function. The results suggest that the absolute running time re-
quired by the genetic algorithm is significantly more than that re-
quired by tabu search. Several factors affect the total amount of
time required by the program, not the least of which is the level
to which each program has been optimized. However, we believe
several useful observations can be made from these results. First,
the search space, at least for these smallish problems, probably has
structure that tabu search is able to take advantage of. With few
bundles and agents, the landscape probably has few local maxima.
We expect this will change with larger problems. Second, our im-
plementation of the genetic algorithm does not reuse computations
from previous generations, so if the same individual appears in a
subsequent generation, it will recalculate the results of the proxy
CA. We intend to measure the frequency with which this occurs,
and implement code to cache pre-computed results. Interestingly,
the tabu list in tabu search prevents a lot of this re-computation of
previous results.

It is important to note that the actual time taken also depends
on other factors, including the bid increment and the rules of the

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8 9 10 11 12 13

Problem Type

T
im

e
(s

ec
o

n
d

s)
 t

o
 C

o
n
v
er

g
e

Tabu

GA

Figure 1: The time to converge to best responses as a function
of problem size.

auction. Increasing the bid increment results in faster convergence,
but may reduce the accuracy of the outcome.

The search for a best response is only a step in the process of us-
ing best-response dynamics to look for equilibrium. Eachroundof
the best-response dynamics involves searching the space of bidding
strategies for each agent while keeping the strategies of all other
agents fixed. Thus, in a three agent problem, the round is com-
plete once all three agents have had a chance to search for a best
response. Best response dynamics may take several such rounds
to converge to a Nash equilibrium, if it converges at all. The ac-
tual number of rounds taken to converge varies with the type of
the problem, the starting solution and the auction type. Figure 2
shows the average and maximum number of rounds taken to con-
verge to an equilibrium by tabu search using explicit memory and
the toggle-bit neighborhood function.

We observe that the average and maximum number of rounds to
converge to an equilibrium remains the same until problem type8,
and then increases. The largest problem to which we applied the al-
gorithm was of type13 (refer to Figure 3) and it takes on an average
of 8.3 rounds to converge to a solution. For the results in Figure 2,
we used an explicit memory version of the algorithm with a toggle-
bit neighborhood function. We increased the number of rounds re-
quired to elapse before the termination was invoked as the problem
size grew. The termination threshold is shown in the Figure 2. We
did not observe any noticeable difference between the value-shift
and toggle-bit neighborhood functions. Nor did we notice a signif-
icant difference between the explicit or the attribute-based memory
variations of the algorithm. The path taken to converge to a equi-
librium depends on the type of memory and neighborhood function
used by the algorithm but we did not observe any consistant evi-
dence of one type of adaptive memory or neighborhood function
being better than the other. We plan to do further tests on the effect
of the tabu search parameters on the search trajectory and conver-
gence time.

The first termination criteria mentioned in Section 3.1.4 was the
limit on the total number of moves that the tabu search could take,
ctotal. We carried out experiments to measure the effect of the limit
on the number of iterations on the number of rounds required by

2100

Problem Num Resolution Num Encoding Strategy Outcome
Size Agents Items Length Space Space

1 2 1 2 3 8 102

2 2 2 2 6 64 4 ∗ 103

3 2 1 3 7 128 2 ∗ 104

4 2 3 2 9 512 2 ∗ 105

5 3 2 2 6 64 2 ∗ 105

6 3 3 2 9 512 2 ∗ 108

7 2 2 3 14 1.6 ∗ 104 2 ∗ 108

8 2 3 3 21 2 ∗ 106 4 ∗ 1012

9 3 2 3 14 1.6 ∗ 104 4 ∗ 1012

10 4 2 3 14 1.6 ∗ 104 4 ∗ 1016

11 3 3 3 21 2 ∗ 106 8 ∗ 1018

12 4 3 3 21 2 ∗ 106 2 ∗ 1025

13 4 2 4 30 109 1036

Table 3: Classification of problem types based on the number of agents, items and resolution

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

1 2 3 4 5 6 7 8 9 10 11 12 13

Problem Type

N
um

be
r o

f R
ou

nd
s

Avg. Number of Rounds to
Converge
Termination Constant

Max Number of Rounds to
Converge

Figure 2: The number of rounds for the best-response dynam-
ics to converge to equilibrium using tabu search to look for best
responses.

the best-response dynamics. An increase in the number of moves
results in an increased coverage of the search space, but may not
improve the quality of the solution found. Figure 3 shows the ex-
perimental results of changingctotal parameter on the number of
rounds require to converge to a Nash equilibrium. The experiment
was performed on problems of various sizes. We observe that for
problems of type9 and10, setting the limit to more than4 has no
additional benefit and does not make the algorithm converge faster,
whereas a value less than4 leaves some part of the strategy space
uncovered and requires more iterations to find the Nash equilib-
rium.

We found similar relationships among the parameters that govern
the genetic algorithm. In particular, we found that a population size
of 20 works well for problems of type9 or less. For problems of
size9 to 13, we needed to increase the population size as the size
of the strategy space increases. We tried a range of population sizes
in multiples of10 before settling on a size that works best with a
problem of a particular size.

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6

Limit on Tabu Moves

Av
g.

 R
ou

nd
s t

o
C

on
ve

rg
e

to
 E

q.

Type 2
Type 5
Type 9
Type 10

Figure 3: The time to converge to best responses as a function
of problem size.

We verified the results obtained from tabu search using enumer-
ation. Based on our simulation results we conclude that the quality
of the solution found depends on search parameters. We performed
experments to find good values of these parameters for a specific
problem type. Once good parameter values were determined, we
ran the tabu and genetic algorithms to find candidate equilibria. We
then enumerated all strategic deviations and observed that the can-
didate equilibrium found were all Nash equilibria. We used this
method of verification through enumeration for problems up to size
13, which as the pratical limit given our current hardware and soft-
ware resources. Figures 4 and 5 show the amount of the strategy
space explored by tabu search to find the best response strategy for
problems of various sizes. Similar results were obtained for the ge-
netic algorithms, though we performed less thorough testing with
that algorithm because it took considerably longer to run.

The single most important observation to draw from Figures 4
and 5 is that the metaheuristic search algorithms allowed us to
search a small portion of the combined strategy space to find equi-
libria. In the case of problem types 9 and 10, the algorithm explored

2101

36 36
9028 28

422

0

100

200

300

400

500

600

2 5 6

Problem Type

N
um

be
r o

f S
tra

te
gi

es

Not Evaluated
Evaluated

Figure 4: The number of strategies examined by tabu search
for problem types 2, 3, and 5.

only 3.75% of the strategy before finding an equilibrium. In the
process of verifying that the solution found by tabu best-response
dynamics with tabu search was an equilibrium, we confirmed that
there are several equilibrium solutions. Thus, part of the success
of the approach is due to the fact that, when more than one equi-
librium is present, it takes less search to find one. However, we
believe that a significant portion of the reduction in search comes
from the application of the metaheuristic algorithms.

5. CONCLUSION
Metaheuristic search techniques show promise as an element of

searching for equilibrium using best-response dynamics to prob-
lems in combinatorial auctions and game theory. In our experi-
ments, tabu search and genetic algorithms proved to be good ap-
proximation techniques to find best response strategies. Our ex-
periments show a significant reduction in the amount of the search
space that needs to be explored. Naturally, the limitation of this ap-
proach is that neither tabu search nor genetic algorithms are guar-
antee to find the optimal solution. While we cannot prove con-
vergence to equilibria with this technique, our experiments suggest
that the technique can be used to find good bidding strategies in
cases where it is computationally expensive to find an optimal bid-
ding strategy.

Acknowledgments
This research was funded by NSF CAREER award 0092591 and
the E-Commerce program NC State. The views and conclusions
contained herein are those of the authors, as are any errors. We
thank Gangshu Cai and Tiejun Li, and other members of the Intel-
ligent Commerce Research Group at NCSU.

6. REFERENCES
[1] E. Aarts and J. Lenstra, editors.Local Search in

Combinatorial Optimization. John Wiley and Sons,
Chichester, UK, 1997.

600 600

15400 15400

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

9 10

Problem Type

N
um

be
r o

f S
tra

te
gi

es

Not Evaluated
Evaluated

Figure 5: The number of strategies examined by tabu search
for problem types 9 and 10.

[2] R. Cassady.Auctions and Auctioneering. Berkely University
of California Press, 1967.

[3] P. Cramton. The fcc spectrum auctions: An early assessment.
Journal of Economics and Management Strategy,
6(3):431–495, 1997.

[4] S. de Vries and R. Vohra. Combinatorial auctions: A survey.
INFORMS Journal on Computing, June 15 to appear.

[5] D. Fudenberg and J. Tirole.Game Theory. MIT Press, 1996.
[6] R. Gibbons.Game Theory for Applied Economists. Princeton

University Press, 1992.
[7] F. Glover, W. Kochenberger, and A. Gary, editors.Handbook

of Metaheuristics, volume 57. 2003.
[8] F. Glover and M. Laguna.Tabu Search. Kluwer Academic

Publishers, Norwell, MA, 1997.
[9] S. Govindan and R. Wilson. A global newton method to

compute nash equilibria.Journal of Economic Theory,
110(1), 2003.

[10] F. Kelly and R. Steinberg. A combinatorial auction with
multiple winners for universal services.Management
Science, 46(4):586–596, 2000.

[11] R. McKelvey, D. Richard, A. McLennan, M. Andrew, and
T. Theodore. Gambit: Software tools for game theory. 2004.

[12] R. D. McKelvey and A. McLennan. Computation of
equilibria in finite games. In H. Amman, D. A. Kendrick, and
J. Rust, editors,The Handbook of Computational Economics,
volume 1, pages 87–142. Elsevier Science, B.V., Amsterdam,
1996.

[13] J. McMillan. Selling spectrum rights.Journal of Economic
Perspectives, 8(3):145–162, 1994.

[14] J. Nash. Two-person cooperative games.Proceedings of the
National Academy of Sciences, 21:128–140, 1950.

[15] M. J. Osborne.An Introduction to Game Theory. Oxford
University Press, 2004.

[16] S. J. Rassenti, V. L. Smith, and R. L. Bulfin. A combinational
auction mechanism for airport time slot allocation.Bell
Journal of Economics, 13:402–417, 1982.

2102

[17] C. Reeves, editor.Modern Heuristic Techniques for
Combinatorial Problems. John Wiley and Sons, Norwell,
MA, 1997.

[18] M. Resende and P. deSousa, editors.Metaheuristics
Computer Decision-Making, volume 86. 2004.

[19] M. H. Rothkopf, A. Pekěc, and R. M. Harstad.
Computationally manageable combinational auctions.
Management Science, 44(8):1131–1147, 1998.

[20] A. Sureka and P. R. Wurman. Applying tabu search for
finding pure strategy nash equilibria in very large normal
form games. InFourth International Joint Conference on
Autonomous Agents and Multi Agent Systems, Utrecht,
Netherlands, 2005.

[21] G. van der Laan, A. J. J. Talman, and L. van Der Heyden.
Simplicial variable dimension algorithms for solving the
nonlinear complementarity problem on a product of unit
simplices using a general labelling.Mathematics of
Operations Research, pages 377–397, 1987.

2103

