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ABSTRACT 
In this paper, we describe the use of an evolutionary algorithm (EA) 
to solve dynamic control optimization problems in engineering. In 
this class of problems, a set of control variables must be 
manipulated over time to optimize the outcome, which is obtained 
by solving a set of differential equations for the state variables. A 
new problem-specific technique, progressive step reduction (PSR), 
is shown to considerably improve the efficiency of the algorithm for 
this application. Factorial experimentation and rigorous statistical 
analysis are used to determine the effects of PSR and tune the 
parameters of the algorithm.  

Categories and Subject Descriptors 
G.1.6 Optimization: Stochastic programming.  

General Terms: Algorithms. 

Keywords: Evolutionary algorithm, evolutionary strategy, 
evolutionary optimization, dynamic control, factorial experiment, 
progressive step reduction. 

1. INTRODUCTION 
Engineers are becoming more and more interested in 

evolutionary optimization methods. Their job is to optimize 
processes and equipment to get the best out of whatever resources 
are available to them, but conventional deterministic optimization 
methods often fail in real life due to the complex behaviour of the 
numerical models used to represent reality. In a great number – 
perhaps the majority - of practical engineering problems, the system 
to be optimized is described by a system of differential equations 
(such as those governing the speed of reactions) whose coefficients 
depend on a number of control variables (such as temperature, 
pressure, catalyst concentration, heat or power input, degree of 
steering, etc.). The engineer has to manipulate these control 
variables over time to get the best outcome at the end of the process: 
best product quality, highest yield, lowest cost, etc. Such dynamic 
control problems are of great practical importance in engineering, 

and a number of optimization methods have been tested on them: 
iterative dynamic programming [1], evolutionary algorithm [13], ant 
colony algorithm [14]. 

To solve this class of optimization problem, Pham [13] 
introduced several specialized operators: swap, creep, shift and 
smooth. This paper will introduce another technique: progressive 
step reduction (PSR), where the control variables are first held 
constant then gradually allowed to vary with time. A two-level 
factorial experiment will be used to estimate the effectiveness of the 
various operators. 

2. THEORY 
2.1 The objective function 
Dynamic control problems in engineering have the form 
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where t is the independent variable (henceforth called “time” 
although it may also be another coordinate), x the state vector (size 
m), u the control vector (size n), and tf the final time. The equations 
are almost always integrated numerically. The objective is to 
manipulate u(t) to optimize y. In practice, the time interval [0, tf] is 
divided into a finite number p of steps (20 to 40 in this work) and 
each ui is specified for each of these steps. Previous researchers kept 
u constant within each step but this work allows the values to ramp 
linearly between the specified values. Thus, each ui is itself a vector 
of p elements. The gene is formed by stacking the u-vectors into a 
vector of length np. 
We will consider three such problems:  
Problem 1: Control of stirred reactor [1]. Due to mulitiple reactions, 
m = 8, n = 4. The previous maximum of the objective function, 
given by [1], is 339.10 for 20 time steps.  
Problem 2: Control of batch reactor [3][15]. Due to multiple 
reactions, m = 7, n = 4. The previous maximum of the objective 
function is 0.610775 [14] for 40 time steps. 
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Problem 3: Control of plug flow reactor [3][8][14]. This system has 
m = 2, n = 1. The previous maximum of the objective function is 
0.476946 for 40 time steps [14]. 

2.2 The Evolutionary Algorithm 
The evolutionary algorithm used in this work can best be 

described as a modified (λ+µ) evolution strategy with some features 
of evolution programs [1]. It uses real coding of the variables and 
the following features: 

- Parent selection: random (fitness independent). 

- Generation gap: none (members are allowed to survive 
indefinitely). 

- Reproduction operators: mutation, crossover, extrapolation, 
interpolation, creep, swap, shift, smooth (to be explained later). 

- Selection for next generation: N offspring are created, where N 
is the population size, mixed with the parent population, and 
binary tournament is used repeatedly on the mixed population 
until the total population is reduced back to N. 

In addition to the well-known mutation, crossover, 
interpolation and extrapolation operators, the following operators 
were introduced by Pham [13] to accelerate the search for this type 
of problems: Creep is a particular type of mutation which causes a 
small change in all of the u-values, used to explore the immediate 
neighbourhood. Shift causes the value of one control variable ui at 
time t to spread to earlier or later times. Smooth consists of 
performing a rolling average over a random section of u. Swap 
interchanges the value of ui at a random time and that at the 
neighbouring time. 

The diversity-conserving mutation technique of Pham [12] is 
also used here: the specified mutation frequency is augmented by a 
term δ/2 d−  where d is the cartesian distance between the parents 
and δ is a specified small distance (0.001 of the largest possible 
distance, in this work). Thus, when two parents are very similar, d 
tends to 0 and the mutation frequency approaches 1. 

2.3 Progressive step reduction (PSR) 
A technique that is specifically applicable to dynamic control 
problems is introduced in this work: the search is started off with a 
small number (4 in this work) of time steps for the control variables 
u, i.e., u is allowed to ramp between four specified values over tf. 
Every certain number of generations, the number of steps is 
doubled, until a prespecified number of steps is reached or exceed. 
The idea is to allow the broad features, or low-frequency 
components, of the u-profiles to be identified early on before 
making the fine adjustments to these profiles, similarly to the way a 
painter makes a broad sketch of a subject before refining the details 
(Figure 1). In this work, the subdivisions are performed at a 
frequency which ensures that each number of time steps is given 
roughly an equal number of generations.  

This works use a variable length chromosome of real-valued 
“genes” to implement the idea. Every time the number of time steps 
p is doubled, the length of the chromosome (np) is doubled and the 
values of the control variables u at each new (intermediate) time 
point is obtained by interpolation, to give an identical profile. Since 
the doubling is carried out only 4 or 5 times during the whole 
search, the computational cost is negligible. 

 
Figure 1. Illustration of Progressive Step Reduction: profile of 

Mt St Michel progressively refined from 2 to N steps. 

2.4 Tuning of algorithm 
Although evolutionary algorithms are robust, they are 

notoriously slow and there have been numerous researches on 
tuning the parameters such as population size and operator 
frequencies, as reviewed by Michalewicz et. al. [10]. A manual or 
“brute force” approach has sometimes been followed, for example 
by De Jong [5] and Schaffer et. al. [16] who tested various 
combinations of population size, mutation rates, crossover 
probability, elitism/non-elitism and other parameters. Grefenstette 
[6] used a meta-genetic algorithm to optimize genetic algorithms; 
however, meta-optimization methods are very time consuming. 
Davis [4] proposed an adaptive method, where the relative merit of 
various operators (creep, mutation, crossover, etc.) is evaluated, 
depending on the frequency with which they produce an 
improvement. Pham [12] proposed a competitive evolution method, 
where different instances of EA with different parameters compete 
with each other to produce the fittest offspringz. 

Adaptive methods have their merit. However, for a class of 
problems that is very important and have many recurring instances 
in real life, it would be desirable to explicitly optimize the search 
parameters “once and for all”. Of course, each problem is different 
and no one optimization method can be guaranteed to be best for all 
possible problems, as has been famously shown by Wolpert and 
Macready [17]. However, hopefully the class of dynamic control 
problems considered here have sufficient common features that the 
evolutionary algorithm can be tuned to work reasonably efficiently 
for most of them. 

In this work, a two-level factorial experiment is carried out on 
each test problem, using the software MINITAB [11]. Each of the 
following factors is varied between two levels: population size (2 or 
20), crossover, extrapolation, interpolation, creep, swap, shift, 
smooth, PSR (on or off for all the previous). When a reproduction 
operator is active, it has equal probability to all other active 
operators. For each combination of factors, the optimization is run 5 
or 10 times, each time terminating at 1000 function evaluations. 
When PSR is not active, the number of time divisions is the same as 
the final number of time division when PSR is active, i.e., the degree 
of refinements is the same. 
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Since the algorithm cannot run without at least one 
reproductive operator, the mutation operator is always kept active. 
The reason for choosing this operator is that it ensures that the 
whole search domain can be covered and thus the global optimum 
can always be found, given enough iterations. The other operators 
can thus be considered as performance-enhancing factors. When at 
least one other operator is active, mutation is given a base 
probability (i.e., without the diversity-conserving term) one tenth of 
each of the other operators, in accordance with the low mutation 
probabilities used in common genetic algorithm practice. 

3. RESULTS 
3.1 Problem 1 
3.1.1 Optimal profile 
Figure 2 shows the optimal u-profiles for Problem 1. The spikes 
appear to be “real” and occur in all the results. This profile yields a 
maximum y of 339.706 which is significantly better than the 
previous best, but this may be due to the use of ramping rather than 
constant u-value in each time step. 
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Figure 2. Optimal profile for u in Problem 1. 

3.1.2 Effects of all factors 
The results of all the runs for Problem 1 were subjected to a factorial 
analysis to estimate the effect of each parameter and their first-level 
interactions. The parameters have been coded according to normal 
factorial design convention: -1 for inactive, +1 for active. For 
population size, -1 corresponds to 2 members and +1 corresponds  
to 20 members. The results are shown in Table 1 and Figure 3.  
 

Table 1. Estimated Effects for Problem 1 

Term Effect T P 
PSR 12.441 81.25 <0.001 
Pop. size -10.783 -70.42 <0.001 
Shift 7.567 49.42 <0.001 
Smooth 5.267 34.40 <0.001 
Pop. size*PSR 4.823 31.49 <0.001 
Shift*PSR -4.588 -29.96 <0.001 
Creep 4.537 29.63 <0.001 
Pop. size*Smooth 3.724 24.32 <0.001 
Shift*Smooth -3.537 -23.10 <0.001 
Smooth*PSR -3.509 -22.92 <0.001 
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Figure 3. Pareto chart illustrating the effects of the biggest 

factors for Problem 1 (“Iter.Division” = PSR). 
The Effect column shows the mean difference in y between the low 
and high level of each variable. A positive effect means that the 
presence or high level of the factor is beneficial. The T column gives 
the effects divided by twice the pooled standard error, which is more 
statistically meaningful than the unscaled effect. The P column 
indicates the significance level: a P-value of 0.005 indicates that the 
effect is significant to a level of 99.5%. Only the ten factors and 
interactions with strongest effects are shown here, in decreasing 
order of effect. 
It can be seen that PSR and population size have the strongest 
effects. Their effects are illustrated in Figure 4. The left half shows 
the y-values for a population size of 2, the right half for a population 
size of 20. It is obvious that the behaviours of the two population 
sizes are quite different, so from this point on they will be treated 
separately. However, it can be seen at a glance that on the whole the 
smaller population size yields better results. Within each population 
size, the points in the left quarter are without PSR, those in the right 
quarter are when PSR is used. It is clear that PSR leads to a very 
significant improvement for both population sizes, in terms of 
avoiding poor performance (low value of y). 
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Figure 4. Objective function values for Problem 1. 
 

Figure 5 summarizes the data in the form of a box plot. Each box 
has three horizontal lines denoting the 25, 50 (median) and 75 
percentile values (Q1, Q2, Q3). Means are shown as circles. The 
vertical lines or “whiskers” indicate the data range, excluding 
outliers. An outlier is a point outside the range [Q1-1.5(Q3-Q1), Q3 
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+ 1.5(Q3-Q1)]. Outliers are shown as asterisks. The boxes are, from 
left to right: population of 2 without PSR, population of 2 with PSR, 
population of 20 without PSR, population of 20 with PSR. 
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Figure 5. Box plot of objective values for different combinations 

of population size and PSR (“Iter.Division” = PSR). 
The effect of PSR is so clearly beneficial that from this point 
onwards we discard all the runs without it. We will also consider the 
runs with population size 2 separately from those with population 
20, as they seem to behave quite differently. Thus, we will consider 
separately the two subsets: P2PSR (Popuplation size 2, with PSR) 
and P20PSr (Pop. size 20, with PSR). 

3.1.3 Effect of Operators, Subset P2PSR 
The effects of the ten strongest factors and interaction in subset 
P2PSR are shown in Table 2. All levels of interaction have been 
considered. Among the reproductive operators, creep and shift have 
by far the strongest effects and are beneficial (positive) but their 
interaction is somewhat detrimental (negative). These are 
specialized operators introduced by Pham [13]. The effect of creep 
and shift are positive (beneficial). It may appear surprising that some 
operators may have a negative effect, but that is because they reduce 
the operating frequency of the more beneficial operators. 

Table 2. Estimated Effects for Problem 1, subset P2PSR. 

Term Effect T P 
Creep 2.39 28.57 <0.001 
Shift 1.527 18.25 <0.001 
Creep*Shift -0.968 -11.57 <0.001 
Shift*Smooth -0.944 -11.28 <0.001 
Creep*Shift*Smooth 0.529 6.32 <0.001 
Xover -0.487 -5.82 <0.001 
Xover*Creep 0.449 5.36 <0.001 
Swap -0.314 -3.75 <0.001 
Creep*Swap 0.239 2.86 0.004 
Xover*Shift 0.231 2.76 0.006 
 

There are significant effects arising from the interaction between 
operators. A full analysis of variance (ANOVA) considering all the 
possible interactions show that the operators themselves account for 
40.9% of the variance, the interactions account for 15.24% and 
random variations for the rest. 

3.1.4 Effect of Operators, Subset P20PSR 
We now consider the runs with population size 20 and PSR (Table 
3). Again the factors are sorted according to effect. The shift, 
smooth and interpolation operators now have much stronger effects 
than the others and they are all beneficial. 

Table 3. Estimated Effects for Problem 1, subset P20PSR. 

Term Effect T P 
Shift 4.433 20.57 <0.001 
Smooth 3.382 15.69 <0.001 
Interpolate 2.514 11.67 <0.001 
Shift*Smooth -2.354 -10.92 <0.001 
Interpolate*Smooth -2.201 -10.21 <0.001 
Extrapolate -1.044 -4.84 <0.001 
Creep 0.937 4.35 <0.001 
Swap -0.933 -4.33 <0.001 
Interpolate*Shift*Smooth 0.737 3.42 0.001 
Extrapolate*Creep*Smooth -0.712 -3.3 0.001 

3.2 Problem 2 
3.2.1 Effects of all factors 
The y-plot in Figure 6 and box plots in Figure 7 show that, again a 
population size of 2 with PSR is again the best combination. 
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Figure 6. Objective function values for Problem 2. 
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Figure 7. Box plot of objective function values for Problem 2 for 

different combinations of population size and PSR 
(“Iter.Division” = PSR). 
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Tables 4 and 5 show that Creep has the biggest beneficial effects for 
both subsets P2PSR and P20PSR. 

Table 4. Estimated Effects for Problem 2, subset P2PSR. 

Term Effect T P 
Creep 0.000152 17.36 <0.001 
Extrapolate 0.000058 6.63 <0.001 
Extrapolate*Creep -0.000039 -4.48 <0.001 
Extrapolate*Smooth 0.000036 4.05 <0.001 
Extrapolate*Creep*Smooth -0.000031 -3.58 <0.001 
Interpolate -0.000029 -3.36 0.001 
Swap -0.000028 -3.15 0.002 
Extrapol*Xover*Interpol    
*Shift 

0.000027 3.04 0.002 

Interpolate*Creep 0.000025 2.83 0.005 
Xover*Creep 0.000024 2.69 0.007 
 

Table 5. Estimated Effects for Problem 2, subset P20PSR. 

Term Effect T P 
Creep 0.000124 9.05 <0.001 
Shift 0.000047 3.46 0.001 
Swap 0.000044 -3.2 0.001 
Extrapolate*Smooth 0.000042 3.09 0.002 
Extrapol*Xover*Interpol*Swap 0.000035 2.55 0.011 
Extrapolate*Creep 0.000032 -2.34 0.020 
Interpolate*Creep 0.000032 2.31 0.021 
Smooth 0.000031 2.26 0.024 
Xover*Creep*Swap*Smooth 0.000029 2.12 0.034 
Extrapolate*Xover*Interpolate -.000028 -2.02 0.044 

3.3 Problem 3 
3.3.1 Effects of all factors 
Figures 8 and 9 show that the effects of PSR and population size are 
similar to the previous problems. Tables 6 and 7 show that Creep 
has the biggest beneficial effects for both subsets P2PSR and 
P20PSR for Problem 3. 
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Figure 8. Objective function values for Problem 3. 
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Figure 9. Box plot of objective values for Problem 3 for different 

combinations of population size and PSR (“Iter.Division” = 
PSR). 

Table 6. Estimated Effects for Problem 3, subset P2PSR. 

Term Effect T P 
Creep 0.000727 19.45 <0.001 
Xover -0.00022 -5.92 <0.001 
Extrapolate 0.000195 5.23 <0.001 
Xover*Creep 0.000194 5.2 <0.001 
Extrapol*Xover*Creep*Shift -0.00015 -3.95 <0.001 
Extrapolate*Smooth 0.000136 3.64 <0.001 
Extrapolate*Creep -0.00013 -3.59 <0.001 
Extrapolate*Xover*Shift 0.000127 3.4 0.001 
Extrapolate*Interpolate -0.00012 -3.28 0.001 
Extrapol*Interpolate*Creep 0.000123 3.28 0.001 

 
Table 7. Estimated Effects for Problem 3, subset P20PSR. 

Term Effect T P 
Creep 0.000581 13.14 0.000 
Extrapolate*Smooth 0.000189 4.28 0.000 
Extrapol*Creep*Smooth -0.000190 -4.21 0.000 
Extrapolate*Xover 0.000176 3.98 0.000 
Interpolate -0.00018 -3.96 0.000 
Interpolate*Creep 0.000161 3.65 0.000 
Creep*Swap -0.00014 -3.07 0.002 
Extrapolate*Xover *Creep -0.00013 -2.92 0.004 
Extrapolate 0.000108 2.43 0.015 
Swap*Shift -0.0001 -2.32 0.021 

3.4 Summary for all problems 
Table 8 shows the T-values (effects scaled by standard error) for all 
the reproduction operators for P2PSR (population size = 2, PSR 
applied), for all three problems.  
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Table 8. Estimated T-values of individual reproduction 
operators for all problems, subset P2PSR. 

Term Prob.1 Prob. 2 Prob. 3 Mean 
Creep 24.62  16.10  17.73 19.48 
Shift 15.73  -1.16  0.91 5.16 
Extrapolate 1.31  6.15  4.76 4.07 
Smooth 1.39  1.68  1.99 1.69 
Interpolate -0.70  -3.11  -2.23 -2.01 
Swap -3.23  -2.92  -2.16 -2.77 
Xover -5.02  -1.54  -5.40 -3.99 

While the number of problems tested here is rather small, some 
tentative conclusions can be drawn. For this class of problems, it 
seems that a very small population size (with Pham's [12] diversity 
conserving mutation rate), combined with PSR of the “time” axis, 
are most efficient. Among the reproductive operators, the Creep 
operator is consistently and strongly beneficial. Crossover, 
interpolation and swap are either insignificant or detrimental. The 
smooth operator does not significantly contribute to numerical 
improvement but it is of practical importance, as it causes control 
function to vary smoothly with time. Observation of the evolving 
control curves shows that the optimum control curve is almost 
always smoother than non-optimal ones.  

4. TESTING PERFORMANCE OF 
OPTIMIZED ALGORITHM 
Based on the results of the above factorial experiments, the 
following “optimized” (although not necessarily “optimal”) set of 
parameters were derived: population size = 2, probability of 
extrapolation = 0.2, of crossover = 0, of interpolation = 0, of 
mutation = 0.05, of creep = 0.5, of swap = 0, of shift = 0.2, of 
smooth = 0.05, PSR applied. This “optimized” algorithm was run 20 
times, each for 1000 function evaluations, on each problems, and 
the mean objective value compared to the group means of each of 
the 29 = 512 factorial combination tested earlier.  
For Problem 1, the previous group mean objective values varied 
from 276.59 to 338.96. The optimized EA gave a mean of 338.84 
(Figure 10). For Problem 2, the previous mean objective values 
varied from 0.59514 to 0.61076 while the optimized EA gives a 
mean of 0.61071 (Figure 11). For Problem 3, the previous mean 
objective values varied from 0.44173 to 0.47731 while the  
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Figure 10. Histogram of mean objective function obtained by 

various combinations of factors for Problem 1. 
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Figure 11. Histogram of mean objective function obtained by 

various combinations of factors for Problem 2. 
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Figure 12. Histogram of mean objective function obtained by 

various combinations of factors for Problem 3. 

optimized EA gives a mean of 0.47697 (Figure 12). In all cases the 
performance of the “optimized” EA is quite near the top of the 
range. Taking into account the random variations, this is a very 
satisfactory result. 

5. CONCLUSIONS 
The Progressive Step Reduction introduced in this paper has been 
shown to be beneficial in helping to accelerate the solution of 
dynamic optimization problems. A reliable and efficient 
evolutionary optimization algorithm for this class of problems seems 
to be one using a small population size, progressive step reduction, a 
large probability for creep and perhaps extrapolation and shift, and 
smaller probabilities for the others, especially swap and crossover. 
Although the average improvement in objective function for a given 
number of function evaluations may seem small, the improvement in 
reliability or reproducibility (in terms of the range from worst to best 
solutions for different runs) is quite considerable and hence of real 
practical usefuless. 

A statistically rigorous method has been applied to evaluate the 
usefulness of various operators. This has rarely been done in 
previous works in evolutionary computation. It is suggested that 
statistical analysis be used more in this field, due to the stochastic 
nature of the results. The full factorial experiment approach used in 
this work requires a large number of runs. For the test problems in 
question it is not too time consuming (a few days on a Pentium-4 
computer), but for larger problems or a multitude of problems, a 
more compact experimental design such as Latin Square may be 
appropriate. 
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