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ABSTRACT
We explore several different techniques in our quest to im-
prove the overall model performance of a genetic algorithm
calibrated probabilistic cellular automata. We use the Kappa
statistic to measure correlation between ground truth data
and data predicted by the model. Within the genetic algo-
rithm, we introduce a new evaluation function sensitive to
spatial correctness and we explore the idea of evolving differ-
ent rule parameters for different subregions of the land. We
reduce the time required to run a simulation from 6 hours
to 10 minutes by parallelizing the code and employing a 10-
node cluster. Our empirical results suggest that using the
spatially sensitive evaluation function does indeed improve
the performance of the model and our preliminary results
also show that evolving different rule parameters for differ-
ent regions tends to improve overall model performance.

Categories and Subject Descriptors
G.1.6 [Optimization]: Global Optimization; I.6.8 [Types
of Simulation]: Parallel; J.2 [Physical Sciences and En-
gineering]: Earth and Atmospheric Sciences

General Terms
Algorithms, Design, Performance

Keywords
Parallel Genetic Algorithms, Cellular Automata

1. INTRODUCTION
A genetic algorithm was used by Louis and Raines to cal-

ibrate a cellular automata that was utilized to model land
activity as a result of mining in Idaho and western Mon-
tana [13]. Their genetic algorithm (GA) was able to tune
the cellular automata (CA) as well as an expert geologist
could, with the benefit of performing the tuning in a frac-
tion of the time. The models were created to aide the US
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Geological Survey (USGS) in providing forecasts of surface
disturbances to the US Forest Service (USFS). It is crucial
that these forecasts be accurate in part because they will
dictate government planning and resource management for
the region. We have recognized this need and have explored
several techniques to extend previous research and provide
more accurate predictions. In this paper, we extend the ear-
lier work in two ways. First we parallelized the code using
the LAM-MPI implementation of the Message Passing In-
terface thus obtaining results in minutes versus hours. This
allowed us to more easily explore four different fitness met-
rics and reasonable combinations of these metrics to improve
qualitative performance. Preliminary results show that our
best evaluation metric leads to a significant increase in per-
formance of about 155% and that our parallelization efforts
have reduced the time needed to perform a simulation by
approximately 92%.

The next section discusses the significance of using cellu-
lar automata for modeling geological activities and explains
the rationale for using genetic algorithms to tune cellular
automata parameters. In section 3 we introduce the Kappa
statistic for evaluating the performance of the model, be-
cause it provides a more robust means of distinguishing be-
tween chance agreement and true agreement. Section 4 de-
scribes the four different evaluation metrics used by our ge-
netic algorithm and explains our reasoning behind dividing
the land into small regions and using the genetic algorithm
to evolve different parameters for each region. Section 5
introduces the user interface and system architecture. We
compare our results with the results of research done by
Louis and Raines in Section 6. The results of research done
by Louis and Raines is presented and compared with our
results in Section 6. The last section provides conclusions
drawn from this research and suggests directions for future
work.

2. CELLULAR AUTOMATA AND GENETIC
ALGORITHMS

Dadson [4] defines cellular automaton as “a dynamical
system, wherein space, time and the states of the system
are all represented discretely.” He continues to say that the
space is defined by a lattice and that each cell in the lattice
can assume a finite number of states. The temporal aspect
of a CA is exhibited by the transformation of a cell due to
a set of rules on its neighboring cells. Cellular automata
can be used to model complex behaviors with a set of very
simple rules [18]. Due to their ability to capture a subset
of reality in both a temporal and a spatial sense, they have
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Table 1: The probabilistic annealed voting rule
No. of active Current state
neighbors Active Inactive
N > top V. Likely Likely
bottom < N < top Likely S. Likely
N < bottom V. S. Likely Unlikely

Table 2: Encoding of the parameters for the GA

TopBottom
Likely Likely Very Somewhat

Very
Unlikely

RTInactiveActiveLikely Likely SomewhatProbability

Likely

4 4 7 7 7 7 7 7 7

been used for modeling in many areas such as urban plan-
ning [2, 13, 17], ecological systems, population dynamics [4],
and in our case, to model mining permit activity [13, 17].
The behavior of a cellular automata is directly governed by
its set of transition rules. In the modeling of mining per-
mit activity, a modified annealed voting rule was employed
[13, 17]. The rules of this model are not deterministic, in
that they only specify the probability of the cell being in a
given state instead of deterministically specifying the state
of the cell in the next time step. Overall, there are nine pa-
rameters that specify the transition rule space. To achieve
reasonable results with the CA for modeling mining permit
activity, it may take an expert up to two weeks of tedious
work involving a great deal of trial and error. A genetic al-
gorithm can perform the same task with equivalent results
within a fraction of the time, approximately 6 hours [17].

Our CA uses a modified annealed voting rule as laid out
in Table 1 taken from Louis and Raines [13]. To interpret
the table as a set of rules, consider the first row. This de-
fines two rules: (1) If N, the number of active neighbors, is
above top and the current state of the center cell is active;
Then set the next state of the center cell to active with a
probability corresponding to Very Likely. (2) If N, the num-
ber of active neighbors, is above top and the current state
of the center cell is Inactive; Then set the next state of
the center cell to active with a probability corresponding to
Likely” [13]. Our GA searches the space of possible values
for these probability parameters as well as another param-
eter, the resource threshold (RT). The USGS has provided
mineral resource data which can be used to indicate the like-
lihood of activity on a piece of land. If the resource value
of a cell is below what we call the resource threshold, then
that cell may be considered as inactive. Table 2 shows the
number of bits used to encode these parameters for the GA.

Genetic algorithms are search techniques inspired by bio-
logical evolution. They search a given space by examining
a population of solutions and then recombining and mu-
tating partial solutions from the given population to create
subsequent populations [8, 9]. Though canonical genetic al-
gorithms may not be good function optimizers [5], modified
versions such as those with elitist selection have been shown
to perform relatively well on function optimization problems
[6, 16]. The tuning of the rule set of a CA is an optimization
problem which has been shown to benefit from evolution via
the use of a GA [2, 10, 13, 14].

Table 3: Agreement measures for categorical data
Kappa Statistic Strength of Agreement

< 0.00 Poor
0.00−0.20 Slight
0.21−0.40 Fair
0.41−0.60 Moderate
0.61−0.80 Substantial
0.81−1.00 Almost Perfect

Louis and Raines successfully employed a CHC flavored GA
to tune their CA model [6, 13, 14].

In a GA, the survival of an individual in the population
is proportional to its fitness. Fitness is defined by Goldberg
[8] as the “measure of profit, utility, or goodness that we
want to maximize.” The fitness of an individual is generally
determined by an evaluation function. In order to boost the
performance of our model, we have explored several differ-
ent evaluation functions which use linear combinations of
different fitness metrics and Kappa statistics as defined in
sections 3 and 4. The overall performance of the GA is taken
as the highest Kappa value achieved by any member of the
population through all generations.

3. KAPPA STATISTIC
In [13], the overall performance of the GA tuned CA and

the hand tuned CA were compared based on the total num-
bers of cells in different states. The number of cells in various
states provides a measure of agreement but doesn’t account
for chance. For example, simply predicting a dead state
for all cells will result in a 97% agreement by chance alone.
We chose to use the Kappa statistic in our experiments be-
cause it provides a means of distinguishing between chance
agreement and true agreement. The Kappa statistic is a
measurement of agreement between two observers with re-
spect to chance agreement [15]. It is defined by the formula
[11, 12, 15]:

K =
P (A) − P (E)

1 − P (E)
(1)

where P (A) is the probability of actual agreement and
P (E) is the probability of chance agreement.

The overall performance of our model is taken as the high-
est Kappa value achieved by any member of the popula-
tion in any generation. Note that the Kappa statistic has
two roles, the first of which is the assessment of the overall
model. The Kappa statistic can also be used in evalua-
tion functions for assessing the value of individual members
of the population. We use the categorical table of Kappa
values (Table 3) set forth by Landis and Koch [12] when
evaluating the overall performance of the model.

4. EVALUATION HEURISTICS
In the CA model of the land, at any given time, each land

cell can be in one of the four following states:

• Alive

• Dead

• Just Born

• Just Died
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At any given time, there are significantly more dead (in-
active) cells than those with mining activity. This means
that if the CA simply adopted a rule that every cell should
always be dead, it would be surprisingly accurate. In order
to prevent such scenarios, different weights need to be as-
signed for each state. As in [13], we have also used different
weights to constitute equal influence from the four possible
states.

The original GA used what we call the Total Cell State
Count (TCSC), as the metric for its evaluation function.
TCSC minimizes the error between model predicted number
of cells in a state and USGS observations [13]. It achieves
this by comparing the total number of cells for each state as
predicted by the model, and comparing it to the total num-
ber of cells for each state based on the observed data. The
difference between these two values signifies the error be-
tween the model and the observed data. TCSC is described
by the following function:

Minimize g =

nyears
X

j=0

nstates
X

i=0

100 wi

| Mij − Oij |

Mij + Oij

(2)

where Oij is the observed number of cells in state i in year
j and wi is the weight of state i

After close inspection of the TCSC, we realized that we
were only considering the total distribution of cell activity
while ignoring the spatial distribution. TCSC was simply
summing the total numbers of each state and comparing it
to values from the observed data. We theorized that bet-
ter overall results may be achieved if the spatial accuracy of
individuals directly impacted their fitness. This is achieved
by comparing the state of each cell predicted by the model,
to the state of the same cell in the observed data set. If two
predictions match, we simply increment the total correct
predictions for that particular state. The process is per-
formed for all cells, and then the total correct predictions
are offset by the weight of that state and summed up to pro-
vide the fitness for the individual. This method is referred
to as the NSCP (Number of Spacially Correct Predictions)
and is described by the following function:

Fitness =

nyears
X

j=0

nstates
X

i=0

wiMij (3)

where Mij is the number of spatially correct predictions
of state i in year j and wi is the weight of state i

As mentioned in section 3, the Kappa statistic was utilized
in some experiments as the sole fitness value for individuals.
We assumed that since the overall performance of the model
is being evaluated by the maximum Kappa value achieved
by any individual throughout all generations, it would be
possible to improve performance by using the Kappa value
as the sole fitness metric. We also experimented with evalua-
tion functions that utilized linear combinations of the Kappa
statistic with TCSC and NSCP values. By combining these
metrics we would give the GA more feedback regarding the
impact of individuals on the overall performance of the sys-
tem, thus providing a more accurate measure of fitness for
the process of natural selection.

The various combinations of these metrics are described be-
low and summarized in Table 4.

TCSC is a measurement of error and a minimization
problem, and before it can be used by a GA, it needs to be
converted to a maximization problem. This can be achieved
by simply subtracting TCSC from a large enough constant
[13]. NSCP and Kappa are both to be maximized so we
can use them for measuring fitness directly. In the case of
TCSC and Kappa, again we subtract from a constant to
compute fitness, and in order to properly combine Kappa
which is a positive measure of fitness, we take its additive
inverse (1−Kappa). For NSCP and Kappa (the last row),
since both NSCP and Kappa are positive measurements of
performance and NSCP is significantly larger than Kappa,
we take the product of NSCP and Kappa as the metric for
evaluation. Aside from these evaluation functions, we also
experimented with subregion modeling.

The motivation behind subregion modeling arose from the
divide and conquer concept, whereby it is presumably eas-
ier to solve a large complex problem by breaking it into
smaller simpler problems. We hypothesized that it may be
possible to achieve higher performance by allowing our GA
to calibrate CA rules for small subregions of land. To test
this hypothesis, we initially experimented with a few sam-
ple subregions. The results were quite promising. The high
performance on the test subregions led us to believe that
perhaps by subdividing the whole region into many smaller
regions, and evolving a unique set of parameters (one for
each subregion), we could achieve significantly more satisfy-
ing results for the entire region. The entire region consists
of a 496 x 503 grid of cells each of which is one square mile.
We performed three trials, dividing the land into 36, 64, and
100 subregions. For each trial we computed the mean of all
the subregions and compared it to the highest attained per-
formance without subregions. Our results are presented in
section 6.

5. SYSTEM INTERFACE
We have done substantial work in preparing this project

for the end-user. We have built a web interface that al-
lows the user to run simulations with specific parameters for
the cellular automata, as well run the GA to find desirable
parameters. Figure 1 shows the web interface that allows
users to specify GA parameters, upload GIS data, and run
the GA. Default values allow users to not have to deal with
GA parameters unless necessary. We chose the web inter-
face because it serves as an excellent front-end to the cluster
and allows the user to easily access the program from differ-
ent platforms. We utilized various Perl and Shell scripts to
run our application on the cluster. Then we created a PHP
driven website to interface with these scripts. All in all, the
architecture of our system consists of three parts: the GA
and CA simulation which runs on the cluster, a set of scripts
to initialize the proper files and launch the simulation, and a
web interface to the scripts which allows the users to easily
run simulations with complete transparency to the inner-
workings of the system. We have also provided the user
several tools to monitor the progress of the GA; including,
a dynamically updated graph that shows the maximum, av-
erage, and minimum Kappa values (see Figure 2). The user
can also see dynamic graphs that display the total number
of cells in different states.
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Figure 1: Web interface for running the GA to cal-
ibrate the CA

Figure 2: Interface that displays the maximum, av-
erage, and minimum Kappa values per generation

Table 4: Various fitness functions used by the ge-
netic algorithm
Function Name Fitness
TCSC Constant − TCSC

NSCP NSCP

Kappa Kappa

TCSC and Kappa Constant − (TCSC × (1 − Kappa))
NSCP and Kappa NSCP × Kappa

Table 5: Performance of different evaluation func-
tions in terms of mean Kappa value

Evaluation Functions Mean Kappa Value
TCSC 0.2814
Kappa 0.4362
NSCP 0.3154
TCSC and Kappa 0.4356
NSCP and Kappa 0.4366

This allows users to compare the GA predicted number with
the ground truth data enabling them to visually monitor the
performance of the GA in real-time.

6. RESULTS AND ANALYSIS
We tested all the evaluation functions presented in Ta-

ble 4. For these experiments we performed 10 runs with
different random seeds and for the GA, we used a popula-
tion of 60 individuals over 60 generations with a crossover
rate of 0.99 and a mutation rate of 0.05.

Table 5 shows the mean of the highest achieved Kappa
values and Figure 3 shows the results of the 10 runs with
95 percent confidence intervals for each evaluation function.
Based on these observations it is clear that the use of Kappa
values in the fitness evaluation does improve overall fitness.
It is also clear that NSCP performs significantly better than
the TCSC. Figure 4 is a visualization of these runs where
highest Kappa value of each generation is averaged over the
10 runs and graphed as a function of the generation. In
the 30 runs where maximum Kappa was larger than 0.4, it
appears that a Kappa value of 0.437 is the absolute highest
value attainable by our GA (without the use of subregions).
Because of the large number of dead cells, this Kappa value
represents fairly good performance - equaling or bettering
human expert performance.

6.1 Subregion Modeling Results
Table 6 shows the results of the three different subregion

trials. Due to the significant time constraints of these sim-
ulations, each simulation was only performed once. The
results for these runs may not be statistically significant,
however they are quite promising. It is definitely clear that
higher Kappa values may be achieved for certain subregions
defying the 0.437 barrier. Also, we can show from these runs
that dividing the problem into smaller pieces can indeed in-
crease performance. The average Kappa value for the three
subregion runs was 0.4766 while the previously highest at-
tained value was 0.4366. More investigation is necessary to
find the ideal size of a subregion for our GA, and more data
is needed to bolster these preliminary findings.
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Figure 3: 10 Run Average of different evaluation
functions with 95 percent confidence intervals

Figure 4: Performance of different evaluation func-
tions in terms of mean Kappa value, per generation
of the GA.

Table 6: Average and maximum Kappa values at-
tained by different number subregions. Subregions
with Kappa values of 0.000 (due to inactivity over
the entire run of the simulation) were excluded from
these computations.

Subregions Mean Kappa Max. Kappa
36 0.48125 0.997
64 0.48163 0.988
100 0.46696 1.000

Figure 5: Visualization of a run consisting of 36 sub-
regions

For these runs we used the NSCP and Kappa evaluation
function and ran the GA once with a population of 50 in-
dividuals over 50 generations with a crossover rate of 0.95
and a mutation rate of 0.05.

In order to better understand the performance of the dif-
ferent subregions, we superimposed a visualization of all the
active cells with an image representing the performance of
all the subregions. The higher the Kappa value of the subre-
gion, the brighter that subregion is depicted. The cell activ-
ity which is highlighted in these images by red pixels, is of
less importance. Figure 5, Figure 6, and Figure 7 represent
the images for the 36-region run, 64-region run, and 100-
region run, respectively. The regions that are completely
black are regions with Kappa values of 0.000 due to inactiv-
ity over the entire run of the simulation. These figures are
helpful in that they allow us to locate and better understand
the regions of the land where the performance of our model
is less satisfactory.

7. CONCLUSION AND FUTURE WORK
We have built a system for the USGS that allows for

quicker and more accurate predictions of public land use.
We have made improvements to the genetic algorithm that
provides adequate modeling parameters to the cellular au-
tomata which is the model for the simulation of the mining
activity. By parallelizing the code and employing a 10-node
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Figure 6: Visualization of a run consisting of 64 sub-
regions.

Figure 7: Visualization of a run consisting of 100
subregions.

NPACI Rocks Cluster, we have drastically reduced the time
needed to perform the tuning of the CA. We have exper-
imented with several new evaluation functions and, by al-
lowing the GA to examine specific subregions in parallel, we
have surpassed previous ceilings on performance.

Our empirical results suggest that incorporating spatial
information into the evaluation function does improve the
overall performance of the model. Also, it is clear that using
the Kappa statistic within the two NSCP and TCSC evalua-
tion functions boosts performance.The evaluation functions
with NSCP, NSCP and Kappa, as well as Kappa statistic
as the sole evaluation measure, were all able to achieve a
“moderate” strength of agreement, as set forth by Landis
and Koch [12], while the older TCSC and TCSC with Kappa
statistic retained their “fair” strength of agreement. We re-
frain from making any conclusions about the subregion runs
in regards to overall performance due to lack of data needed
for statistically sound conclusions. However, from these pre-
liminary runs, we can conclude that the 0.437 Kappa value
may be surpassed for individual subregions. At this point we
believe that we have exhausted the possibilities of the cur-
rent GA, and therefore, we need to look in other directions in
order to improve the overall performance of our model. Pos-
sible areas include exploring rules other than the annealed
voting rule for the CA, using the genetic algorithm to evolve
the actual CA rules instead of just the rule parameters, and
investigating the possible causes of error in the model. Our
current findings may be beneficial in other domains such as
urban growth modeling [1], disease simulation [7], invasive
species modeling [3], and any other spatial-temporal, cellu-
lar automata based model.
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