
New Evolutionary Techniques for Test-Program
Generation for Complex Microprocessor Cores

E. Sanchez, M. Schillaci, M. Sonza Reorda, G. Squillero, L. Sterpone, M. Violante
Politecnico di Torino - Dip. Automatica e Informatica

Cso Duca degli Abruzzi 24
10129 Torino – Italy
+39 011 5647092

{ sanchez, schillaci, sonza, squillero, sterpone, violante } @cad.polito.it

ABSTRACT
Checking if microprocessor cores are fully functional at the end of
the productive process has become a major issue. Traditional
functional approaches are not sufficient when considering modern
designs. This paper describes new improvements for an existing
evolutionary algorithm, called µGP, able to generate Turing-
complete programs; these are exploited, along with hardware
acceleration techniques, to add content to a qualifying test
campaign by automatically generating assembly programs. The
approach is suitable for medium-sized processor cores. The
experimental evaluation performed on a SPARCv8 clearly shows
the potentiality of the approach, and the effectiveness of the
enhancements to the evolutionary core.

Categories and Subject Descriptors
D.1.m [Programming Techniques]: Miscellaneous

General Terms
Algorithms

Keywords
Evolutionary algorithms, Automatic test program generation.

1.INTRODUCTION
After production, any new microprocessor must be checked by
means of a post-production test, to ensure that it is fully
functional. Production yield is relatively low, so test is one of the
biggest issues in delivering a high performance device today [1].

The new evolutionary improvements are verified against a real
problem such as pipeline testability for a medium-sized
microprocessor core. The task is to automatically add content to a
test suite for a qualifying test campaign. The proposed approach
focuses on a hard-to-test structure, not easily addressed by the
traditional functional techniques.

Methods for automatically generating test programs may be
classified either as “with feedback” or “without feedback”.

Techniques without feedback are essentially pseudo-random
approaches able to generate random sequences of instructions
fitting some specific constraints. This kind of methodologies has
been broadly investigated, for instance in [2, 3, 4]. Feedback-
based generators, on the other hand, are usually far more effective,
but their computational complexity usually prevents the
exploitation of such methodologies even against medium-sized
microprocessors.

Stemming from [5], [6] describes a feedback-based approach
called µGP. The µGP is an evolutionary approach for generating
assembly programs tuned for a specific microprocessor. Even
though the evolutionary core has been improved to increase its
performance, until now the number of evaluations required in the
evolution has prevented the µGP from tackling testability on
medium-sized microprocessors. For example, assessing the
effectiveness of one test program would require several days on a
workstation.

2.PROPOSED APPROACH
Being based on the µGP, the proposed methodology can be
classified as feedback based; it additionally exploits hardware
acceleration techniques.

The basic idea behind our hardware acceleration consists in
instrumenting the target microprocessor core to measure its
internal activity, and to perform fault simulation. Finally, the
design is mapped on a FPGA-based device that emulates the core
during program execution [7].

The original µGP is described in [6], so only the latest
improvements to the method are described here and will be
detailed below.

For this work, self-adaptation of the tournament size for
tournament selection has been added to the core, making it an
endogenous parameter. The tournament size is increased when the
tool is able to obtain significant fitness improvements and it is
decreased when gains are small or nonexistent.

The purpose of the second upgrade to the tool, a local mutation
operator, is to perform an efficient search of the nearby solution
space around a high-fitness individual, thereby enabling faster
exploitation of the local maximums.

The latest additions to the tool’s capabilities are the aging of the
individuals and the user option of choosing the elite population
size, defined here as the number of individuals that are not
affected by aging. The original core implements a distinctly elitist
scheme. This may perform poorly on some class of problems.
Since the µGP tool is meant to be useable for generic problem

Copyright is held by the author/owner(s).
GECCO’05, June 25-29, 2005, Washington, DC, USA.
ACM 1-59593-010-8/05/0006.

2193

solving, it makes sense to allow it to use either an elitist scheme or
a non-elitist one.

3.CASE STUDY
The proposed approach was tested on a SPARCv8: a
synthesizable VHDL model of a 32-bit microprocessor
conforming to the IEEE-1754 architecture [8]. The
microprocessor pipeline is organized in 5 stages: fetch, decode,
execute, memory and write back. The netlist resulting from
synthesis numbers about 65,000 gates (without the cache).

An initial test set was carefully written according to the method
proposed in [9]. Although it is effective, on some parts of the
microprocessor the approach is not sufficient. More specifically,
40% of the stuck-at faults in the 742 flip-flops composing the
pipeline registers were not detected by the initial test set. A
prototype of the proposed approach was built tackling such faults.
The hardware accelerator exploits an FPGA board equipped with
a Virtex 2000E device. The whole process takes about 26 hours to
complete. For comparison, a random test set has been evaluated.

Table 1 summarizes the results. Fault coverage refers to the faults
in the pipeline registers.

Table 1. Fault Coverage Results

Test Set
Fault

Coverage [%]
Clock

Cycles [#]
Instructions

[#]

Traditional 58.89 11,263 286
Completed 100.00 15,843 402
Rnd_Comp 78.23 12,589 341

Remarkably, the proposed method is able to improve a typical set
of test programs composed of random programs or deterministic
ones by better tackling internal complex structures such as the
processor pipeline.

Five experiments were performed to evaluate the effect of the
proposed improvements to the evolutionary core. The first one has
been performed using the previous version of the evolutionary
core, and is called the Reference. Three experiments were made to
isolate the effects of every single improvement to the tool, and are
indicated by Age, Loc and Tau. The final one has been performed
implementing all of the improvements in the µGP core, and is
shown under the name Complete. All of these experiments use the
same evolutionary parameters. The features employed in the five
experiments are shown in Table 2.

Table 2. Experimental Setup
Experiment Elitism Tournament size

self-adaptation
Local
search

Reference strong no no
Age relaxed no no
Loc strong no yes
Tau strong yes no
Complete relaxed yes yes

Figure 1 reports the best fitness at every generation in all the
experiments.

The Loc experiment, exploiting local mutation, even performs
worse than the original evolutionary process. This is a sure sign
that the fitness function is a deceptive one. The Age experiment,
which employs individual aging, greatly relaxes the elitist scheme,
allowing greater freedom in the solutions space search. But,

contrary to expectations, the evolutionary process exactly follows
the original one. Tournament size self-adaptation allows the tool
to avoid getting stuck in a local optimum, so the Tau experiment
gives better results than the simple elitism relaxation.

97.00%

97.50%

98.00%

98.50%

99.00%

99.50%

100.00%

0 500 1000 1500 2000 2500

Reference Loc Tau Age Complete
Figure 1 - Result summary

4.CONCLUSIONS
The paper presents a novel approach for the automatic completion
of a test suite for a medium-sized microprocessor core. The
technique has been tested on the SPARCv8 as a case study, and
experimental results clearly show its effectiveness improving the
traditional approach.

The proposed approach introduces different enhancements in
µGP, an existing evolutionary algorithm for generating assembly-
language programs, and exploits a hardware accelerator to
efficiently evaluate individuals. The experimental evaluation
shows their usefulness in the specific task.

5.REFERENCES
[1] International Technology Roadmap for Semiconductors,

2003 edition
[2] K. Batcher, C. Papachristou, “Instruction Randomization

Self Test For Processor Cores”, IEEE VLSI Test Symposium,
1999, pp. 34-40

[3] L. Chen, S. Dey, “DEFUSE: A Deterministic Functional
Self-Test Methodology for Processors”, IEEE VLSI Test
Symposium, 2000, pp. 255-262

[4] P. Parvathala, K. Maneparambil, W. Lindsay, “FRITS — a
Microprocessor Functional Bist Method”, International Test
Conference, 2002, pp. 590-598

[5] F. Corno, G. Cumani, M. Sonza Reorda, G. Squillero,
“Fully Automatic Test Program Generation for
Microprocessor Cores”, IEEE Design, Automation and Test
in Europe, 2003, pp. 1006-1011

[6] G. Squillero, “MicroGP — An Evolutionary Assembly
Program Generator”, to appear on: Genetic Programming
and Evolvable Machines, 2005

[7] Jin-Hua Hong, Shih-Arn Hwang, Cheng-Wen Wu, “An
FPGA-based hardware emulator for fast fault emulation”,
IEEE 39th Midwest Symposium on, Volume: 1, 18-21 Aug.
1996, pp. 345-348 val.1

[8] SPARC International, The SPARC Architecture Manual
[9] N. Kranitis, G. Xenoulis, A. Paschalis, D. Gizopoulos, Y.

Zorian, “Application and Analysis of RT-Level Software-
Based Self-Testing for Embedded Processor Cores”,
International Test Conference, 2003, pp. 431-440

2194

