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ABSTRACT

Given concentrations of metabolites over a sequence of time
steps, the metabolic pathway prediction problem seeks a set
of reactions and rate constants for them that could yield the
concentration-time data. Such metabolic pathways can be
modeled with Petri nets: bipartite graphs whose nodes are
called places and transitions and in which tokens move from
place to place through the transitions. Thus the pathway
prediction problem can be addressed by searching a space
of Petri nets, and such a search can be undertaken evolu-
tionarily.

Here, a genetic algorithm performs such a search. The GA
seeks only the net’s structure; a hill-climbing step applied as
part of evaluation approximates parameters associated with
the net’s transitions. On one contrived problem instance,
the GA sometimes identifies the pathway used to generate
the given data, but on a second contrived instance, appar-
ently no harder, it fails. On an instance drawn from real
biology—the pathway for phospholipid synthesis—the ge-
netic algorithm identifies a Petri net whose pathway is very
similar, but not identical to, the real one. In all three cases,
the GA develops Petri nets that represent pathways that
closely reproduce the target concentration-time data.
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1. INTRODUCTION

In an inverse problem, the output of a system is known,
and the task is to identify a system of the appropriate kind—
its structure and parameters—that could have produced the
output. Many inverse problems arise in biology; one of them
is the problem of predicting metabolic pathways: Given con-
centrations of metabolites over a sequence of time steps,
identify the metabolic pathway—the reactions in which the

metabolites participate and the rate constants of the reactions—

that produced the concentration-time data.

This is a problem in chemical kinetics, which describes the
progress of chemical reactions. Chemical kinetics in general,
and metabolic pathways in particular, are traditionally mod-
eled with systems of differential equations that describe the
rates of change of metabolites as functions of their concen-
trations [11], as Section 2 summarizes.

Petri nets offer another model of metabolic pathways. A
Petri net is a bipartite graph whose nodes are called places
and transitions. Places can represent metabolites, transi-
tions can represent reactions, and values associated with
transitions can represent rate constants, which describe the
rates at which reactions proceed. Section 3 describes Petri
nets and their relation to metabolic pathways.

One approach to the problem of predicting a metabolic
pathway from concentration-time data, then, is to search a
space of Petri nets for one that represents a pathway that
conforms to the data. Such a search can be conducted evo-
lutionarily. We present, and Section 4 describes in detail,
a genetic algorithm that conducts such a search. Its geno-
types encode the transitions of Petri nets that represent can-
didate metabolic pathways; the rate constants for the rep-
resented reactions are approximated in a hill-climbing step
that is part of evaluation. Thus the GA searches a space
of Petri net structures. It performs adequately on one con-
trived problem, not so well on a second, and comes close to
exactly identifying the metabolic pathway for phospholipid
synthesis, as Section 5 describes. On all three problems, the
GA develops Petri nets that represent pathways that closely
replicate the target concentration-time data.

Other researchers have used evolutionary algorithms to
search spaces of Petri nets. Tohme et al. [19] applied evolu-
tionary search to identify Petri nets that represented good
solutions to the periodic job-shop scheduling problem, which
seeks the minimum cycle time in a job-shop system. Saitou,
Malpathak, and Qvam [18] represented manufacturing sys-
tems as Petri nets and used a genetic algorithm to search
for robust flexible systems.



Yim and Bourdeaud’huy [22] described a genetic algo-
rithm that sought Petri net models of controllers for discrete
events systems. Moore and Hahn [12] evolved grammars
in Backus-Naur form that described Petri nets and noted
their applications to problems in genetics and biochemistry.
Mauch [10] considered evolving Petri nets as a form of ge-
netic programming and searched for nets to solve problems
of Boolean function learning and classification.

Yen et al. [21] augmented a genetic algorithm with a
stochastic extension of the simplex method and applied the
resulting hybrid algorithm to search for good rate constants
for a known metabolic pathway, a problem addressed with
traditional techniques by Mendes and Kell [11]. In tests
on this problem and two problems of function optimization,
they reported better results with their technique than with
five alternative techniques.

Kitagawa and Iba [7] used a genetic algorithm to search
for Petri nets that represented metabolic pathways for given
concentration-time data. Their GA’s chromosomes encoded
not only Petri nets but also rate constants for the reactions
the nets represented and thus evolved rate constants as well
as Petri nets’ structures. The present genetic algorithm
searches a space of Petri nets for one that represents well
a metabolic pathway, but it develops each represented path-
way’s rate constants in a hill-climbing step that is part of
evaluation.

Petri nets are formal computing machines, and search
in spaces of such objects is generally regarded as difficult
because changing one feature of such a machine generally
changes the role and meaning of other features of it. The
search in a space of Petri nets described here is thus related
to evolutionary search in spaces of other formal machines
such as deterministic finite automata [4] [6] [9] [13], push-
down automata [8], and Turing machines [5] [20].

2. CHEMICAL KINETICS

Chemical kinetics describes the changes in concentrations
of reactants and products as reactions proceed. The rates
of change of these concentrations over time describe a re-
action, and they are traditionally modeled using differential
equations. For a single mechanistic step—that is, a reaction
involving the traversal of a single potential energy barrier—
the reaction rate is proportional to the concentrations of the
reactants:

a1R1 +asRo+ -+ amBm — b1 PL +b2Po + - - - b P,

where the R; and P; are reactants and products, respec-
tively, and the a; and b; are their stoichiometric constants.
The rates of change can be expressed as

d[R;]

— = —auk{R][Ra] - [Ron]
for reactants and as

d[Pi]
dt

= bik[R1][R2] - - - [Rum]

for products, where k is a constant characteristic of the re-
action and [R;] is the concentration of R;.

An enzyme-catalyzed reaction consists of several steps
that typically include the reversible formation of an enzyme-
substrate complex followed by the conversion of the sub-
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strate and the release of the product:

EF+S = ES—E+P: (1)
1. E+S—ES
2. ES—FE+S
3. ES—FE+P

where F is the enzyme, S the substrate, and ES the com-
plex. Metabolic pathways are networks of enzyme-catalyzed
reactions.

A simplified expression for the rate of the reactions (1) can
be obtained by applying the steady-state approximation to
the concentration of ES or, equivalently, by assuming that
the reversible formation of the enzyme-substrate complex is
always in an equilibrium state. Either assumption results
in the Michaelis-Menton expression for the overall reaction
rate:

d[P] _ ka[E][S]
dt Kn +[S])’

where [E] is the total concentration of the enzyme in all
forms (free and bound in the enzyme-substrate complex),
and K,, is the equilibrium constant for the reversible for-
mation of the complex.

When K, is much larger than [S], this expression can be
further simplified by neglecting [S] in the denominator, so
that

dP] _ kalELS]
dt Km

This is called the pseudo-first-order conditions equation, be-
cause the rate equation is now first-order with respect to the
substrate concentration [S].

In the reaction model that we investigate here, k2, k., and
[E]: are all constant over the course of the reaction and can
be combined into a single constant k that is characteristic
of the reaction:

d[P] _ —d[S]

dt dt )

An equation like (2) describes each reaction in the metabolic

pathway. Products of a reaction do not affect the rate of

the reaction, but may be reactants of other reactions in the
pathway.

= k[S].

3. PETRI NETS

Petri nets [14] [15] are formal automata developed to model
concurrent processes. A Petri net consists of a finite set P of
places and a finite set T of transitions. Associated with each
transition in T is a set of input places and a set of output
places. Each place holds zero or more tokens. A transi-
tion is enabled if each of its input places holds at least one
token, and an enabled transition may fire. Firing a tran-
sition removes one token from each of its input places and
adds one token to each of its output places. Petri nets are
nondeterministic; any enabled transition may fire.

Directed bipartite graphs can represent Petri nets. One
set of nodes represents the places P, the other the transi-
tions 7', and directed edges connect input places to transi-
tions and transitions to output places. When these graphs
are drawn, circles represent places and bars represent tran-
sitions. Dots within places represent the tokens they hold.
Figure 1 illustrates a Petri net with five places and three
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Figure 1: A Petri net with five places and three
transitions. Transitions ¢; and t3 are enabled; firing
transition ¢3 will remove a token from p; and one
from ps; and add a token to place ps.

transitions. Transitions ¢; and t3 are enabled; firing, for ex-
ample, t3 removes a token from place ps and one from place
ps and adds a token to place pa2.

Petri nets are elegantly suited to represent networks of
chemical reactions. Places represent reactants and products,
and transitions represent reactions. A reaction’s reactants
are represented by its transition’s input places, and its prod-
ucts are represented by its output places. A place’s tokens
represent the available amount of the corresponding sub-
stance. Firing a transition represents the occurrence of its
reaction, which consumes reactants (removes tokens from its
input places) and yields products (adds tokens to its output
places). Weights assigned to a Petri net’s edges can indicate
numbers of tokens consumed and produced when a transi-
tion fires and thus represent amounts of reactants consumed
and products produced by the corresponding reaction.

Two extensions of the Petri net formalism have also been
used to represent chemical kinetics. In continuous and hy-
brid Petri nets [2], places may hold non-integer numbers of
tokens; these nets can represent arbitrary amounts of reac-
tants and products. In functional Petri nets [3], the weights
assigned to edges may be functions of the numbers of to-
kens in the nets’ places; these nets can represent reactions’
rate equations. Because the present GA evolves only Petri
net structures and develops rate constants for the pathways
they represent through hill-climbing, these extensions are
not necessary here.

4. EVOLVING PETRI NETS

Given concentrations of reactants and products over time
in a metabolic pathway, a genetic algorithm searches a space
of Petri nets for one that represents a pathway that, with ap-

propriate rate constants, accurately reproduces the concentration-

time data. This section describes the GA.

4.1 Representation

Distinct integers represent the metabolites listed in the
given concentration-time data; that is, in the target metabo-
lic pathway. In the genotype that represents a candidate
pathway, each individual reaction is represented by a list of
its reactants and products; the genotype is then a list of
all the reactions in the pathway, corresponding to all the
transitions in the genotype’s Petri net. This representation
is similar to that used by Kitagawa and Iba [7], but it does
not include reactions’ rate constants; that is, the values asso-
ciated with each transition that indicate how quickly tokens
from its input places are consumed and tokens in its output
places are generated. Those values are assigned as part of
evaluation, as the following section describes.
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Figure 2: A Petri net (a) that represents a metabolic
pathway and a genotype (b) that in turn represents
the Petri net. The numbers labeling the Petri net’s
places indicate reactants and products.

We assume that no reaction has more than two reactants
or products; that is, that no transition has more than two
edges in or two edges out. This is a biologically reason-
able restriction. Figure 2 shows a Petri net that represent a
metabolic pathway and the genotype that in turn represents
the Petri net. Numbers in the places indicate metabolites.

To generate a random genotype, the size of each set of
reactants and products is set to zero with probability 0.1,
to one with probability 0.4, and to two with probability 0.5.
Metabolites are chosen at random to fill the sets.

The number of reactions and the numbers of reactants
and products of each reaction are not fixed, so genotypes
may be of different sizes.

4.2 Fitness Evaluation

To evaluate a candidate genotype, the metabolic pathway
it represents is simulated, starting from the given metabo-
lite concentrations at time ¢ = 0. Reactions are assumed
to conform to the Michaelis-Menton kinetic expression un-
der pseudo-first-order conditions (2). The set of differential
equations that the pathway implies under this assumption
is integrated numerically using a fourth-order Runge-Kutta
method [16]. The genotype’s fitness F is its deviation from
the given concentration-time data, computed according to
this formula:

|Cm7l - Cmi0|
F= — 4+ 0.1 -n,,
D T 0L

where ¢,; is the computed concentration of the mth metabo-
lite at time step ¢; cmio is the corresponding target concen-
tration; n,, is the number of metabolites; n, is the number
of time steps; and n, is the number of reactions. The sum
is taken over all the metabolites at every time step. It mea-
sures the simulation’s similarity to the given data. The term
involving n, penalizes Petri nets that have more transitions;
that is, that represent more-complex pathways. Of course,
we seek to minimize fitness values.

As noted above, genotypes do not include rate constants
for the reactions of the pathways the genotypes represent.
Suitable rate constants are approximated by a stochastic
hill-climbing step that precedes the final evaluation of a
genotype.

In particular, the rate constants are initialized with ran-
dom integers on the interval [1,19]. These values are multi-
plied by 10~ for bimolecular reactions, 10* for unimolecular
reactions, and 102 if a transition represents the appearance
of a metabolite due to diffusion. The resulting pathway is
evaluated, then the rate constants are randomly modified
and the simulation is repeated. If the new values yield bet-
ter fitness than the old, the new values replace them. This



process continues for a fixed number of steps. The fitness
of the simulation with the best rate constants this process
discovers is returned as the fitness of the genotype.

This hill-climbing yields good results in tests. It is more
computationally economical than standard methods of op-
timizing rate constants [11] [21], and it is more appropriate
for discrete rate constant values than is steepest descent. Fi-
nally, there is no guarantee that the rate constants used to
evaluate a candidate genotype are optimal for the pathway
the genotype represents. Thus evaluation is noisy.

4.3 Variation Operators

Novel genotypes are generated by recombining two exist-
ing genotypes or mutating one. Recombination copies into
its offspring all reactions that are common to both parents,
then adds each remaining parental reaction with probabil-
ity 0.5. This is similar to recombination operators for subset
encodings such as Radcliffe’s Random Respectful Recombi-
nation (RRR) [17]. Mutation reinitializes each set of reac-
tants and products with probability 0.5. Note that this is a
very aggressive mutation operator.

4.4 A Genetic Algorithm

The representation and operators described in the pre-
vious sections were implemented in a generational genetic
algorithm for the problem of identifying a likely metabolic
pathway from concentration-time data. The algorithm ini-
tializes its population with random genotypes as described
in Section 4.1 and chooses genotypes to be parents in tour-
naments with replacement. It applies recombination and
mutation independently; each offspring genotype is gener-
ated by one or the other, never both. The GA is 1-elitist,
preserving the best genotype of the current generation un-
changed into the next, and it runs through a fixed number
of generations.

In the tests that the next section describes, the GA’s pop-
ulation contained 100 genotypes. Evaluation executed 500
steps of hill-climbing to identify rate constants. The size of
selection tournaments was two, and half the offspring in each
new generation were produced by recombination, the other
half by mutation. The GA ran through 100 generations.

5. TESTS

The genetic algorithm was tested on three instances of the
metabolic pathway problem, two contrived and one drawn
from real biology. Each instance involved six metabolites
and five reactions.

Figure 3(a) shows the concentration-time data for the first
contrived instance, in which only one metabolite is present
at time ¢t = 0.0 and the remaining metabolites in turn appear
and then diminish. The exception is the sixth metabolite,
whose concentration grows throughout the process. The GA
was run 50 independent times on these data. These runs of-
ten yielded PEtri nets whose pathways closely reproduced
the concentration-time data, and two successfully identified
the Petri net that represents the pathway from which the
data were derived. Figure 3(b) shows this Petri net; in
its pathway, the reactions form a chain in which the first
metabolite yields the second, the second yields the third,
and so on, and all the metabolites except the last are even-
tually exhausted.

Figure 4(a) shows the concentration-time data for the sec-
ond contrived instance, in which three metabolites are ini-
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Figure 6: The most-fit Petri net identified by the
GA on the phospholipid synthesis concentration-
time data. It includes one extraneous transition,
representing a reverse reaction that converts glyc-
erol and fatty acid to diacyl-glycerol.

tially present and are consumed while the remaining three
are initially absent, then appear in increasing concentra-
tions. Again, the GA was run 50 independent times on the
data and again the GA often found Petri nets whose path-
ways closely reproduced the contentration-time data, but in
this case none of the runs successfully identified the target
pathway, shown in Figure 4(b). Three metabolites are reac-
tants only, the inputs to reactions that produce the remain-
ing three metabolites, which are products only. Figure 4(c)
shows the Petri net with best fitness identified by the GA.
It includes extraneous reactions that do not appear in the
target net.

The third instance is drawn from nature; it is the metabolic
pathway for phospholipid synthesis, and it is shown in Fig-
ure 5(a). Kitagawa and Iba [7] also addressed this instance;
the details of this pathway and its rate constants are well
known. Concentration-time data were generated by simu-
lating the pathway; Figure 5(b) shows the results of this
simulation; that is, the input to the GA.

The GA was run 50 independent times on these data. The
target pathway has five reactions, so the best possible fitness
that a genotype could achieve was 0.1 -5 = 0.5. The GA
never reached this value, though it performed better on this
instance than on the second contrived instance. The average
fitness of the best genotypes in the GA’s initial populations
was 7.46, and the average of its best final fitnesses was 1.21.

The best Petri net identified in all the runs of the GA had
fitness 0.71. Concentration-time data generated by simulat-
ing the pathway this Petri net represents closely matched
the input data and the results reported by Kitagawa and
Iba [7].

Figure 6 shows this Petri net, which represents the re-
actions of the actual pathway, and in addition indicates
a reverse reaction that converts glycerol and fatty acid to
diacyl-glycerol. This extra reaction damages the fit between
the represented pathway’s concentration-time values and the
given data only slightly, but its existence adds 0.1 to its
genotype’s fitness value. The GA never succeeded in repro-
ducing the known pathway exactly, though the concentration-
time data for the best pathway found is quantitatively very
similar to that of the target pathway.

Why is the GA not more effective on the genuine biolog-
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the third test instance for the genetic algorithm.

ical problem instance? It appears to have difficulty iden-
tifying reactions whose reactants have zero initial concen-
trations unless reactions to generate those reactants are al-
ready present. The reactions most often reproduced in the
GA’s best pathways convert glycerol to diacyl-glycerol or sn-
glycerol-3-phosphate; the reactants of these reactions have
positive initial concentrations.

More generally, as with representations of other automata
such as finite state machines, push-down automata, and Tur-
ing machines, encodings of Petri nets are highly epistatic.
The value or occurrence of one symbol in a genotype often
strongly affects the meaning of other symbols. In particular,
the presence or absence of a metabolite as a product of one

reaction enables or prevents any reaction that requires that
metabolite. More sophisticated, possibly heuristic, recombi-
nation and mutation operators might partly overcome this
difficulty and provide more effective evolutionary search. In
particular, mutation could favor the introduction of reac-
tions whose products are the reactants of other reactions
already represented in the parental genotype.

6. CONCLUSION

Given concentration-time data for a metabolic pathway,
the inverse problem seeks a pathway and its parameters that
generate the given values. Petri nets can represent metabolic
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pathways; places represent metabolites and transitions rep-
resent reactions. Thus one approach to the inverse problem
seeks a Petri net that represents a pathway that yields a
close approximation to the given concentration-time data.

A genetic algorithm for this problem encodes the structure
of Petri nets, thus of metabolic pathways, as lists of inputs
and outputs of transitions, thus of reactants and products
of reactions. A stochastic hill-climber that precedes evalu-
ation develops rate constants for the represented reactions.
The GA applies both recombination and mutation to gen-
erate novel genotypes; its mutation operator is particularly
aggressive.

The GA achieves good results on one contrived problem
instance with a simple structure and straightforward solu-
tion, but it is stymied on a second contrived instance that
appears no more difficult. On an instance drawn from real
biology, repeated trials of the GA fail to identify the pathway
that is known to implement phospholipid synthesis, though
some trials come close. On all three test instances, however,
the GA identified pathways that closely reproduce the target
concentration-time data, indicating the general utility of the
approach. Possible avenues for improving the GA’s perfor-
mance include more effective search for good rate constants
and modified genetic operators.

More generally, this method might be adapted to investi-
gating the feasibility of particular pathways. Given target
concentration-time data, might there exist a plausible se-
quence of reactions to generate it?
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