
Evolutionary Optimization of Dynamic Control Problems
Accelerated by Progressive Step Reduction

 Q. Tuan Pham
School of Chemical Engineering
University of New South Wales

Sydney 2052, Australia
+612-9385 5267

tuan.pham@unsw.edu.au

ABSTRACT
In this paper, we describe the use of an evolutionary algorithm (EA)
to solve dynamic control optimization problems in engineering. In
this class of problems, a set of control variables must be
manipulated over time to optimize the outcome, which is obtained
by solving a set of differential equations for the state variables. A
new problem-specific technique, progressive step reduction (PSR),
is shown to considerably improve the efficiency of the algorithm for
this application. Factorial experimentation and rigorous statistical
analysis are used to determine the effects of PSR and tune the
parameters of the algorithm.

Categories and Subject Descriptors
G.1.6 Optimization: Stochastic programming.

General Terms: Algorithms.

Keywords: Evolutionary algorithm, evolutionary strategy,
evolutionary optimization, dynamic control, factorial experiment,
progressive step reduction.

1. INTRODUCTION
Engineers are becoming more and more interested in

evolutionary optimization methods. Their job is to optimize
processes and equipment to get the best out of whatever resources
are available to them, but conventional deterministic optimization
methods often fail in real life due to the complex behaviour of the
numerical models used to represent reality. In a great number –
perhaps the majority - of practical engineering problems, the system
to be optimized is described by a system of differential equations
(such as those governing the speed of reactions) whose coefficients
depend on a number of control variables (such as temperature,
pressure, catalyst concentration, heat or power input, degree of
steering, etc.). The engineer has to manipulate these control
variables over time to get the best outcome at the end of the process:
best product quality, highest yield, lowest cost, etc. Such dynamic
control problems are of great practical importance in engineering,

and a number of optimization methods have been tested on them:
iterative dynamic programming [1], evolutionary algorithm [13], ant
colony algorithm [14].

To solve this class of optimization problem, Pham [13]
introduced several specialized operators: swap, creep, shift and
smooth. This paper will introduce another technique: progressive
step reduction (PSR), where the control variables are first held
constant then gradually allowed to vary with time. A two-level
factorial experiment will be used to estimate the effectiveness of the
various operators.

2. THEORY
2.1 The objective function
Dynamic control problems in engineering have the form

()
()()ft
tyMaximize x

u

subject to

()uxfx ,,t
dt
d =

() 00 xx =

() HL t uuu ≤≤

where t is the independent variable (henceforth called “time”
although it may also be another coordinate), x the state vector (size
m), u the control vector (size n), and tf the final time. The equations
are almost always integrated numerically. The objective is to
manipulate u(t) to optimize y. In practice, the time interval [0, tf] is
divided into a finite number p of steps (20 to 40 in this work) and
each ui is specified for each of these steps. Previous researchers kept
u constant within each step but this work allows the values to ramp
linearly between the specified values. Thus, each ui is itself a vector
of p elements. The gene is formed by stacking the u-vectors into a
vector of length np.
We will consider three such problems:
Problem 1: Control of stirred reactor [1]. Due to mulitiple reactions,
m = 8, n = 4. The previous maximum of the objective function,
given by [1], is 339.10 for 20 time steps.
Problem 2: Control of batch reactor [3][15]. Due to multiple
reactions, m = 7, n = 4. The previous maximum of the objective
function is 0.610775 [14] for 40 time steps.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
GECCO’05, June 25-29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006…$5.00.

2181

Problem 3: Control of plug flow reactor [3][8][14]. This system has
m = 2, n = 1. The previous maximum of the objective function is
0.476946 for 40 time steps [14].

2.2 The Evolutionary Algorithm
The evolutionary algorithm used in this work can best be

described as a modified (λ+µ) evolution strategy with some features
of evolution programs [1]. It uses real coding of the variables and
the following features:

- Parent selection: random (fitness independent).

- Generation gap: none (members are allowed to survive
indefinitely).

- Reproduction operators: mutation, crossover, extrapolation,
interpolation, creep, swap, shift, smooth (to be explained later).

- Selection for next generation: N offspring are created, where N
is the population size, mixed with the parent population, and
binary tournament is used repeatedly on the mixed population
until the total population is reduced back to N.

In addition to the well-known mutation, crossover,
interpolation and extrapolation operators, the following operators
were introduced by Pham [13] to accelerate the search for this type
of problems: Creep is a particular type of mutation which causes a
small change in all of the u-values, used to explore the immediate
neighbourhood. Shift causes the value of one control variable ui at
time t to spread to earlier or later times. Smooth consists of
performing a rolling average over a random section of u. Swap
interchanges the value of ui at a random time and that at the
neighbouring time.

The diversity-conserving mutation technique of Pham [12] is
also used here: the specified mutation frequency is augmented by a
term δ/2 d− where d is the cartesian distance between the parents
and δ is a specified small distance (0.001 of the largest possible
distance, in this work). Thus, when two parents are very similar, d
tends to 0 and the mutation frequency approaches 1.

2.3 Progressive step reduction (PSR)
A technique that is specifically applicable to dynamic control
problems is introduced in this work: the search is started off with a
small number (4 in this work) of time steps for the control variables
u, i.e., u is allowed to ramp between four specified values over tf.
Every certain number of generations, the number of steps is
doubled, until a prespecified number of steps is reached or exceed.
The idea is to allow the broad features, or low-frequency
components, of the u-profiles to be identified early on before
making the fine adjustments to these profiles, similarly to the way a
painter makes a broad sketch of a subject before refining the details
(Figure 1). In this work, the subdivisions are performed at a
frequency which ensures that each number of time steps is given
roughly an equal number of generations.

This works use a variable length chromosome of real-valued
“genes” to implement the idea. Every time the number of time steps
p is doubled, the length of the chromosome (np) is doubled and the
values of the control variables u at each new (intermediate) time
point is obtained by interpolation, to give an identical profile. Since
the doubling is carried out only 4 or 5 times during the whole
search, the computational cost is negligible.

Figure 1. Illustration of Progressive Step Reduction: profile of

Mt St Michel progressively refined from 2 to N steps.

2.4 Tuning of algorithm
Although evolutionary algorithms are robust, they are

notoriously slow and there have been numerous researches on
tuning the parameters such as population size and operator
frequencies, as reviewed by Michalewicz et. al. [10]. A manual or
“brute force” approach has sometimes been followed, for example
by De Jong [5] and Schaffer et. al. [16] who tested various
combinations of population size, mutation rates, crossover
probability, elitism/non-elitism and other parameters. Grefenstette
[6] used a meta-genetic algorithm to optimize genetic algorithms;
however, meta-optimization methods are very time consuming.
Davis [4] proposed an adaptive method, where the relative merit of
various operators (creep, mutation, crossover, etc.) is evaluated,
depending on the frequency with which they produce an
improvement. Pham [12] proposed a competitive evolution method,
where different instances of EA with different parameters compete
with each other to produce the fittest offspringz.

Adaptive methods have their merit. However, for a class of
problems that is very important and have many recurring instances
in real life, it would be desirable to explicitly optimize the search
parameters “once and for all”. Of course, each problem is different
and no one optimization method can be guaranteed to be best for all
possible problems, as has been famously shown by Wolpert and
Macready [17]. However, hopefully the class of dynamic control
problems considered here have sufficient common features that the
evolutionary algorithm can be tuned to work reasonably efficiently
for most of them.

In this work, a two-level factorial experiment is carried out on
each test problem, using the software MINITAB [11]. Each of the
following factors is varied between two levels: population size (2 or
20), crossover, extrapolation, interpolation, creep, swap, shift,
smooth, PSR (on or off for all the previous). When a reproduction
operator is active, it has equal probability to all other active
operators. For each combination of factors, the optimization is run 5
or 10 times, each time terminating at 1000 function evaluations.
When PSR is not active, the number of time divisions is the same as
the final number of time division when PSR is active, i.e., the degree
of refinements is the same.

2182

Since the algorithm cannot run without at least one
reproductive operator, the mutation operator is always kept active.
The reason for choosing this operator is that it ensures that the
whole search domain can be covered and thus the global optimum
can always be found, given enough iterations. The other operators
can thus be considered as performance-enhancing factors. When at
least one other operator is active, mutation is given a base
probability (i.e., without the diversity-conserving term) one tenth of
each of the other operators, in accordance with the low mutation
probabilities used in common genetic algorithm practice.

3. RESULTS
3.1 Problem 1
3.1.1 Optimal profile
Figure 2 shows the optimal u-profiles for Problem 1. The spikes
appear to be “real” and occur in all the results. This profile yields a
maximum y of 339.706 which is significantly better than the
previous best, but this may be due to the use of ramping rather than
constant u-value in each time step.

0

2

4

6

8

10

12

14

16

18

t

u

u1
u2
u3
u4

Figure 2. Optimal profile for u in Problem 1.

3.1.2 Effects of all factors
The results of all the runs for Problem 1 were subjected to a factorial
analysis to estimate the effect of each parameter and their first-level
interactions. The parameters have been coded according to normal
factorial design convention: -1 for inactive, +1 for active. For
population size, -1 corresponds to 2 members and +1 corresponds
to 20 members. The results are shown in Table 1 and Figure 3.

Table 1. Estimated Effects for Problem 1

Term Effect T P
PSR 12.441 81.25 <0.001
Pop. size -10.783 -70.42 <0.001
Shift 7.567 49.42 <0.001
Smooth 5.267 34.40 <0.001
Pop. size*PSR 4.823 31.49 <0.001
Shift*PSR -4.588 -29.96 <0.001
Creep 4.537 29.63 <0.001
Pop. size*Smooth 3.724 24.32 <0.001
Shift*Smooth -3.537 -23.10 <0.001
Smooth*PSR -3.509 -22.92 <0.001

Te
rm

Standardized Effect

AG
DE
CF
BD
DF
AB
DG
FJ
EF
B

EH
BH

F
DJ
D

AE
EG
EJ

AD
DH
HJ
GH
AH

E
GJ
AJ
H
G
A
J

9080706050403020100

1.96
F actor

Interpolate
E C reep
F Sw ap
G Shift
H Smooth
J

Name

Iter. div ision

A Pop. size
B Extrapolate
C Xov er
D

Pareto Chart of the Standardized Effects
(response is y, Alpha = .05, only 30 largest effects shown)

Figure 3. Pareto chart illustrating the effects of the biggest

factors for Problem 1 (“Iter.Division” = PSR).
The Effect column shows the mean difference in y between the low
and high level of each variable. A positive effect means that the
presence or high level of the factor is beneficial. The T column gives
the effects divided by twice the pooled standard error, which is more
statistically meaningful than the unscaled effect. The P column
indicates the significance level: a P-value of 0.005 indicates that the
effect is significant to a level of 99.5%. Only the ten factors and
interactions with strongest effects are shown here, in decreasing
order of effect.
It can be seen that PSR and population size have the strongest
effects. Their effects are illustrated in Figure 4. The left half shows
the y-values for a population size of 2, the right half for a population
size of 20. It is obvious that the behaviours of the two population
sizes are quite different, so from this point on they will be treated
separately. However, it can be seen at a glance that on the whole the
smaller population size yields better results. Within each population
size, the points in the left quarter are without PSR, those in the right
quarter are when PSR is used. It is clear that PSR leads to a very
significant improvement for both population sizes, in terms of
avoiding poor performance (low value of y).

260

280

300

320

340

y

Pop. size=2
No PSR

Pop. size=20
No PSR

Pop. size=2
PSR

Pop. size=20
PSR

Figure 4. Objective function values for Problem 1.

Figure 5 summarizes the data in the form of a box plot. Each box
has three horizontal lines denoting the 25, 50 (median) and 75
percentile values (Q1, Q2, Q3). Means are shown as circles. The
vertical lines or “whiskers” indicate the data range, excluding
outliers. An outlier is a point outside the range [Q1-1.5(Q3-Q1), Q3

2183

+ 1.5(Q3-Q1)]. Outliers are shown as asterisks. The boxes are, from
left to right: population of 2 without PSR, population of 2 with PSR,
population of 20 without PSR, population of 20 with PSR.

y

Pop.size
Iter.Division

202
YNYN

340

330

320

310

300

290

280

270

260

Boxplot of y by Pop.size, Iter.Division

Figure 5. Box plot of objective values for different combinations

of population size and PSR (“Iter.Division” = PSR).
The effect of PSR is so clearly beneficial that from this point
onwards we discard all the runs without it. We will also consider the
runs with population size 2 separately from those with population
20, as they seem to behave quite differently. Thus, we will consider
separately the two subsets: P2PSR (Popuplation size 2, with PSR)
and P20PSr (Pop. size 20, with PSR).

3.1.3 Effect of Operators, Subset P2PSR
The effects of the ten strongest factors and interaction in subset
P2PSR are shown in Table 2. All levels of interaction have been
considered. Among the reproductive operators, creep and shift have
by far the strongest effects and are beneficial (positive) but their
interaction is somewhat detrimental (negative). These are
specialized operators introduced by Pham [13]. The effect of creep
and shift are positive (beneficial). It may appear surprising that some
operators may have a negative effect, but that is because they reduce
the operating frequency of the more beneficial operators.

Table 2. Estimated Effects for Problem 1, subset P2PSR.

Term Effect T P
Creep 2.39 28.57 <0.001
Shift 1.527 18.25 <0.001
Creep*Shift -0.968 -11.57 <0.001
Shift*Smooth -0.944 -11.28 <0.001
Creep*Shift*Smooth 0.529 6.32 <0.001
Xover -0.487 -5.82 <0.001
Xover*Creep 0.449 5.36 <0.001
Swap -0.314 -3.75 <0.001
Creep*Swap 0.239 2.86 0.004
Xover*Shift 0.231 2.76 0.006

There are significant effects arising from the interaction between
operators. A full analysis of variance (ANOVA) considering all the
possible interactions show that the operators themselves account for
40.9% of the variance, the interactions account for 15.24% and
random variations for the rest.

3.1.4 Effect of Operators, Subset P20PSR
We now consider the runs with population size 20 and PSR (Table
3). Again the factors are sorted according to effect. The shift,
smooth and interpolation operators now have much stronger effects
than the others and they are all beneficial.

Table 3. Estimated Effects for Problem 1, subset P20PSR.

Term Effect T P
Shift 4.433 20.57 <0.001
Smooth 3.382 15.69 <0.001
Interpolate 2.514 11.67 <0.001
Shift*Smooth -2.354 -10.92 <0.001
Interpolate*Smooth -2.201 -10.21 <0.001
Extrapolate -1.044 -4.84 <0.001
Creep 0.937 4.35 <0.001
Swap -0.933 -4.33 <0.001
Interpolate*Shift*Smooth 0.737 3.42 0.001
Extrapolate*Creep*Smooth -0.712 -3.3 0.001

3.2 Problem 2
3.2.1 Effects of all factors
The y-plot in Figure 6 and box plots in Figure 7 show that, again a
population size of 2 with PSR is again the best combination.

0.58

0.59

0.6

0.61

0.62

y

Pop. size=2
No PSR

Pop. size=20
No PSR

Pop. size=2
PSR

Pop. size=20
PSR

Figure 6. Objective function values for Problem 2.

y

Pop. size
Iter. Division

202
YNYN

0.610

0.605

0.600

0.595

0.590

0.585

0.580

Boxplot of y vs Pop. size, Iter. Division

Figure 7. Box plot of objective function values for Problem 2 for

different combinations of population size and PSR
(“Iter.Division” = PSR).

2184

Tables 4 and 5 show that Creep has the biggest beneficial effects for
both subsets P2PSR and P20PSR.

Table 4. Estimated Effects for Problem 2, subset P2PSR.

Term Effect T P
Creep 0.000152 17.36 <0.001
Extrapolate 0.000058 6.63 <0.001
Extrapolate*Creep -0.000039 -4.48 <0.001
Extrapolate*Smooth 0.000036 4.05 <0.001
Extrapolate*Creep*Smooth -0.000031 -3.58 <0.001
Interpolate -0.000029 -3.36 0.001
Swap -0.000028 -3.15 0.002
Extrapol*Xover*Interpol
*Shift

0.000027 3.04 0.002

Interpolate*Creep 0.000025 2.83 0.005
Xover*Creep 0.000024 2.69 0.007

Table 5. Estimated Effects for Problem 2, subset P20PSR.

Term Effect T P
Creep 0.000124 9.05 <0.001
Shift 0.000047 3.46 0.001
Swap 0.000044 -3.2 0.001
Extrapolate*Smooth 0.000042 3.09 0.002
Extrapol*Xover*Interpol*Swap 0.000035 2.55 0.011
Extrapolate*Creep 0.000032 -2.34 0.020
Interpolate*Creep 0.000032 2.31 0.021
Smooth 0.000031 2.26 0.024
Xover*Creep*Swap*Smooth 0.000029 2.12 0.034
Extrapolate*Xover*Interpolate -.000028 -2.02 0.044

3.3 Problem 3
3.3.1 Effects of all factors
Figures 8 and 9 show that the effects of PSR and population size are
similar to the previous problems. Tables 6 and 7 show that Creep
has the biggest beneficial effects for both subsets P2PSR and
P20PSR for Problem 3.

0.42

0.43

0.44

0.45

0.46

0.47

0.48

y

Pop. size=2
No PSR

Pop. size=20
No PSR

Pop. size=2
PSR

Pop. size=20
PSR

Figure 8. Objective function values for Problem 3.

y

Pop. size
Iter. Division

10
1010

0.48

0.47

0.46

0.45

0.44

0.43

0.42

Boxplot of y vs Pop. size, Iter. Division

Figure 9. Box plot of objective values for Problem 3 for different

combinations of population size and PSR (“Iter.Division” =
PSR).

Table 6. Estimated Effects for Problem 3, subset P2PSR.

Term Effect T P
Creep 0.000727 19.45 <0.001
Xover -0.00022 -5.92 <0.001
Extrapolate 0.000195 5.23 <0.001
Xover*Creep 0.000194 5.2 <0.001
Extrapol*Xover*Creep*Shift -0.00015 -3.95 <0.001
Extrapolate*Smooth 0.000136 3.64 <0.001
Extrapolate*Creep -0.00013 -3.59 <0.001
Extrapolate*Xover*Shift 0.000127 3.4 0.001
Extrapolate*Interpolate -0.00012 -3.28 0.001
Extrapol*Interpolate*Creep 0.000123 3.28 0.001

Table 7. Estimated Effects for Problem 3, subset P20PSR.

Term Effect T P
Creep 0.000581 13.14 0.000
Extrapolate*Smooth 0.000189 4.28 0.000
Extrapol*Creep*Smooth -0.000190 -4.21 0.000
Extrapolate*Xover 0.000176 3.98 0.000
Interpolate -0.00018 -3.96 0.000
Interpolate*Creep 0.000161 3.65 0.000
Creep*Swap -0.00014 -3.07 0.002
Extrapolate*Xover *Creep -0.00013 -2.92 0.004
Extrapolate 0.000108 2.43 0.015
Swap*Shift -0.0001 -2.32 0.021

3.4 Summary for all problems
Table 8 shows the T-values (effects scaled by standard error) for all
the reproduction operators for P2PSR (population size = 2, PSR
applied), for all three problems.

2185

Table 8. Estimated T-values of individual reproduction
operators for all problems, subset P2PSR.

Term Prob.1 Prob. 2 Prob. 3 Mean
Creep 24.62 16.10 17.73 19.48
Shift 15.73 -1.16 0.91 5.16
Extrapolate 1.31 6.15 4.76 4.07
Smooth 1.39 1.68 1.99 1.69
Interpolate -0.70 -3.11 -2.23 -2.01
Swap -3.23 -2.92 -2.16 -2.77
Xover -5.02 -1.54 -5.40 -3.99

While the number of problems tested here is rather small, some
tentative conclusions can be drawn. For this class of problems, it
seems that a very small population size (with Pham's [12] diversity
conserving mutation rate), combined with PSR of the “time” axis,
are most efficient. Among the reproductive operators, the Creep
operator is consistently and strongly beneficial. Crossover,
interpolation and swap are either insignificant or detrimental. The
smooth operator does not significantly contribute to numerical
improvement but it is of practical importance, as it causes control
function to vary smoothly with time. Observation of the evolving
control curves shows that the optimum control curve is almost
always smoother than non-optimal ones.

4. TESTING PERFORMANCE OF
OPTIMIZED ALGORITHM
Based on the results of the above factorial experiments, the
following “optimized” (although not necessarily “optimal”) set of
parameters were derived: population size = 2, probability of
extrapolation = 0.2, of crossover = 0, of interpolation = 0, of
mutation = 0.05, of creep = 0.5, of swap = 0, of shift = 0.2, of
smooth = 0.05, PSR applied. This “optimized” algorithm was run 20
times, each for 1000 function evaluations, on each problems, and
the mean objective value compared to the group means of each of
the 29 = 512 factorial combination tested earlier.
For Problem 1, the previous group mean objective values varied
from 276.59 to 338.96. The optimized EA gave a mean of 338.84
(Figure 10). For Problem 2, the previous mean objective values
varied from 0.59514 to 0.61076 while the optimized EA gives a
mean of 0.61071 (Figure 11). For Problem 3, the previous mean
objective values varied from 0.44173 to 0.47731 while the

Group means

Fr
eq

ue
nc

y

340330320310300290280

140

120

100

80

60

40

20

0

338.84

Figure 10. Histogram of mean objective function obtained by

various combinations of factors for Problem 1.

Group means

Fr
eq

ue
nc

y

0.6090.6060.6030.6000.597

200

150

100

50

0

0.61071

Figure 11. Histogram of mean objective function obtained by

various combinations of factors for Problem 2.

Group means

Fr
eq

ue
nc

y

0.4740.4680.4620.4560.4500.444

300

250

200

150

100

50

0

0.47697

Figure 12. Histogram of mean objective function obtained by

various combinations of factors for Problem 3.

optimized EA gives a mean of 0.47697 (Figure 12). In all cases the
performance of the “optimized” EA is quite near the top of the
range. Taking into account the random variations, this is a very
satisfactory result.

5. CONCLUSIONS
The Progressive Step Reduction introduced in this paper has been
shown to be beneficial in helping to accelerate the solution of
dynamic optimization problems. A reliable and efficient
evolutionary optimization algorithm for this class of problems seems
to be one using a small population size, progressive step reduction, a
large probability for creep and perhaps extrapolation and shift, and
smaller probabilities for the others, especially swap and crossover.
Although the average improvement in objective function for a given
number of function evaluations may seem small, the improvement in
reliability or reproducibility (in terms of the range from worst to best
solutions for different runs) is quite considerable and hence of real
practical usefuless.

A statistically rigorous method has been applied to evaluate the
usefulness of various operators. This has rarely been done in
previous works in evolutionary computation. It is suggested that
statistical analysis be used more in this field, due to the stochastic
nature of the results. The full factorial experiment approach used in
this work requires a large number of runs. For the test problems in
question it is not too time consuming (a few days on a Pentium-4
computer), but for larger problems or a multitude of problems, a
more compact experimental design such as Latin Square may be
appropriate.

2186

6. REFERENCES
[1] Bäck, T. and Schwefel, H.P. An overview of evolutionary

algorithms for parameter optimization. Evol. Comp.,1 (1993),
1-23.

[2] Bojkov, B. and Luus, R. Use of random admissible values for
control in iterative dynamic programming. IEC Res., 31
(1992), 1308-1314.

[3] Dadebo, S.A., McAuley, K.B. Dynamic optimization of
constrained chemical engineering problems using dynamic
programming. Comput. Chem. Engng, 19 (1995), 513-525.

[4] Davis, L. Adapting operator probabilities in genetic algorithms.
Proc. 3rd Internat. Conf. on Genetic Algorithms, George
Mason University, June 4, pp.61-69. Morgan Kaufman Pub.,
San Mateo, California (1989).

[5] De Jong, K.A. An analysis of the behavior of a class of genetic
adaptive systems. Doctoral thesis, Dept. of Computer and
Communication Sciences, University of Michigan, Ann Arbor,
1975.

[6] Goldberg, D.E. Genetic Algorithms in Search,Optimization
and Machine Learning. Addison Wesley, Reading, MA, 1989.

[7] Grefenstette, J.J. Optimization of control parameters for genetic
algorithms. IEEE Trans. on Systems, Man and Cybernetics,
SMC 16 (1986), 122-128.

[8] Gunn, D.J., Thomas, W.J. Chem. Eng. Sci., 20 (1965), 89.
[9] Holland,J.H. Adaptation in Natural and Artificial Systems. The

University of Michigan Press, Ann Arbor, MI, 1975.

[10] Michalewicz A., Eiben A.E. and Hinterding R. Parameter
Selection. In Sarker Ruhul, M Mohammadian, Xin Yao, ed.,
Evolutionary Optimization, Kluwer Ac Pub, Boston, 2002,
p.279-306.

[11] MINITAB Release 14 for Windows. Minitab Inc. (2003),
USA.

[12] Pham, Q.T. Competitive evolution: a natural approach to
operator selection. In: Progress in Evolutionary Computation,
Lecture Notes in Artificial Intelligence, Vol. 956, p.49-60. X.
Yao (ed.), Springer-Verlag, Heidelberg, 1995.

[13] Pham, Q.T. Dynamic Optimization of Chemical Engineering
Processes by an Evolutionary Method. Comp. Chem. Eng., 22
(1998), 1089-1097.

[14] Rajesh, J., Gupta, K., Kusumakar, H.S., Jayaraman, V.K.,
Kulkarni, B.D. Dynamic optimization of chemical processes
using ant colony framework. Comput. Chem. 25 (2001), 583-
595.

[15] Ray, W.H., Advanced Process Control. McGraw-Hill, New
York, 1981.

[16] Schaffer, J., David, R.A., Caruana, L.J. and Das, R.. A study of
control parameters affecting online performance of genetic
algorithms for function optimization. In J.D. Schaffer (ed.),
Proc. 3rd Internat. Conf. on Genetic Algorithms. Morgan
Kaufman, San Mateo, California (1989).

[17] Wolpert, D.H. and Macready, W.G. No free lunch theorem for
optimization. IEEE Trans. Evol. Computation, 1(1) (1997), 67-
82.

2187

