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ABSTRACT 
This paper presents an efficient technique of designing two-
dimensional IIR digital filters using a new algorithm involving the 
tightly coupled synergism of particle swarm optimization and 
differential evolution. The design task is reformulated as a 
constrained minimization problem and is solved by our newly 
developed PSO-DV (Particle Swarm Optimizer with 
Differentially perturbed Velocity) algorithm. Numerical results 
are presented. The paper also demonstrates the superiority of the 
proposed design method by comparing it with two recently 
published filter design methods. 

Categories and Subject Descriptors  

J.2 --- Electronics, engineering; I.2.8 [Artificial Intelligence]: 
Problem Solving, Control Methods, and Search --- Heuristic 
methods; G.1.6 [Numerical Analysis]: Optimization --- Global 
optimization; G.3 --- Probabilistic algorithms 

General Terms 
Design, algorithms  

Keywords 
Particle swarm optimization, differential evolution, IIR filter, 
genetic algorithm 

1. INTRODUCTION 
Two-dimensional zero-phase digital filters find an extensive 
application in the domain of biomedical imaging and digital 
mammography, X-rays image enhancement, seismic data 
processing, etc. [7], [13], [9].  The most popular design methods 
for 2-D IIR filters are based either on an appropriate 
transformation of 1D filter [13], [9] or on appropriate optimization 
techniques.  One of the major problems underlying the design task 
is to satisfy the stability criterion for the filter transfer function. 
Although researchers have attempted to tackle the stability 
problem in a number of ways, most of these efforts resulted in a 
filter having a very small stability margin with hardly any 
practical importance [11].  The application of evolutionary 
computation techniques to the design of digital IIR filters can be 
traced to the work of Gorne and Schneider [6]. Chellapila et al. 

[1] used evolutionary programming in optimizing the coefficients 
of the transfer function of a one-dimensional IIR filter. In the 
present paper the design task of 2D recursive filters is formulated 
as a constrained optimization problem and a new optimization 
technique, called PSO-DV [2], is applied to solve the problem. In 
[2], we show that our PSO-DV algorithm outperforms both 
particle swarm optimization (PSO) [8] and differential evolution 
(DE) [12] on a set of benchmark functions. In the present paper 
numerical results show that the algorithm yields a better 
approximation to the transfer function as compared to the works 
presented in [11] and [10]. The proposed technique also satisfies 
the stability criterion which is presented as constraints to the 
minimization problem. Compared to a genetic algorithm-based 
method, the algorithm used here is easier to implement and 
requires fewer function evaluations to find an acceptable solution.  

The remainder of this paper is organized as follows. Section 2 
provides an overview of the filter design problem and its 
reformulation as a constrained minimization problem. In Section 3 
the PSO-DV algorithm is presented briefly and its application to 
the present problem is described in Section 4. Section 5 presents 
the results of applying the proposed method to a specific design 
problem and also provides performance comparisons with two 
previous techniques [11], [10]. Conclusions are drawn in Section 
6. 

2. FORMULATION OF THE DESIGN 
PROBLEM 
Let the general prototype 2-D transfer function for the digital filter 
be  
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with P00  = 1. Also, let us assume that the user-specified amplitude 
response of the filter to be designed is Md which is obviously a 
function of digital frequencies ω1 and ω2 (ω1, ω2 є [0, π]). Now the 
main design problem is to determine the coefficients in the 
numerator and denominator of equation (1) in such a fashion that 
H(z1, z2) follows the desired response Md (ω1, ω2 ) as closely as 
possible. Such an approximation of the desired response can be 
achieved by minimizing  
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and b is an even positive integer (usually b = 2 or  4). 

Equation (2) can be restated as  

                    
b

d

N

n

N

n N
n

N
nM

N
n

N
nMJ )],(),([

2

2

1

1

0 0 2

2

1

1
1

1

2

2

ππππ
−= ∑ ∑

= =                     (4)                            

Here the prime objective is to reduce the difference between the 
desired and actual amplitude responses of the filter at N1.N2 
points.  Since the denominator contains only first degree factors, 
we can assert the stability conditions, following [7], [13] and [9], 
as 

,11 kkkkk rqsrq −−<<−+                                        (5) 
where k = 1, 2,...,N.                                              
Thus the design of a 2-D recursive filter is equivalent to the 
following constrained minimization problem: 

Minimize J                        
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subject to the constraints 

       |qk + rk| - 1< sk                              k = 1, 2,...,N 

                                                                                                                                                                                                             
sk < 1 - |qk - rk|                             k = 1, 2,...., N                                            (6b) 

 

where N1, N2 and N are all positive integers. In [11], the design 
problem has been tackled with neural networks and the work in 
[10] attempts to solve it using a GA. In the present paper a much 
better solution has been obtained using an improved version of  
particle swarm optimization, called PSO-DV. 

3. A BRIEF DESCRIPTION OF PSO-DV  
In classical PSO [8], a population of particles is initialized with 
random positions Xi and velocities Vi and a function f is 
evaluated, using the particle’s positional coordinates as input 
values. In an n-dimensional search space, Xi = (xi1, xi2, xi3,…,xin) 
and Vi = (vi1, vi2, vi3,...,vin).   Positions and velocities are adjusted, 
and the function evaluated with the new coordinates at each time-
step.  The fundamental velocity and position update equations for 
the d-th dimension of the i-th particle in the swarm may be given 
as  

Vid (t+1) = ω.Vid (t) + C1. φ1. (Plid -Xid (t)) + C2. φ2. (Pgd-X id(t))                          
Xid (t+1) = Xid (t) + Vid (t+1)                                                                                                               

                                                                                              (7)          

The variables φ1 and φ2 are random positive numbers, drawn from 
a uniform distribution and restricted to an upper limit φmax which 
is a parameter of the system. C1 and C2 are called acceleration 
constants whereas ω is called inertia weight. Pli is the best solution 
found so far by an individual particle while Pg represents the 
fittest particle found so far in the entire community. 

In the PSO-DV algorithm [2], for each particle i in the swarm two 
other distinct particles, say j and k (i ≠ j ≠ k), are selected 
randomly. The difference between their positional coordinates is 
taken as a difference vector δ:   

                        
jk XX −=δ                                        (8)                          

Then the d-th velocity component (1 < d < n) of the target particle 
i is updated as follows: 
If (randd (0, 1) < CR) Then         

  Vid (t+1) = ω.Vid (t) + β.δd + C2. φ2. (Pgd-X id(t))  

Else  Vid (t+1) = Vid (t)                                                                (9) 

where CR is the crossover probability, δd is the d-th component of 
the difference vector δ defined in equation (8) and β is a scale 
factor in [0, 1]. In essence the cognitive part of the velocity 
updating formula in equation (7) is replaced by the vector 
differential operator to produce some additional exploration 
capability. Obviously for CR < 1, some of the velocity 
components retain their old values. Now, a new trial location Tri 
is created by adding this updated velocity to the previous position 
Xi: 

)1()( ++= tVtXTr iii                                                      (10) 

The particle is placed at this new location only if the coordinates 
of the location yield a better fitness value. So if we are seeking the 
minimum of an n-dimensional function )(),...,,( 21 Xfxxxf n = , then 
the target particle is relocated as follows:  

If ( ))(()( tXfTrf ii <  then ii TrtX =+ )1(                                                

Else  )()1( tXtX ii =+                                                        (11) 

Therefore the particles either move to better positions in the 
search space or stick to their previous locations every time their 
velocities are changed. Thus the current location of a particle is 
actually the best location it has found so far. Unlike the classical 
PSO, here Plid always equals Xid.  The cognitive part involving 
|Plid-Xid| is eliminated automatically in our algorithm. 
If a particle gets stagnant at any point in the search space, the 
particle is shifted by a random mutation step to a new location. 
This technique helps escape local minima. 

If (( ))(....)2())1()( NtXtXtXtX iiii +==+=+=  and 

))))((( *fNtXf i ≠+   

then for (r = 1 to n)  
          Xir(t+N+1) = Xmin + randr(0, 1)*(Xmax-Xmin)                (12)               
where f* is the global minimum of the fitness function, N is the 
maximum number of iterations up to which stagnation can be 
tolerated and (Xmax, Xmin) define the legitimate bounds of the 
search space. The pseudo-code for this method, which we call 
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PSO-DV (Particle Swarm Optimization with Differentially 
perturbed Velocity), is presented below: 
Procedure PSO-DV 
begin 
 initialize population; 
 while stopping condition not satisfied do 
    for i = 1 to no_of_particles 
      evaluate fitness of particle; 
      update Pgd ; 
      select two other particles j and k (i≠j≠k) randomly; 

      construct the difference vector as 
jk XX −=δ ; 

      for d = 1 to no_of_dimensions 
       if randd (0, 1) < CR  
          Vid (t+1) = ω.Vid (t) + β.δd + C2. φ2. (Pgd-X id(t)); 
       else Vid (t+1) = Vid (t); end if 
      end for   

      create trial location as )1()( ++= tVtXTr iii
; 

      if ( ))(()( tXfTrf ii < ) then 
ii TrtX =+ )1(  

      else )()1( tXtX ii =+ ; end if 

    end for   
    for i = 1 to no_of_particles 
     if Xi stagnates for N successive generations                         

for r = 1 to no_of_dimensions  
           Xir(t+1) = Xmin + randr(0, 1)*(Xmax-Xmin)   
         end for 
     end if   
    end for 
  end while  
end 

4. APPLICATION OF THE ALGORITHM 
TO THE DESIGN PROBLEM 
4.1 Converting the Problem to a Suitable 
Form 
Without loss of generality let us assume N = 2. Then H (Z1, Z2) in 
equation (1) can be restated as: 
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                                                                                                    (13) 
Now if we substitute Z1 and Z2 as in (3), then M (ω1, ω2 ) can be 
expressed as:  
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with  fxy = cos ( xω1 + yω2)  
         gxy = sin (xω1 + yω2)                                                                                         
and   x, y = 0, 1, 2                                                             (14b) 
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From (14a) we may put M(ω1,  ω2 ) in a compact form as 
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                                                                                                   (16)             
Hence the actual magnitude may be written as: 
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Now let us consider a specific example of the design problem 
where the user-specification for the desired circular symmetric 
low-pass filter response may be given as: 

 Md (ω1, ω2)      = 1,   if  πωω 04.02
2

2
1 ≤+           

                         = 0.5, if   πωωπ 08.004.0 2
2

2
1 ≤+≤                              

                            = 0,   otherwise.                                      (18)                  
Also from (5) the constraints may be put in a continuously 
differentiable form as: 
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Now in this problem we select b = 2, N1 = 50 and N2 = 50. Finally 
the constrained minimization task becomes:   
      
Minimize J 
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subject to the constraints imposed by (19) with k = 1, 2.  
 
Since the objective is to minimize this cost function and the true 
minimum is at the origin, to make the error function values 
(usually less than 1) more sensitive, we take the square root of the 
modulus of each individual term above, instead of taking squares, 
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while applying the PSO-DV algorithm. Thus for PSO-DV our 
fitness function becomes: 

   Minimize J 
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However, other competitive processes use the cost function (20a). 

4.2 Particle Representation 
In order to apply the PSO-DV algorithm to the problem 
formulated in (20) we need to represent each trial solution as a 
particle in a multi-dimensional search space. Since p00 is always 
set to 1 in (1), the dimensionality of the present problem is 14 and 
each particle has 14 positional coordinates represented by the 
vector               

THssrrqqppppppppX ),,,,,,,,,,,,,,( 02121212221201211100201=
 

All these 14-dimensional particles have 14 components in their 
velocity vector.  

4.3 Population Initialization and Population 
Size 
Each space-coordinate of a particle was initialized with a random 
floating point number whose absolute value was kept below 3.00. 
Following Eberhart and Shi [4], the maximum allowable velocity 
Vmax for each particle was limited to the upper value of the 
dynamic range of search, i.e., |Vmax| = |Ximax | = 3.00. Eberhart and 
Shi also showed that the population size has hardly any effect on 
the performance of the PSO method. It is quite common in PSO 
research to limit the number of particles in the range 20 to 60. Van 
den Bergh and Engelbrecht [14] have shown that though there is a 
slight improvement of the optimal value with increasing swarm 
sizes, a larger swarm increases the number of function evaluations 
necessary to converge to an error limit. We maintain a constant 
population of 40 particles throughout the runs of the PSO-DV 
algorithm. 

4.4 Other Control Parameter Setting 
Through simulations carried out with numerical benchmarks we 
find that an excellent value for the acceleration-coefficient C2 is 
2.4 in equation (9). For the PSO-DV algorithm, scale factor β is 
kept at a value of 0.78 and the cross-over constant CR has been 
set to 0.9.  For comparison against the work done in [10] we run a 
simple GA [5] to solve the same problem. The GA parameter set-
up is given in Table 1. 

Table 1. GA Parameter Set-up 

4.5 Handling the Constraints 
To handle the constraints we followed the method in [3] as 
follows: a) any feasible solution is preferred to any infeasible 
solution; b) between two feasible solutions, the one with a better 
objective function value is preferred; c) between two infeasible 
solutions, the one having a smaller constraint violation is 
preferred. To tackle the constraints presented in (19) we start with 
a population of around 200 particles with randomly initialized 
positional coordinates. Out of these, 40 particles were selected, 
space-coordinates of which obey the constraints imposed by (19). 
If more than 40 particles are initially found to obey the 
constraints, obviously the selection takes into account the initial 
fitness value of these particles. During the run of the program, the 
globally best particle was sorted not only on the basis of its fitness 
value in the swarm but also depending on whether or not it obeyed 
the constraints. That is, if a particle in course of its movement 
through the search space yields the lowest fitness value found so 
far, its position will be memorized as the globally best position by 
all other members in the swarm only if it satisfies the constraints. 

5. RESULTS OF SIMULATION 
Fig. 1 shows the desired amplitude response of the filter to be 
designed.  In the present work 50 independent runs of the PSO-
DV algorithm were taken and the maximum permissible error 
limit was achieved within 400 iterations on average. 

We took the average value of the best particle positions found in 
these 50 runs. The vector X found in this way is given by 

      
T

X

]0004.0,8212.0,8521.0
,8215.0,8623.0,9813.0,9586.0,7903.1,0832.2
,2897.0,3281.0,5430.0,4902.0,3554.1,1796.0[

−−−−−
−=

 

Therefore the filter transfer function may be given by equation 
(21) (equation 21 appears at the top of the next page).  

The corresponding amplitude response is presented in Fig. 2. For 
the purpose of comparison, in Figures 3 and 4 we present the 
amplitude response obtained by using the methods in [11] and 
[10], respectively. A closer look at these figures reveals that the 
PSO-DV algorithm yields a better approximation to the desired 
response compared to the works presented in [11] or [10].  In 
addition, our method takes considerably less time to find the 
solution.  The ripple in the stop-band of Fig. 2 is much less than 
that in Fig. 3 or Fig. 4. 

Fig. 5 presents the performance curves of PSO-DV and GA 
applied to the same design problem. This figure presents fitness 
function values in log scale versus the number of error function 
evaluations. The curves of Figure 5 show that PSO-DV is the 
preferred choice when a reasonably good solution is required in a 
limited time.  

 
 
 
 
 
 
 
 

Name of the Parameter Value 
Maximum number of chromosomes 

per generation 
250 

No. of bits per gene 32 
Mutation probability 0.05 

Part of genetic materials 
interchanged during cross-over 

12 

Maximum number of children from 
each pair of parents 

10 

Maximum no. of iterations 500 
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                                               Figure 1. Desired amplitude response |Md (ω1,  ω2 )| of the 2-D filter. 
 
                                              
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                Figure 2. Amplitude response |M (ω1,  ω2 )| of the 2-D filter using PSO-DV. 
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          Figure 3. Amplitude response |M (ω1,  ω2 )| of the 2-D filter using GA 
 
                                                            
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                     
 

                                             Figure 4. Amplitude response |M (ω1,  ω2 )| of the 2-D filter using the method in [7]. 
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 Figure 5. Performance comparison of GA and PSO-DV 

algorithms. 

6. CONCLUSION 
In this paper a new optimization algorithm (developed by 
modifying the classical PSO) has been applied to a real-world 
problem of designing 2-D zero-phase recursive filters. The filter 
thus obtained has a reasonably good stability margin (we have 
incorporated the stability criteria as constraints to the 
minimization task). Our method leads to a simpler filter since in 
practice we have to realize a factorable denominator. Compared to 
the methods described in [11] and [10], which, to our knowledge, 
are the most recent and the best-known methods to date, the 
algorithm used here yields a better design in considerably less 
time.  
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